Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 20 stycznia 2026 16:04
  • Data zakończenia: 20 stycznia 2026 16:10

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ prawidłowo przedstawia początek sekwencji współbieżnej w sieci SFC (Sequential Function Chart). Sekwencja współbieżna to taki typ organizacji procesu, gdzie równocześnie mogą być wykonywane różne zadania, co jest osiągane dzięki odpowiedniemu rozdzieleniu kroków. Na rysunku widzimy, że po kroku 1, sekwencja rozdziela się na dwa równoległe kroki: krok 2 i krok 3, co jest zgodne z zasadami projektowania SFC. W praktyce takie podejście jest niezwykle przydatne w systemach automatyki przemysłowej, gdzie konieczne jest jednoczesne wykonanie kilku niezależnych procesów. Standardy takie jak IEC 61131-3 jasno określają, jak powinny wyglądać diagramy sekwencyjne, a poprawne ich stosowanie zwiększa czytelność i efektywność systemów sterowania. Ważne jest, aby zrozumieć, że każda linia pozioma na diagramie SFC oznacza punkt synchronizacji, zapewniający, że wszystkie równoległe czynności są zakończone przed przejściem do następnego etapu. Dzięki temu możemy utrzymać pełną kontrolę nad sekwencją zdarzeń, co jest kluczowe w środowiskach wymagających wysokiej niezawodności.

Pytanie 2

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Klucz oczkowy.
B. Klucz nasadowy.
C. Wkrętak krzyżakowy.
D. Wkrętak płaski.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 3

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 30 mm
B. 60 mm
C. 10 mm
D. 20 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 4

Jaki rodzaj ustroju pomiarowego zastosowano w mierniku, którego tabliczkę znamionową przedstawiono na rysunku?

Ilustracja do pytania
A. Elektromagnetyczny.
B. Indukcyjny.
C. Elektrodynamiczny.
D. Magnetoelektryczny.
Na tabliczce znamionowej nie przedstawiono ustroju indukcyjnego, elektrodynamicznego ani elektromagnetycznego. Ustrój indukcyjny działa na zasadzie prądów wirowych i stosowany jest w miernikach prądu przemiennego, np. w licznikach energii – jego symbolem są dwa prostokąty lub zwoje. Ustrój elektrodynamiczny wykorzystuje oddziaływanie dwóch cewek i umożliwia pomiar zarówno prądu stałego, jak i przemiennego, a jego oznaczenie to dwa połączone zwoje. Natomiast ustrój elektromagnetyczny wykorzystuje ruch żelaznej kotwiczki w polu cewki, a w symbolu widoczny jest prostokąt z ukośną kreską – tego tutaj nie ma. W prezentowanym symbolu kluczowy jest magnes trwały w kształcie podkowy, co jednoznacznie wskazuje na układ magnetoelektryczny. Błędne rozpoznanie często wynika z mylenia go z elektromagnetycznym, ale różnica polega na tym, że w magnetoelektrycznym używa się magnesu stałego, a w elektromagnetycznym – pola wytwarzanego przez cewkę. To ważne, bo decyduje o tym, czy miernik może pracować tylko z prądem stałym, czy również zmiennym.

Pytanie 5

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 2
Ilustracja do odpowiedzi A
B. Miernik 1
Ilustracja do odpowiedzi B
C. Miernik 4
Ilustracja do odpowiedzi C
D. Miernik 3
Ilustracja do odpowiedzi D
Poprawna odpowiedź to miernik numer 3, który ma zakres pomiarowy od –5 do +15 V. Jest to klasyczny woltomierz analogowy do pomiaru napięcia stałego (DC), idealny do sprawdzenia sygnału wyjściowego +Q1 z czujnika analogowego. W schemacie układu pomiarowego widać, że napięcie wyjściowe zawiera się w zakresie 0–10 V, więc miernik o takim zakresie zapewni odpowiednią dokładność i bezpieczeństwo pomiaru. Dodatkowo posiada on podziałkę symetryczną z częścią ujemną, co umożliwia kontrolę również błędnych polaryzacji lub sygnałów odwróconych. W praktyce technicznej takie mierniki stosuje się do diagnostyki czujników, regulatorów PID, przetworników sygnałów oraz wyjść analogowych PLC. Z mojego doświadczenia wynika, że warto używać mierników o zakresie nieco szerszym od mierzonego napięcia – w tym wypadku 15 V zamiast 10 V – żeby nie przeciążyć ustroju pomiarowego. W przemyśle automatyki miernik o takim zakresie jest często montowany w szafie sterowniczej, by umożliwić bieżący podgląd sygnału sterującego zaworem, siłownikiem czy czujnikiem położenia.

