Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 22 lutego 2026 01:13
  • Data zakończenia: 22 lutego 2026 02:12

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź C faktycznie jest trafna, bo symbol podany w tej opcji świetnie pokazuje, jak powinny być prowadzone przewody w listwie przypodłogowej, co można zobaczyć na zdjęciu. Wiele instalacji elektrycznych korzysta z listew przypodłogowych, bo to nie tylko estetyczne, ale też bezpieczne. Dzięki temu przewody są dobrze schowane i nie wystają na wierzch, co na pewno jest lepsze w projektowaniu wnętrz. Z tego, co wiem, normy IEC również zalecają używanie takich kanałów kablowych, jak w symbolu C, aby zapewnić bezpieczeństwo i przestrzegać przepisów budowlanych. Takie rozwiązanie można spotkać w biurach, mieszkaniach, a nawet w miejscach publicznych, gdzie estetyka i bezpieczeństwo są bardzo ważne.

Pytanie 2

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. aM 20 A
B. gG 16 A
C. aR 16 A
D. gB 20 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 3

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q2
B. NO stycznika Q1
C. NC stycznika Q1
D. NO stycznika Q2
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 4

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 5

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 6

Z którego materiału wykonuje się powłokę kabla elektroenergetycznego o symbolu HAKnFtA?

A. Z polwinitu.
B. Z ołowiu.
C. Z gumy.
D. Z bawełny.
W tym pytaniu pułapka polega głównie na skojarzeniach z materiałami, które rzeczywiście występują w technice kablowej, ale w zupełnie innych rolach niż powłoka kabla o symbolu HAKnFtA. Jeżeli ktoś widzi odpowiedź „z gumy”, to często myśli o klasycznych przewodach gumowych używanych np. do przedłużaczy budowlanych, przewodów ruchomych, przewodów spawalniczych. Guma jak najbardziej jest stosowana w kablach, ale głównie jako izolacja lub powłoka w przewodach elastycznych, oznaczanych innymi symbolami (np. H07RN-F). W kablu HAKnFtA izolacja i powłoka są inne i wynikają z systemu oznaczeń przewidzianego w normach. Bawełna pojawia się w starych instalacjach jako oplot tekstylny lub izolacja w przewodach instalacyjnych z początku XX wieku. Dziś praktycznie nie stosuje się jej w nowoczesnych kablach elektroenergetycznych jako zasadniczej powłoki, bo nie spełnia wymagań dotyczących trwałości, odporności na wilgoć czy warunki środowiskowe. Może się pojawiać jako element pomocniczy, np. oplot, ale nie jako główna metaliczna powłoka ochronna kabla energetycznego. Polwinit, czyli PVC, to z kolei bardzo częsty materiał izolacji i powłok w wielu typach przewodów i kabli niskiego napięcia. W symbolach kabli litera „Y” zwykle oznacza właśnie polwinit. W kablu HAKnFtA literą identyfikującą powłokę jest „A” i zgodnie z przyjętą konwencją oznacza ona ołów, a nie PVC. Typowy błąd myślowy polega na tym, że ktoś kojarzy, że „współczesne kable to raczej tworzywa sztuczne niż metale” i automatycznie wybiera polwinit, nie patrząc w ogóle na system oznaczeń. Drugi typowy skrót myślowy to mieszanie pojęć: materiał izolacji, materiał powłoki zewnętrznej, oplot, pancerz – wszystko wrzucane do jednego worka. W praktyce zawodowej takie pomyłki są niebezpieczne, bo zły dobór materiału powłoki może skutkować szybszą korozją, przenikaniem wilgoci i awariami kabla. Dlatego warto sobie poukładać: w oznaczeniu HAKnFtA litera „A” wskazuje na ołowianą powłokę, a nie gumę, bawełnę czy PVC, choć te materiały też występują w technice kablowej, ale w innych, bardziej specyficznych zastosowaniach.

Pytanie 7

Na rysunku przedstawiono

Ilustracja do pytania
A. sprawdzanie ciągłości przewodów ochronnych.
B. pomiar impedancji pętli zwarcia.
C. pomiar rezystancji izolacji przewodów ochronnych.
D. badanie skuteczności ochrony podstawowej.
Chociaż odpowiedzi dotyczące badania skuteczności ochrony podstawowej, pomiaru rezystancji izolacji przewodów ochronnych czy pomiaru impedancji pętli zwarcia są związane z instalacjami elektrycznymi, nie odnoszą się bezpośrednio do opisanej sytuacji. Badanie skuteczności ochrony podstawowej dotyczy oceny, czy system ochrony przed porażeniem prądem elektrycznym spełnia swoje funkcje, co jest analizowane w kontekście całej instalacji, a nie tylko pojedynczych przewodów. Z kolei pomiar rezystancji izolacji jest procedurą, która ma na celu wykrycie uszkodzeń izolacji, co również nie odnosi się do sprawdzania ciągłości przewodów ochronnych. Pomiar impedancji pętli zwarcia jest natomiast techniką służącą do oceny skuteczności zabezpieczeń przeciwzwarciowych i nie ma związku ze sprawdzaniem ciągłości przewodów. Często pojawiające się błędne rozumienie zasadności tych pomiarów wynika z mylnego utożsamiania różnych procedur kontrolnych. Należy pamiętać, że każda z tych metod ma swoje specyficzne zastosowanie i w kontekście przedstawionego rysunku, tylko sprawdzanie ciągłości przewodów ochronnych jest w pełni adekwatne. Przez nieprecyzyjne odpowiedzi możemy nieświadomie zignorować kluczowe aspekty bezpieczeństwa elektrycznego, co może prowadzić do poważnych konsekwencji.