Pytanie 6

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. bezpieczeństwa.
B. redukcyjny.
C. dławiący.
D. zwrotny.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 7

W dokumentacji powykonawczej nie jest wymagane umieszczać

A. certyfikatów użytych materiałów.
B. faktur lub innych dowodów zakupu z cenami.
C. protokołów pomiarowych.
D. warunków gwarancji.
Faktury i inne dowody zakupu z cenami to dokumenty, które są istotne z punktu widzenia księgowego i finansowego, ale niekoniecznie muszą być częścią dokumentacji powykonawczej. Taka dokumentacja ma na celu przede wszystkim dostarczenie pełnych informacji technicznych dotyczących zrealizowanego projektu budowlanego lub instalacyjnego. Standardy branżowe, jak np. PN-EN 14351 czy PN-EN 1090, koncentrują się na zapewnieniu zgodności wykonanych prac z wymaganiami technicznymi i normami, dlatego też zawierają protokoły pomiarowe, certyfikaty użytych materiałów oraz warunki gwarancji. Te elementy świadczą o jakości wykonania i zgodności z przepisami. Faktury natomiast dotyczą aspektu ekonomicznego projektu i są wymagane raczej przez dział finansowy niż w kontekście odbioru technicznego. Moim zdaniem, znajomość różnicy między dokumentacją techniczną a finansową jest kluczowa w pracy inżynierskiej, ponieważ pozwala na lepsze zrozumienie potrzeb różnych działów w firmie. W codziennej praktyce warto pamiętać, że chociaż faktury są ważne dla rozliczeń, to w kontekście technicznym najważniejsza jest zgodność z projektem i normami.

Pytanie 8

Wskaż oznaczenie literowe gwintu metrycznego.

A. S
B. Tr
C. W
D. M
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 9

Na podstawie przedstawionych w tabeli danych katalogowych wskaż zasilacz, którego należy użyć do zasilania akcesoriów napędu bram garażowych.

Dane katalogowe napędu bram garażowych
Napięcie zasilania (V ~/Hz)230/50
Napięcie zasilania akcesoriów (V DC)24
Maks. obciążenie akcesoriów [mA]200
Układ logicznyAutomatyczny/półautomatyczny
Wyprowadzenie płytyOtwieranie/stop/zabezpieczenia/układ kontrolny/ lampka błyskowa 24 V DC
Czas świecenia lampy oświetleniowej2 min


Zasilacz1234
Napięcie wejściowe110 ÷ 230 V AC,
50 ÷ 60 Hz
110 ÷ 230 V AC,
50 ÷ 60 Hz
230 V AC,
50 Hz
230 V AC,
50 Hz
Napięcie wyjściowe13,8 V DC12 V DC24 V AC24 V DC
Maksymalny prąd wyjściowy0,25 A2 A0,5 A0,3 A
A. 4
B. 1
C. 2
D. 3
Zastanówmy się, dlaczego zasilacz nr 4 jest najlepszym wyborem. Po pierwsze, napięcie zasilania akcesoriów według danych katalogowych wynosi 24 V DC. To oznacza, że potrzebujemy zasilacza, który dostarczy właśnie takie napięcie wyjściowe. Zasilacz nr 4 spełnia ten wymóg, ponieważ jego napięcie wyjściowe wynosi 24 V DC. To jest kluczowe, ponieważ użycie zasilacza o niewłaściwym napięciu mogłoby uszkodzić akcesoria lub spowodować ich nieprawidłowe działanie. Po drugie, maksymalne obciążenie akcesoriów wynosi 200 mA, co oznacza, że zasilacz musi dostarczać przynajmniej taki prąd. Zasilacz nr 4 może dostarczać prąd do 0,3 A, czyli 300 mA, co jest wystarczające. W praktyce stosowanie zasilacza, który ma trochę większy zapas prądu, jest dobrą praktyką, bo zapewnia stabilność zasilania i wydłuża żywotność sprzętu. Branża często zaleca, aby zasilacze miały przynajmniej 20% marginesu w stosunku do maksymalnego poboru prądu akcesoriów. Pamiętajmy, że odpowiedni dobór zasilacza to nie tylko kwestia jego parametrów elektrycznych, ale także bezpieczeństwa i niezawodności całego systemu. Moim zdaniem, zawsze warto zwracać uwagę na te szczegóły, bo mogą one decydować o długoterminowym funkcjonowaniu urządzeń.

Pytanie 10

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano układ bariery zawierający czujnik

Ilustracja do pytania
A. pojemnościowy.
B. optyczny.
C. magnetyczny.
D. indukcyjny.
Odpowiedź optyczny jest prawidłowa, ponieważ w systemach bezpieczeństwa często stosuje się bariery świetlne, które opierają się na technologii optycznej. Tego typu czujniki składają się z nadajnika i odbiornika, które tworzą niewidzialną linię światła, najczęściej podczerwonego. Kiedy coś lub ktoś przecina tę linię, system jest w stanie natychmiast zareagować, na przykład zatrzymać maszynę, co jest kluczowe dla zapewnienia bezpieczeństwa pracowników. W wielu zakładach przemysłowych bariery optyczne są standardem, ponieważ pozwalają na szybkie i skuteczne wykrywanie obecności osób w niebezpiecznych strefach. Co więcej, dzięki różnorodnym konfiguracjom, można je dostosować do specyficznych potrzeb danego stanowiska pracy. Moim zdaniem, zastosowanie technologii optycznej w takich rozwiązaniach jest jednym z najlepszych przykładów na to, jak nowoczesna technologia wpływa na poprawę warunków bezpieczeństwa w przemyśle. Nowoczesne standardy BHP często wymagają stosowania takich rozwiązań, co podkreśla ich znaczenie w dzisiejszym środowisku pracy.

Pytanie 11

Które elementy na schematach układów pneumatycznych są oznaczane literą V?

A. Silniki.
B. Siłowniki.
C. Zawory.
D. Pompy.
Dokładnie, chodzi o zawory. W układach pneumatycznych, zawory są kluczowe dla kontrolowania przepływu powietrza. Oznaczane są literą V, co jest standardem w schematach technicznych. Zawory mogą spełniać różne funkcje, takie jak regulacja ciśnienia, kierunku przepływu czy rozdziału strumienia. Na przykład, zawory sterujące kierunkiem przepływu umożliwiają zmianę ruchu siłownika z jednego kierunku na drugi. W praktyce, w przemyśle, zawory są wykorzystywane w wielu miejscach, od prostych maszyn po zaawansowane systemy automatyzacji. Istnieje wiele typów zaworów, jak elektromagnetyczne, kulowe czy iglicowe, każdy z nich ma swoje specyficzne zastosowania. Z mojego doświadczenia wynika, że wybór odpowiedniego zaworu jest kluczowy dla efektywności i niezawodności całego układu. Prawidłowe oznaczenie i użycie zaworów zgodnie z normami, jak ISO 1219, zapewnia właściwe działanie systemu i ułatwia serwisowanie czy modernizację układu. To naprawdę fascynujące, jak wiele można osiągnąć dzięki prostym, ale skutecznym rozwiązaniom jak zawory. Warto się z nimi zaprzyjaźnić, bo to podstawa wielu systemów pneumatycznych.

Pytanie 12

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. USB
B. HDMI
C. RJ-45
D. RS-232
To złącze to RS-232, znane również jako port szeregowy. Jest jednym z najstarszych standardów komunikacji szeregowej i choć dziś nie jest już tak popularne jak kiedyś, wciąż znajduje zastosowanie w pewnych niszowych urządzeniach i systemach. RS-232 jest często używane do połączeń między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, drukarki, a nawet niektóre starsze typy myszy komputerowych. Złącza te zazwyczaj mają dziewięć pinów, jak na ilustracji, chociaż istnieją też wersje z 25 pinami. Jego zaletą jest prostota i niezawodność w przesyłaniu danych na krótkie odległości. Standard RS-232 definiuje sygnały elektryczne, poziomy napięcia oraz czasowanie, co gwarantuje zgodność między urządzeniami różnych producentów. Moim zdaniem, mimo że technologia poszła do przodu, RS-232 jest wciąż interesujący ze względu na swoją trwałość i wszechstronność. Jest to doskonały przykład standardu, który przetrwał próbę czasu, głównie dzięki swojej niezawodności w specyficznych zastosowaniach przemysłowych.