Pytanie 8

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Wyładowcze wysokoprężne.
C. Półprzewodnikowe.
D. Żarowe.
Wybór innych typów źródeł światła, takich jak wyładowcze niskoprężne, półprzewodnikowe czy wyładowcze wysokoprężne, jest nieprawidłowy z kilku powodów. Wyładowcze niskoprężne, takie jak lampy fluorescencyjne, działają na zasadzie wyładowania elektrycznego w gazie, co skutkuje zupełnie inną charakterystyką świetlną. Te lampy emitują miękkie, rozproszone światło o niższej temperaturze barwowej w porównaniu do lamp halogenowych, co sprawia, że są mniej odpowiednie do zastosowań wymagających intensywności oraz jakości światła. Półprzewodnikowe źródła światła, jak diody LED, charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, ale również różnią się od żarówek halogenowych pod względem jakości emitowanego światła. W kontekście oświetlenia akcentującego, lampy LED mogą nie osiągać takiej samej temperatury barwowej, co lampy halogenowe. Wyładowcze wysokoprężne, z kolei, to lampy stosowane w oświetleniu ulicznym czy przemysłowym, które generują bardzo silne światło, ale mają ograniczone zastosowanie w kontekście domowym. Wybór niewłaściwego źródła światła może prowadzić do niezadowolenia z jakości oświetlenia oraz wyższych kosztów eksploatacji. Dlatego zrozumienie różnic pomiędzy tymi technologiami jest kluczowe w doborze odpowiednich źródeł światła do konkretnych zastosowań.

Pytanie 9

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 10

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SH-s (2)
B. SP-d (2)
C. SP-d (1)
D. SH-s (1)
Odpowiedź SP-d (2) jest poprawna, ponieważ zgodnie z normami budowlanymi w Polsce, łącznik oświetlenia głównego powinien być zainstalowany w łatwo dostępnym miejscu, zazwyczaj w pobliżu drzwi wejściowych do pomieszczenia. Umieszczenie łącznika w strefie SP-d (2) jest zgodne z zaleceniami dotyczącymi ergonomii i użyteczności, co pozwala użytkownikom na wygodne włączanie i wyłączanie światła od razu po wejściu do pomieszczenia. W przypadku strefy SP-d (2), łącznik znajduje się po prawej stronie drzwi, co jest standardowym rozwiązaniem w projektowaniu wnętrz, ułatwiającym dostęp do oświetlenia. Taki układ zwiększa komfort użytkowania oraz zapewnia większe bezpieczeństwo, gdyż pozwala na szybkie oświetlenie pomieszczenia, eliminując ryzyko potknięcia się w ciemności. Dobrą praktyką jest także umieszczanie łączników na odpowiedniej wysokości, co dodatkowo zwiększa ich funkcjonalność. Zastosowanie się do tych norm jest kluczowe w każdym projekcie budowlanym, aby zapewnić optymalne warunki użytkowania oraz zgodność z przepisami prawa budowlanego.

Pytanie 11

Wskaż właściwą kolejność prac przy wymianie uszkodzonego wyłącznika schodowego.