Pytanie 13

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. manometryczny.
B. pirometryczny.
C. rozszerzalnościowy.
D. bimetalowy.
Pirometryczny termometr to narzędzie, które umożliwia bezdotykowy pomiar temperatury. Działa na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na uzyskanie natychmiastowych i dokładnych odczytów. Jest szczególnie przydatny w sytuacjach, gdzie bezpośredni kontakt z mierzonym obiektem jest niemożliwy lub niebezpieczny. Przykładowo, w przemyśle pirometry są stosowane do monitorowania stanu technicznego maszyn i urządzeń, gdzie ważne jest szybkie wykrycie przegrzewania się elementów, takich jak łożyska czy silniki. Zastosowanie pirometru w takich przypadkach pozwala na uniknięcie awarii i kosztownych przestojów w produkcji. Standardy branżowe, takie jak ISO 9001, zalecają użycie pirometrów do monitorowania temperatur w krytycznych punktach procesu produkcyjnego. Pirometry są również używane w laboratoriach, gdzie precyzyjne pomiary temperatury są kluczowe dla dokładności eksperymentów. Moim zdaniem, zrozumienie działania i zastosowania pirometrów to podstawa dla każdego, kto pracuje w branży technicznej, ponieważ pozwala na skuteczne monitorowanie stanu maszyn i zapobieganie ich awariom. Warto więc zagłębić się w ten temat i poznać różne modele i technologie pirometryczne dostępne na rynku.

Pytanie 14

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Do testowania okablowania strukturalnego należy użyć specjalistycznego miernika sieciowego Fluke Networks CableIQ. To urządzenie zostało zaprojektowane właśnie do kwalifikacji i diagnostyki kabli miedzianych w instalacjach komputerowych i teleinformatycznych. Pozwala sprawdzić, czy dany odcinek przewodu spełnia wymagania dla transmisji 10BASE-T, 100BASE-TX, 1000BASE-T lub VoIP. Miernik ten wykonuje testy ciągłości, mapy połączeń, długości żył, a także wykrywa błędy takie jak zwarcia, przerwy, zamiany par czy przesłuchy. Co więcej, potrafi określić jakość toru transmisyjnego – czyli tzw. kwalifikację kabla – bez potrzeby używania certyfikatora. W praktyce Fluke Networks to standard w branży telekomunikacyjnej i instalatorskiej; dzięki prostemu interfejsowi i automatycznym raportom jest niezastąpiony przy odbiorach sieci LAN. Moim zdaniem to najlepsze rozwiązanie do pracy w terenie – szybkie, dokładne i odporne na błędy użytkownika.

Pytanie 15

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. multimetr cyfrowy.
B. silnik prądu stałego.
C. opornik dekadowy.
D. autotransformator.
Autotransformator to bardzo ciekawe urządzenie, które często znajduje zastosowanie w laboratoriach i różnych systemach elektrycznych. Ma jedno uzwojenie, które pełni zarówno funkcję pierwotną, jak i wtórną. Dzięki temu jest bardziej kompaktowy i efektywny kosztowo niż standardowy transformator dwuuzwojeniowy. Często używa się go do regulacji napięcia przemiennego w sposób płynny. To znaczy, że możesz precyzyjnie dostosować napięcie wyjściowe do swoich potrzeb, co jest niezwykle przydatne w sytuacjach, gdy wymagana jest zmienna wartość napięcia, np. w testach laboratoryjnych czy w zasilaniu urządzeń elektrycznych o różnych wymaganiach. W praktyce autotransformatory są używane w przemyśle do zasilania maszyn o różnych standardach napięcia oraz w systemach przesyłowych do regulacji poziomów napięcia. Co ciekawe, pomimo swojej prostoty, autotransformatory muszą być używane z odpowiednią ostrożnością. Dobry projekt i odpowiednie zabezpieczenia to klucz do ich bezpiecznego użycia. Warto też pamiętać, że zgodnie z normami, ich stosowanie powinno uwzględniać specyficzne wymagania systemów elektrycznych, aby uniknąć przeciążeń i uszkodzeń.