A. Stwierdzenie braku napięcia, wyłączenie napięcia, montaż wyłącznika, demontaż wyłącznika, sprawdzenie prawidłowości działania, włączenie napięcia.
B. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż wyłącznika, montaż wyłącznika, włączenie napięcia, sprawdzenie prawidłowości działania.
C. Wyłączenie napięcia, demontaż wyłącznika, montaż wyłącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia.
D. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż wyłącznika, montaż wyłącznika, wyłączenie napięcia.
Prawidłowa kolejność prac, którą wybrałeś, dokładnie odzwierciedla podstawową zasadę w elektroenergetyce: najpierw bezpieczeństwo, potem praca, na końcu uruchomienie i test. Najpierw musi być wyłączenie napięcia – czyli odłączenie obwodu od zasilania odpowiednim łącznikiem, wyłącznikiem nadprądowym albo rozłącznikiem. Sama pozycja dźwigni w rozdzielnicy to za mało, ale jest to pierwszy krok. Następnie konieczne jest stwierdzenie braku napięcia, czyli sprawdzenie przy pomocy odpowiedniego wskaźnika napięcia, czy na przewodach naprawdę nie ma potencjału. W dobrych praktykach zawsze mówi się: nie ufaj tylko pozycji wyłącznika, zawsze weryfikuj przyrządem. Dopiero po potwierdzeniu braku napięcia można bezpiecznie przystąpić do demontażu uszkodzonego wyłącznika schodowego – odkręcenie osprzętu, odłączenie przewodów, oznaczenie ich, żeby nie pomylić przy ponownym podłączeniu. Potem następuje montaż nowego wyłącznika: prawidłowe podłączenie przewodu fazowego na zacisk wspólny (L, COM) i przewodów korespondencyjnych na pozostałe zaciski, solidne dokręcenie śrub, poprawne ułożenie przewodów w puszce. Po zakończeniu prac montażowych można dopiero włączyć napięcie w rozdzielnicy. Ostatni krok to sprawdzenie prawidłowości działania – czyli kilka razy przełączenie obu wyłączników schodowych, sprawdzenie czy światło reaguje prawidłowo z każdego miejsca. Moim zdaniem to właśnie ten etap wiele osób bagatelizuje, a jest on kluczowy: pozwala wychwycić złe podłączenie korespondencji, pomylenie przewodu fazowego z neutralnym albo z ochronnym, co byłoby poważnym błędem. Cała ta sekwencja jest zgodna z ogólnymi zasadami BHP, wymaganiami norm PN-HD 60364 oraz typowymi procedurami LOTO (Lock Out/Tag Out) stosowanymi w energetyce i instalacjach elektrycznych. W praktyce, przy każdej pracy w puszce czy oprawie oświetleniowej, warto mentalnie powtarzać sobie ten schemat: odłącz – sprawdź – wykonaj – uruchom – przetestuj. To bardzo ogranicza ryzyko porażenia i uszkodzenia instalacji.

Pytanie 12

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Podłączenie instalacji oświetleniowej nie powinno być realizowane w sposób, który nie przestrzega zasad bezpieczeństwa i dobrych praktyk branżowych. Wiele błędnych podejść skupia się na niewłaściwym połączeniu przewodów elektrycznych. Na przykład, gdy przewód fazowy jest podłączony bezpośrednio do żarówki, a przewód neutralny jest odłączony, żarówka może pozostawać pod napięciem, co zwiększa ryzyko porażenia prądem w przypadku, gdy osoba zdecyduje się na wymianę żarówki. Tego rodzaju błędy wynikają z braku zrozumienia roli przewodów w obwodzie elektrycznym oraz podstawowych zasad działania włączników. Ponadto, niewłaściwe podłączenie przewodu ochronnego PE może prowadzić do niebezpiecznych sytuacji, w których brak odpowiedniego uziemienia stwarza ryzyko wystąpienia przepięć. Kluczowe jest, aby każdy instalator elektryczny stosował się do norm i standardów, takich jak normy IEC czy krajowe przepisy dotyczące instalacji elektrycznych, które określają, jak prawidłowo podłączać instalacje oświetleniowe, aby zapewnić maksymalne bezpieczeństwo użytkowników. Zrozumienie tych zasad jest niezbędne, aby uniknąć niebezpiecznych sytuacji, które mogą prowadzić do uszkodzeń lub nawet tragicznych w skutkach wypadków.

Pytanie 13

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. szary
B. zielony
C. niebieski
D. żółty
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 14

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SRN
B. SCO
C. SZR
D. SPZ
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 15

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. PEN
B. PE
C. N
D. L
Symbol przedstawiony na rysunku oznacza przewód neutralny, który w instalacjach elektrycznych jest kluczowym elementem systemu zasilania. Oznaczenie "N" wskazuje na przewód, który ma za zadanie prowadzić prąd powracający z obciążenia do źródła zasilania. Przewód neutralny jest niezbędny w układach jedno- i trójfazowych, gdzie zapewnia równowagę obciążenia w instalacji. W praktyce oznaczenie to jest stosowane zgodnie z normami IEC 60446, które definiują sposób oznaczania przewodów w instalacjach elektrycznych. Poprawne rozróżnianie między przewodami fazowymi a neutralnym jest kluczowe dla bezpieczeństwa eksploatacji instalacji. Przykładowo, w budynkach mieszkalnych przewód neutralny jest wykorzystywany w instalacjach oświetleniowych oraz gniazdach elektrycznych, gdzie zapewnia powrót prądu do źródła zasilania, co jest niezbędne do prawidłowego działania urządzeń elektrycznych. Bez przewodu neutralnego, obwody nie byłyby w stanie funkcjonować prawidłowo, co mogłoby prowadzić do niebezpiecznych sytuacji takich jak przegrzanie czy zwarcia.

Pytanie 16

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. tylko przewody fazowe
B. wszystkie przewody czynne
C. przewody fazowe oraz ochronny
D. wyłącznie przewód neutralny
Wybór tylko przewodów fazowych lub przewodu neutralnego do pomiaru prądu upływu jest niezgodny z zasadami diagnostyki elektrycznej. Ograniczając pomiar do samych przewodów fazowych, pomijamy istotny element równowagi prądów w obwodzie, co może prowadzić do błędnych wniosków o stanie instalacji. Przewód neutralny odgrywa kluczową rolę w bilansowaniu prądów w instalacji trójfazowej, a jego wyłączenie z pomiaru nie pozwala na pełne zrozumienie prądów upływowych, które mogą występować. Z kolei pomiar tylko przewodu neutralnego jest całkowicie niewłaściwy, ponieważ nie dostarcza informacji o prądach płynących przez przewody fazowe, które mogą być źródłem zagrożenia. Dlatego istotne jest, aby w pomiarach uwzględniać wszystkie przewody czynne, co jest zgodne z kryteriami bezpieczeństwa zawartymi w normach, takich jak IEC 60364. Nieprawidłowe zrozumienie roli każdego z przewodów w instalacji elektrycznej prowadzi do ryzykownych sytuacji, w których prądy upływowe mogą pozostać niezauważone, a co za tym idzie, zwiększa się ryzyko wystąpienia porażenia prądem elektrycznym. Każdy pracownik zajmujący się eksploatacją instalacji elektrycznych powinien być świadomy tych aspektów, aby zapewnić pełne bezpieczeństwo oraz zgodność z obowiązującymi normami technicznymi.

Pytanie 17

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, ołówek traserski, sznurek traserski
B. Ołówek traserski, poziomnica, przymiar taśmowy
C. Kątownik, młotek, punktak
D. Ołówek traserski, przymiar kreskowy, rysik
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 18

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 2 500 V
B. 500 V
C. 1 000 V
D. 250 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 19

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 1.
B. Wstawkę 4.
C. Wstawkę 3.
D. Wstawkę 2.
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 20

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę kalibrową.
B. Oprawkę źródła światła.
C. Gniazdo zapłonnika.
D. Wkładkę topikową bezpiecznika.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 21

Na podstawie ilustracji przedstawiającej fragment instalacji elektrycznej, określ technikę wykonania instalacji.

Ilustracja do pytania
A. Podtynkowa.
B. Natynkowa prowadzona w rurkach.
C. Natynkowa na uchwytach.
D. Wtynkowa.
Prawidłowo – na zdjęciu widać instalację wykonaną w technice wtynkowej. Przewody prowadzone są po powierzchni surowej ściany z cegły, mocowane uchwytami, puszki i osprzęt są osadzone w bruzdach lub otworach, ale całość jest przygotowana w taki sposób, żeby później została całkowicie przykryta tynkiem. W praktyce wygląda to tak: elektryk najpierw wyznacza trasy, wykonuje bruzdy pod puszki i podejścia, rozkłada przewody bezpośrednio na murze, mocuje je kołkami, klipsami lub klejem, a dopiero potem wchodzi tynkarz i wszystko zakrywa warstwą tynku cementowo‑wapiennego lub gipsowego. Po otynkowaniu nie widać ani przewodów, ani większości puszek – pozostają jedynie otwory pod gniazda i łączniki. Moim zdaniem to jedna z najbardziej typowych technik w budownictwie mieszkaniowym, zgodna z dobrymi praktykami opisanymi chociażby w PN‑HD 60364 i zaleceniami producentów przewodów instalacyjnych typu YDYp. Ważne jest tu prowadzenie tras pionowo i poziomo, w strefach instalacyjnych, tak aby później podczas wiercenia w ścianie nie naruszyć przewodów. Wtynkowa instalacja różni się od podtynkowej tym, że przewody nie są prowadzone w rurkach lub peszlach na całej długości, tylko bezpośrednio po podłożu, a ochronę mechaniczną zapewnia im właśnie warstwa tynku. Z mojego doświadczenia dobrze wykonana instalacja wtynkowa jest szybka w montażu, estetyczna po wykończeniu i całkowicie wystarczająca w typowych ścianach murowanych, o ile zachowa się odpowiednią głębokość bruzd, prawidłowe mocowanie i dobór przekrojów przewodów.

Pytanie 22

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź A jest poprawna, ponieważ zgodnie z przedstawionym planem instalacji, schemat montażowy A odpowiada wymaganym połączeniom przewodów PE (ochronny), N (neutralny) oraz L (fazowy). W instalacjach elektrycznych niezwykle istotne jest przestrzeganie standardów, takich jak normy PN-EN 60364, które określają zasady projektowania i wykonania instalacji elektrycznych. W schemacie A przewody są właściwie oznaczone i połączone w taki sposób, że zapewniają bezpieczeństwo użytkowania oraz minimalizują ryzyko zwarcia lub awarii. Przykładowo, prawidłowe połączenie przewodu ochronnego z uziemieniem jest kluczowe dla bezpieczeństwa instalacji, ponieważ chroni użytkowników przed porażeniem prądem. Ponadto, schemat A pokazuje prawidłowe rozmieszczenie gniazd wtyczkowych, co jest zgodne z zasadą dostępu do źródeł zasilania w wygodny sposób. Zastosowanie takich praktyk w rzeczywistych instalacjach przyczynia się do ich niezawodności oraz zgodności z obowiązującymi przepisami prawa budowlanego.