Pytanie 16

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. czerwonym.
B. białym.
C. brązowym.
D. niebieskim.
Zrozumienie, jakie kolory izolacji przewodów są odpowiednie w danej sytuacji, jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji elektrycznej. W przypadku zacisku L2 przemiennika częstotliwości, stosowanie białej, brązowej czy czerwonej izolacji byłoby niezgodne z przyjętymi standardami. Biały kolor izolacji jest rzadko używany w instalacjach standardowych do oznaczenia przewodów, ponieważ może wprowadzać zamieszanie. Brązowy kolor jest najczęściej używany do oznaczania przewodów fazowych, a nie neutralnych, co w tym przypadku byłoby nieprawidłowe, ponieważ fazowe przewody powinny być oznaczone w instalacjach trójfazowych w zgodzie z normami takimi jak IEC 60446. Z kolei czerwony kolor, dawniej używany w niektórych krajach jako oznaczenie fazy, obecnie jest eliminowany na rzecz bardziej ujednoliconego systemu oznaczeń. Takie błędne oznaczenia mogą prowadzić do nieporozumień, a nawet zagrożeń, szczególnie podczas prac serwisowych lub rozbudowy instalacji. Ważne jest, aby zawsze odnosić się do aktualnych standardów i lokalnych przepisów, aby uniknąć błędów, które mogą wpływać na bezpieczeństwo zarówno instalacji, jak i jej użytkowników.

Pytanie 17

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. bimetalowe.
B. rezystancyjne półprzewodnikowe.
C. rezystancyjne metalowe.
D. termoelektryczne.
Odpowiedź, że czujniki Pt100 są rezystancyjnymi metalowymi czujnikami, jest całkowicie poprawna. Pt100 to jeden z najpopularniejszych typów czujników temperatury stosowanych w przemyśle, a ich nazwa pochodzi od platyny (Pt) używanej w ich konstrukcji oraz wartości nominalnej oporu 100 omów w temperaturze 0°C. Czujniki rezystancyjne, znane również jako RTD (Resistance Temperature Detector), działają na zasadzie zmiany oporu elektrycznego wraz ze zmianą temperatury. Platyna jest wykorzystywana w tych czujnikach ze względu na jej stabilność chemiczną, liniowość charakterystyki oraz dokładność pomiaru. Przetworniki z sygnałem wyjściowym 4–20 mA są standardem w przemyśle, ponieważ umożliwiają precyzyjne przesyłanie wartości pomiarowej na duże odległości z minimalnymi stratami. Dzięki temu, w systemach automatyki, można dokładnie monitorować i kontrolować procesy technologiczne. Warto też wspomnieć, że dzięki specjalnym wersjom czujników Pt100 można mierzyć temperatury w zakresie od -200°C do 850°C, co czyni je niezwykle wszechstronnymi. Moim zdaniem, pracując w automatyce, warto wiedzieć, jakie czujniki są stosowane w różnych aplikacjach, ponieważ każda sytuacja wymaga innego podejścia i narzędzi, a wiedza o działaniu i specyfikacji czujników Pt100 to podstawa w wielu branżach technologicznych.