Pytanie 23

Na której ilustracji przedstawiono element osprzętu elektrycznego przeznaczony do montażu na tynku?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Prawidłowa jest ilustracja 3, ponieważ pokazuje typowe gniazdo wtykowe podwójne w wersji natynkowej, z obudową montowaną bezpośrednio na tynku. Taki osprzęt ma własną obudowę, która tworzy bryłę odstającą od ściany, a przewody są doprowadzane do niego w rurkach, peszlach lub kanałach instalacyjnych po wierzchu ściany. W odróżnieniu od osprzętu podtynkowego nie wymaga on puszki osadzonej w bruździe – wystarczy stabilne podłoże i odpowiednie kołki rozporowe. W praktyce takie gniazda stosuje się często w garażach, piwnicach, warsztatach, pomieszczeniach gospodarczych, ale też w modernizowanych instalacjach, gdzie nie chcemy kuć ścian. Obudowa z klapką zwiększa stopień ochrony IP, co jest zgodne z wymaganiami norm PN‑IEC 60364 dla pomieszczeń wilgotnych lub zapylonych. Moim zdaniem to bardzo wygodne rozwiązanie serwisowe – w razie potrzeby łatwo dołożyć kolejne gniazdo, zamienić na wersję z wyłącznikiem albo zmienić układ bez poważnych przeróbek tynku. Dobre praktyki mówią też, żeby przy osprzęcie natynkowym zwracać uwagę na szczelność dławików kablowych i poprawne wprowadzenie przewodów, tak żeby nie było naprężeń mechanicznych na zaciskach. Warto pamiętać, że osprzęt natynkowy dobiera się nie tylko pod kątem napięcia i prądu znamionowego, ale też stopnia ochrony IP, wytrzymałości mechanicznej obudowy i warunków środowiskowych, w jakich będzie pracował.

Pytanie 24

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Regulator temperatury.
C. Czujnik kolejności faz.
D. Przekaźnik czasowy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 25

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 34 A
B. 25 A
C. 30 A
D. 29 A
Wybór niewłaściwej obciążalności przewodów, na przykład 29 A, 25 A czy 30 A, wynika często z niewłaściwego zrozumienia zasad doboru zabezpieczeń elektrycznych. Prąd znamionowy wyłącznika nadmiarowo-prądowego KS6 B32/3 wynosi 32 A, co oznacza, że obciążalność długotrwała przewodów musi być wyższa od tej wartości, aby uniknąć sytuacji, w której wyłącznik będzie się zbyt często wyzwalał podczas normalnej pracy. Wybór 29 A to minimalna wartość, która nie spełnia wymogu większej obciążalności długotrwałej, co może prowadzić do niepożądanych wyłączeń urządzenia. Z kolei 25 A jest jeszcze bardziej nieodpowiedni, ponieważ nie tylko nie przekracza prądu znamionowego wyłącznika, ale także stwarza ryzyko uszkodzenia instalacji w przypadku krótkotrwałego wzrostu obciążenia. Wybór 30 A również jest niewłaściwy, gdyż nie zapewnia odpowiedniego marginesu, co może prowadzić do nieefektywności systemu zabezpieczeń. Podstawową zasadą projektowania instalacji elektrycznych jest zapewnienie, że każdy element systemu jest dobrany z odpowiednim zapasem, co nie tylko zwiększa bezpieczeństwo, ale również stabilność i niezawodność całej instalacji. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji, w tym ryzyka uszkodzenia sprzętu oraz zagrożenia dla użytkowników.

Pytanie 26

Który schemat przestawia poprawny i zgodny ze sztuką monterską sposób podłączenia instalacji oświetleniowej?

Ilustracja do pytania
A. Schemat 2.
B. Schemat 4.
C. Schemat 1.
D. Schemat 3.
Analizując inne schematy, można zauważyć szereg błędów, które mogą prowadzić do nieprawidłowego działania instalacji oświetleniowej. W przypadku pierwszego schematu, błędne podłączenie przewodu neutralnego i ochronnego stwarza ryzyko nieprawidłowego działania, co może skutkować zwarciem lub porażeniem prądem. Z kolei w drugim schemacie zauważalne są nieprawidłowości w podłączeniu przewodu fazowego, co wprowadza niebezpieczeństwo w eksploatacji urządzenia. Schemat czwarty, który również zawiera błędy przy podłączeniu przewodów fazowego i neutralnego, może prowadzić do problemów z zasilaniem, a w skrajnych przypadkach do uszkodzenia sprzętu. Zrozumienie, jak powinny być poprawnie podłączone przewody, jest kluczowe, aby uniknąć takich błędów. Często błędne interpretacje wynikają z braku znajomości zasad działania obwodów elektrycznych oraz niewłaściwego schematyzowania połączeń. Kluczowe jest, aby przestrzegać standardów i regulacji dotyczących instalacji elektrycznych, aby zapewnić ich bezpieczeństwo i funkcjonalność. W kontekście norm, takich jak PN-IEC 60364, wyraźnie zaznaczone są zasady dotyczące podłączenia i organizacji instalacji, które mają na celu minimalizowanie ryzyka i zwiększenie efektywności działania systemów elektrycznych.

Pytanie 27

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 6 A
B. 20 A
C. 26 A
D. 16 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 28

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór odpowiedzi spoza opcji D wskazuje na brak zrozumienia podstawowych zasad dotyczących przenośnych uziemiaczy. Uziemiacze te są niezbędne w każdym środowisku, gdzie prowadzone są prace elektryczne, a ich właściwe zastosowanie może uchronić przed tragicznymi konsekwencjami. Odpowiedzi A, B i C mogą przedstawiać różne narzędzia, ale żadne z nich nie spełniają funkcji przenośnego uziemiacza. W praktyce, niektóre odpowiedzi mogą przedstawiać urządzenia, które są stosowane w inny sposób, na przykład narzędzia pomiarowe lub akcesoria, ale nie mają one zastosowania w kontekście tymczasowego uziemienia. Typowym błędem jest mylenie różnych narzędzi i ich funkcji, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu. Przykładami tego mogą być różne narzędzia elektryczne, które nie mają charakterystyki uziemiającej. Właściwe zrozumienie funkcji przenośnego uziemiacza jest kluczowe, aby uniknąć sytuacji potencjalnie zagrażających zdrowiu i życiu, a także zapewnić bezpieczeństwo podczas prowadzenia prac konserwacyjnych. Standardy branżowe, takie jak OSHA oraz IEC, jasno określają konieczność stosowania uziemiaczy w odpowiednich miejscach pracy, co powinno być priorytetem w każdej sytuacji związanej z pracą z energią elektryczną.

Pytanie 29

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 5 lat
B. co najmniej raz na 10 lat
C. raz na rok
D. raz na pół roku
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 30

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Pomiar rezystancji uziemienia.
B. Sprawdzanie wyłączników różnicowoprądowych.
C. Badanie kolejności faz.
D. Lokalizacja przewodów pod tynkiem.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 31

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób C i 95 mm2
B. Sposób E i 95 mm2
C. Sposób C i 70 mm2
D. Sposób E i 70 mm2
W przypadku niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów logicznych, które mogą prowadzić do niewłaściwych wniosków. Na przykład, wybór metody C z przekrojem 95 mm², mimo że przekrój przewodu spełnia wymogi obciążalności, nie uwzględnia faktu, że sposób ułożenia ma zasadnicze znaczenie dla bezpieczeństwa i wydajności. Sposób C to układ przewodów w rurkach instalacyjnych, co ogranicza ich zdolność do odprowadzania ciepła. W rezultacie może to prowadzić do przegrzania i potencjalnych uszkodzeń instalacji. Również wybór sposobu E z mniejszym przekrojem 70 mm² jest nieadekwatny, ponieważ obciążalność tego przewodu wynosi jedynie 200 A, co nie wystarcza do obsługi wymaganej wartości 220 A. W takich przypadkach warto zwrócić uwagę na obliczenia dotyczące obciążalności prądowej przewodów, które są podstawą do projektowania prawidłowych instalacji elektrycznych. Niezastosowanie się do standardów, takich jak PN-IEC 60364, w kontekście doboru zarówno metody ułożenia, jak i przekroju przewodu, może prowadzić do awarii systemów zasilających oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest, aby przed podjęciem decyzji o wyborze odpowiednich komponentów instalacji elektrycznej, dokładnie analizować wymagania oraz standardy branżowe.

Pytanie 32

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 500V
B. 250V
C. 1000 V
D. 750V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 33

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
B. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
C. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
D. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
Odpowiedź w sprawie prac na wysokości powyżej 2 metrów jest jak najbardziej trafiona. Przepisy BHP jasno mówią, że takie zadania powinny być wykonywane przez co najmniej dwie osoby. Dlaczego? Bo ryzyko upadku jest po prostu za duże. Nie wyobrażam sobie, żeby jedna osoba mogła w pełni zareagować, jeśli na przykład straci równowagę, zwłaszcza przy czymś takim jak montaż lamp na wysokich budynkach. Gdy jedna osoba zajmuje się np. sprzętem, to druga powinna mieć oko na bezpieczeństwo. Również zgodnie z normą PN-EN 50110-1 trzeba dobrze zaplanować takie prace i wyposażyć się w odpowiednie zabezpieczenia, jak uprzęże czy liny. Gdy obie osoby pracują razem, to zwiększa to bezpieczeństwo i sprawia, że wszystko idzie sprawniej. Bez tego można narazić się na niebezpieczeństwo, a zdrowie i życie zawsze powinno być na pierwszym miejscu.