Pytanie 18

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. prawidłowość podłączeń przewodów ochronnych w układzie.
B. położenie przełącznika trybu pracy sterownika PLC.
C. kolejność podłączeń elementów wejściowych do sterownika.
D. kolejność podłączeń elementów wyjściowych do sterownika.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest absolutnie kluczowe przy uruchamianiu systemów opartych na sterownikach PLC. Bezpieczeństwo to podstawa, a przewody ochronne zapewniają, że w razie awarii prąd nie będzie stanowił zagrożenia dla osób obsługujących urządzenie. Moim zdaniem to właśnie dlatego takie sprawdzenie powinno być zawsze na pierwszym miejscu. Przewody ochronne to nie tylko kwestia zgodności z normami, takimi jak PN-EN 60204, ale i dobra praktyka inżynierska. Wyobraź sobie sytuację, w której bez tego sprawdzenia system zostaje uruchomiony, a w przypadku zwarcia nie ma odpowiedniej drogi dla prądu upływowego. To prosta droga do porażenia prądem. Z mojego doświadczenia wynika, że niedocenianie tej prostej czynności może prowadzić do poważnych konsekwencji. W przemyśle zawsze mówimy, że lepiej dmuchać na zimne. Podczas szkoleń często powtarzam, że zabezpieczenia to twoi najlepsi przyjaciele. Zawsze warto poświęcić czas na solidne sprawdzenie, zanim przejdziemy do bardziej skomplikowanych czynności.

Pytanie 19

Do pomiaru średnicy otworu φ 50 z dokładnością do 0,01 mm należy użyć

A. głębokościomierza.
B. przymiaru kreskowego.
C. czujnika zegarowego.
D. średnicówki mikrometrycznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Średnicówka mikrometryczna to narzędzie, które idealnie nadaje się do pomiaru średnicy otworu z wysoką precyzją, nawet do 0,01 mm. Dlaczego właśnie ten przyrząd? Średnicówki mikrometryczne są zaprojektowane do wykonywania niezwykle dokładnych pomiarów wewnętrznych, co czyni je nieocenionymi w przemyśle maszynowym, gdzie precyzja jest kluczowa. Dzięki swojej budowie, która obejmuje śrubę mikrometryczną, można uzyskać dokładność i powtarzalność pomiarów, co jest niezbędne w produkcji seryjnej czy przy kontroli jakości. Przykłady zastosowania średnicówki mikrometrycznej to choćby kontrola jakości otworów w elementach silników spalinowych czy w produkcji elementów hydraulicznych, gdzie każda odchyłka od normy może prowadzić do awarii całego systemu. Z mojego doświadczenia, posługiwanie się średnicówką wymaga pewnej wprawy, ale kiedy już opanujesz tę umiejętność, otwierają się przed tobą szerokie możliwości. Ważne jest również, by pamiętać o regularnej kalibracji tego instrumentu, zgodnie z wymaganiami norm ISO, co zapewnia zachowanie dokładności i niezawodności pomiarów.

Pytanie 20

Na podstawie przedstawionego schematu wskaż stany przycisków, przy których lampka sygnalizacyjna świeci.

Ilustracja do pytania
A. S1 przyciśnięty, S2 przyciśnięty.
B. S1 nieprzyciśnięty, S2 przyciśnięty.
C. S1 nieprzyciśnięty, S2 nieprzyciśnięty.
D. S1 przyciśnięty, S2 nieprzyciśnięty.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo ocenić, kiedy lampka sygnalizacyjna się zaświeci, trzeba zrozumieć działanie obwodu elektrycznego bazującego na schemacie. W przedstawionym układzie mamy dwa przełączniki S1 i S2 oraz lampkę H1. Kluczową kwestią jest zrozumienie, jak działa otwarty i zamknięty przełącznik. Kiedy S1 jest przyciśnięty, przepuszcza prąd dalej do S2. Jeśli S2 jest nieprzyciśnięty, zamyka obwód i prąd płynie dalej do lampki H1, powodując jej świecenie. To jest typowy przykład połączenia szeregowego, gdzie obwód musi być zamknięty, aby urządzenie działało. W praktyce, taki układ mógłby być stosowany w systemach bezpieczeństwa, gdzie tylko określona kombinacja przycisków aktywuje sygnał. W automatyce przemysłowej, standardem jest używanie takich schematów do kontrolowania procesów. Pamiętaj, że zawsze powinno się projektować układy spełniające normy bezpieczeństwa i efektywności energetycznej. Z mojego doświadczenia, zrozumienie podstaw działania takich układów jest kluczowe w późniejszym projektowaniu bardziej skomplikowanych systemów.

Pytanie 21

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. pola magnetycznego.
C. temperatury.
D. naprężeń.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 22

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Ciśnienia.
B. Temperatury.
C. Natężenia przepływu.
D. Natlenienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 23

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. RS-232
B. HDMI
C. USB
D. RJ-45

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś poprawną odpowiedź, ponieważ złącze RS-232 to klasyczny interfejs, który przez lata był standardem komunikacji szeregowej w komputerach i urządzeniach przemysłowych. Złącze te, najczęściej spotykane w wersji DB9, umożliwia przesyłanie danych szeregowo, co oznacza, że bity są przesyłane jeden po drugim. Jest znane ze swojej prostoty i niezawodności, chociaż jego prędkość transmisji nie jest zbyt wysoka w porównaniu z nowoczesnymi standardami. Używane jest często w aplikacjach przemysłowych, systemach POS czy do podłączania modemów i drukarek. Mimo że RS-232 zostało wypierane przez nowsze technologie, takie jak USB czy Ethernet, nadal znajduje zastosowanie tam, gdzie wymagana jest długa odległość transmisji i odporność na zakłócenia. W praktyce, złącza RS-232 są często wykorzystywane do konfiguracji urządzeń sieciowych czy w systemach automatyki przemysłowej. Warto także pamiętać, że ten typ połączenia wymaga odpowiedniego kabla z ekranowaniem, aby zminimalizować wpływ zakłóceń elektromagnetycznych. Moim zdaniem, znajomość RS-232 to podstawa dla każdego, kto interesuje się elektroniką i telekomunikacją, ponieważ pozwala zrozumieć fundamenty komunikacji szeregowej i jej zastosowania w praktyce.

Pytanie 24

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
B. Tłoczyska obu siłowników wysuną się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.

Pytanie 25

Na rysunku przedstawiono

Ilustracja do pytania
A. chwytak robota.
B. podstawę robota.
C. ramię robota.
D. przegub robota.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co widzisz na obrazku, to rzeczywiście chwytak robota. Chwytaki są niezwykle istotne w automatyzacji procesów, bo to one pozwalają na manipulację obiektami. W praktyce, chwytaki mogą być pneumatyczne, elektryczne lub hydrauliczne, w zależności od zastosowania. Wielu producentów stawia na precyzję i delikatność, zwłaszcza w branży elektronicznej, gdzie chwytak musi bardzo ostrożnie obchodzić się z drobnymi komponentami. Standardy przemysłowe, takie jak ISO 10218 dotyczące bezpieczeństwa robotów, podkreślają znaczenie zastosowania odpowiednich chwytaków w zależności od zadania. Kolejną rzeczą do rozważenia jest materiał, z jakiego wykonany jest chwytak – zazwyczaj używa się aluminium ze względu na jego lekkość i wytrzymałość. Warto również pamiętać, że chwytaki są często zintegrowane z systemami wizyjnymi, co zwiększa ich precyzję i efektywność. Moim zdaniem, jest to jeden z najważniejszych elementów robota, bo to dzięki niemu robot może naprawdę wpływać na otoczenie.

Pytanie 26

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. cztery razy większym polu przekroju.
B. dwa razy większym polu przekroju.
C. dwa razy mniejszym polu przekroju.
D. cztery razy mniejszym polu przekroju.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasadę stałego spadku napięcia stosujemy, aby uniknąć nadmiernych strat energii w przewodach, co jest istotne w instalacjach elektrycznych. Spadek napięcia jest proporcjonalny do długości przewodu i odwrotnie proporcjonalny do jego przekroju, co wynika z prawa Ohma i wzoru na rezystancję. Gdy zwiększamy długość przewodu dwukrotnie, spadek napięcia również się podwoi, chyba że zrekompensujemy to większym przekrojem przewodnika. Dlatego, aby utrzymać ten sam spadek napięcia, powinniśmy zwiększyć pole przekroju przewodu dwa razy. To podejście jest zgodne z dobrymi praktykami projektowania instalacji elektrycznych, które dążą do minimalizacji strat energetycznych i zapewnienia bezpiecznej pracy systemu. Praktycznie, w różnych zastosowaniach przemysłowych i budowlanych, inżynierowie często muszą brać pod uwagę te zmiany, aby zapewnić efektywność energetyczną i zgodność z normami, takimi jak PN-EN 60204 dotycząca bezpieczeństwa maszyn i instalacji elektrycznych.