Pytanie 34

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
D. Polakierować uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 35

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NO + 1NC
B. 3NO + 1NO + 2NC
C. 3NO + 2NO + 1NC
D. 3NC + 1NO + 2NC
Wybór niewłaściwej odpowiedzi często wynika z braku dokładnej analizy schematu elektrycznego oraz niepełnego zrozumienia funkcji zestyków w układzie. Istnieje kilka kluczowych błędów, które mogą prowadzić do nieprawidłowych wniosków. Po pierwsze, zestyk normalnie zamknięty (NC) nie powinien być nadużywany w układach, w których wymagane jest równoczesne włączenie kilku urządzeń; ich zadaniem jest raczej zapewnienie bezpieczeństwa poprzez odcięcie zasilania w przypadku awarii. W sytuacjach, gdzie pojawia się konieczność aktywacji kilku elementów, zestyk normalnie otwarty (NO) jest bardziej odpowiedni, ponieważ zapewnia ciągłość obwodu przy włączonym styczniku. Ponadto, niektóre odpowiedzi mogą sugerować nadmiar zestyków NC w układzie, co prowadzi do skomplikowania działania i może powodować problemy przy uruchamianiu urządzeń. Regularna analiza schematów i stosowanie się do dobrych praktyk, takich jak, na przykład, dobór elementów zgodnie z ich specyfikacją techniczną oraz normami bezpieczeństwa, jest niezbędne dla zapewnienia prawidłowego działania wszystkich komponentów układu. W każdym przypadku, kluczowe jest przemyślane podejście do projektowania i realizacji układów elektrycznych, które powinno łączyć teorię z praktyką, pozwalając na osiągnięcie optymalnych rezultatów.

Pytanie 36

Ile wynosi natężenie prądu fazowego pobieranego przez odbiornik trójfazowy powstały z połączenia w gwiazdę trzech jednakowych grzałek rezystancyjnych po 100 Ω każda, przy zasilaniu go z sieci o napięciu 230/400 V?

A. 4,0 A
B. 2,3 A
C. 1,3 A
D. 6,9 A
W tego typu zadaniu największy problem zwykle wynika z pomylenia napięcia fazowego z liniowym oraz z nieprawidłowego kojarzenia zależności między prądem a sposobem połączenia odbiornika. Odbiornik jest połączony w gwiazdę, każda grzałka 100 Ω wisi między fazą a punktem gwiazdowym, czyli pracuje na napięciu 230 V, a nie 400 V. Jeśli ktoś wziął napięcie 400 V do obliczeń, to automatycznie wychodzi zawyżony prąd, bo z prawa Ohma I = U / R. Dla 400 V i 100 Ω wyszłoby 4 A, co kusi, bo jest w odpowiedziach, ale jest to typowy błąd: użycie napięcia międzyfazowego w sytuacji, gdy element jest zasilany napięciem fazowym. W układzie gwiazdy napięcie na każdej fazie (na każdym odbiorniku) jest niższe o pierwiastek z trzech od napięcia międzyfazowego. Drugi typowy błąd to mieszanie zależności prądowych z układu trójkąta z układem gwiazdy. W trójkącie prąd przewodowy jest większy od prądu fazowego o czynnik √3, natomiast w gwieździe prąd fazowy jest równy przewodowemu. Jeśli ktoś próbował tu coś mnożyć lub dzielić przez √3 przy prądzie, to też prowadzi do wyników typu 1,3 A czy 6,9 A, które po prostu nie mają fizycznego sensu przy zadanych danych. Warto pamiętać prostą zasadę: w gwieździe liczymy prąd z napięcia 230 V dla sieci 230/400 V, a w trójkącie – z 400 V. Dopiero po poprawnym ustaleniu napięcia dla pojedynczej fazy można mówić o dalszych przeliczeniach, np. o mocy całkowitej P = 3·U_f·I_f przy odbiorniku rezystancyjnym. Moim zdaniem dobrze jest przy każdym takim zadaniu najpierw narysować sobie prosty schemat gwiazdy i podpisać na nim napięcie fazowe oraz międzyfazowe, wtedy od razu widać, że użycie 400 V do pojedynczej grzałki jest błędem. To jest też bardzo praktyczne przy rzeczywistych instalacjach – błędne założenie napięcia skutkuje złym doborem zabezpieczeń i przekrojów przewodów, co jest niezgodne z PN-HD 60364 i po prostu niebezpieczne dla instalacji.

Pytanie 37

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Megaomomierza induktorowego
B. Amperomierza cęgowego
C. Omomierza szeregowego
D. Mostka prądu zmiennego
Megaomomierz induktorowy to naprawdę fajne urządzenie do pomiaru rezystancji izolacji w instalacjach elektrycznych. Głównie pomaga ocenić, w jakim stanie jest izolacja przewodów, co jest bardzo ważne dla bezpieczeństwa i dobrej pracy instalacji. W przeciwieństwie do zwykłych omomierzy, które działają na niskich wartościach, megaomomierz potrafi wygenerować wysokie napięcie, na przykład od 250 do 1000V. Dzięki temu da się zauważyć różne problemy z izolacją, takie jak uszkodzenia czy nieszczelności. Z mojego doświadczenia wynika, że regularne pomiary są kluczowe, zwłaszcza w domach. Są normy, jak PN-IEC 60364, które mówią, że trzeba to robić przynajmniej co pięć lat, a w niektórych miejscach nawet częściej. Dzięki tym pomiarom można zapobiec poważnym awariom i zagrożeniom pożarowym związanym z uszkodzoną izolacją.

Pytanie 38

Którą puszkę należy zastosować podczas wymiany instalacji, wykonanej na tynku w pomieszczeniu suchym?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź B jest poprawna, ponieważ w pomieszczeniach suchych, zgodnie z obowiązującymi normami instalacyjnymi, należy stosować puszki instalacyjne podtynkowe, które są przeznaczone do montażu w takich warunkach. Puszka wskazana jako B spełnia te wymagania, ponieważ jest zaprojektowana do pracy w suchych pomieszczeniach, co minimalizuje ryzyko uszkodzenia instalacji elektrycznej oraz zapewnia optymalne warunki dla podłączeń elektrycznych. W praktyce, puszki podtynkowe pozwalają na estetyczne i bezpieczne ukrycie przewodów oraz dostosowanie ich do wykończenia ścian. Ważne jest, aby podczas montażu stosować się do zasad prawidłowego podłączenia oraz instrukcji producenta, aby uniknąć problemów z dostępem do instalacji w przyszłości, a także zapewnić zgodność z normami bezpieczeństwa elektrycznego. Do puszek tej klasy często przynależą również akcesoria, które ułatwiają ich montaż i zapewniają dodatkową ochronę przed uszkodzeniami mechanicznymi.

Pytanie 39

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Skok napięcia
B. Upływ prądu
C. Zwarcie międzyfazowe
D. Przeciążenie obwodu
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 40

Które z wymienionych zaleceń nie dotyczy wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
B. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
C. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
D. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
W nowych instalacjach mieszkaniowych bardzo łatwo pomylić to, co jest realnym wymaganiem norm i dobrej praktyki, z tym co tylko brzmi „logicznie” lub „bezpieczniej”. Wiele osób myśli na przykład, że skoro podział na obwody jest korzystny, to najlepiej byłoby zrobić osobny obwód gniazd dla każdego pomieszczenia. Brzmi to na pierwszy rzut oka rozsądnie, ale z punktu widzenia projektowego i normowego nie ma takiego wymagania, a w typowym mieszkaniu byłoby to po prostu przewymiarowane i mało praktyczne. Normy instalacyjne (jak PN‑HD 60364) oraz zalecenia SEP mówią raczej o konieczności wydzielania pewnych grup odbiorników niż o sztywnym przypisaniu obwodu do każdego pokoju. Bardzo ważnym zaleceniem jest na przykład zasilanie gniazd wtyczkowych w kuchni z osobnego obwodu. Kuchnia jest jednym z najbardziej „prądopożernych” miejsc w mieszkaniu: czajnik, mikrofalówka, ekspres do kawy, zmywarka, lodówka, często piekarnik czy płyta – to wszystko generuje duże obciążenia. Jeden wspólny obwód z innymi pomieszczeniami szybko byłby przeciążony, co groziłoby częstym wybijaniem zabezpieczeń i przegrzewaniem przewodów. Podział obwodów oświetleniowych i gniazd wtyczkowych to też nie jest fanaberia, tylko standardowa zasada. Przy awarii obwodu gniazd (np. zwarcie w jakimś odbiorniku) chcemy, żeby oświetlenie dalej działało, bo zapewnia to bezpieczeństwo poruszania się i umożliwia spokojne zlokalizowanie i usunięcie usterki. Łączenie wszystkiego na jednym obwodzie z punktu widzenia użytkownika i serwisanta jest po prostu niewygodne i mniej bezpieczne. Osobną kwestią są odbiorniki dużej mocy. Płyta indukcyjna, piekarnik elektryczny, pralka, suszarka, klimatyzator – to są urządzenia, które według dobrych praktyk zasila się z wydzielonych obwodów, często z osobnymi zabezpieczeniami i odpowiednio dobranym przekrojem przewodów. Gdyby takie urządzenia „powiesić” na obwodzie ogólnym kilku pomieszczeń, bardzo łatwo o przeciążenie, spadki napięcia, a nawet przegrzanie żył. Typowy błąd myślowy polega na tym, że ktoś chce „maksymalnie rozbić” instalację na obwody, zakładając, że im więcej, tym lepiej i bezpieczniej. W praktyce projektant musi znaleźć rozsądny kompromis: wydzielić kuchnię, oświetlenie, obwody gniazd ogólnych, obwody dla dużych odbiorników, ale nie ma potrzeby tworzenia osobnego obwodu gniazd dla każdego pojedynczego pokoju. To właśnie to ostatnie zalecenie nie jest standardem dla nowych instalacji mieszkaniowych.