Pytanie 27

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. modułu wyjściowego.
C. modułu wejściowego.
D. interfejsu komunikacyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 28

W systemie automatyki wszystkie połączenia wykonano przewodem oznaczonym jako 15G0,75. Oznacza to, że jest to przewód

Ilustracja do pytania
A. 15 żyłowy, z żyłą ochronną, przekrój 0,75 mm²
B. 15 żyłowy, z żyłą ochronną, przekrój 0,5 mm²
C. 15 żyłowy, bez żyły ochronnej, przekrój 0,75 mm²
D. 15 żyłowy, bez żyły ochronnej, przekrój 0,5 mm²

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie 15G0,75 w przewodach jasno wskazuje na kilka istotnych cech tego przewodu. Przede wszystkim liczba 15 oznacza, że przewód posiada 15 żył. Jest to ważne, gdyż wielożyłowe przewody są często używane w systemach automatyki do przesyłania sygnałów sterujących. Litera 'G' w oznaczeniu informuje nas, że przewód posiada żyłę ochronną, co jest kluczowe dla bezpieczeństwa instalacji. Żyła ochronna zapewnia, że w przypadku awarii elektrycznej nadmiarowe napięcie zostanie odprowadzone, minimalizując ryzyko uszkodzenia urządzeń lub porażenia prądem. Z kolei wartość 0,75 mm² określa przekrój pojedynczej żyły, co ma wpływ na jej zdolność do przewodzenia prądu. W praktyce przewody o mniejszych przekrojach stosuje się do przesyłania sygnałów o niskim natężeniu. Przewody takie są zgodne z normami określającymi minimalne wymagania dla zabezpieczenia elektrycznego, co ma krytyczne znaczenie w instalacjach przemysłowych. Wiedza ta pozwala na odpowiedni dobór przewodów w zależności od potrzeb instalacji, co ma bezpośredni wpływ na jej efektywność i bezpieczeństwo.

Pytanie 29

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 2.
B. Rozrusznik 4.
C. Rozrusznik 1.
D. Rozrusznik 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozrusznik 3, ATS01N125, jest idealny do zastosowania w środowisku wysokiego zapylenia dzięki swojej obudowie o stopniu ochrony IP 67. To oznacza, że jest całkowicie odporny na kurz i może wytrzymać zanurzenie w wodzie do określonej głębokości i czasu. To kluczowy aspekt, gdy planujesz montaż urządzeń w trudnych warunkach środowiskowych, gdzie pył może wpływać na działanie sprzętu. Moim zdaniem, wybór odpowiedniego stopnia ochrony to absolutna podstawa w takich sytuacjach. Dodatkowo, ten model obsługuje napięcia 1x230 V, co jest zgodne z potrzebami dla silnika jednofazowego. Zastosowanie softstartu nie tylko wydłuża żywotność silnika, ale także zmniejsza zużycie energii podczas uruchamiania, co jest korzystne z punktu widzenia ekonomii i ochrony środowiska. Dzięki temu można uniknąć nagłych skoków prądu, które mogą uszkodzić inne komponenty systemu. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi i standardami branżowymi, gdzie zawsze warto kierować się niezawodnością i bezpieczeństwem.

Pytanie 30

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. NPN NO
C. NPN NC
D. PNP NO

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gratulacje, wybrałeś poprawną odpowiedź! Czujnik przedstawiony na schemacie to czujnik z wyjściem typu NPN NC. Oznacza to, że w stanie normalnie zamkniętym (NC), czujnik przewodzi prąd w stanie spoczynkowym. Wyjście NPN oznacza, że czujnik łączy wyjście do masy (0 V) po zmianie stanu. W praktyce takie czujniki często stosuje się w aplikacjach przemysłowych, gdzie ważne jest, aby układ informował o obecności obiektu nawet w sytuacji awarii zasilania - stąd konfiguracja NC. Czujniki NPN są popularne w systemach, gdzie kontroler PLC odbiera sygnały względem masy. Stosowanie NPN w systemach automatyki przemysłowej jest zgodne z wieloma normami i standardami, co czyni je powszechnym wyborem wśród inżynierów. Warto zwrócić uwagę na to, że dobór odpowiedniego typu wyjścia czujnika zależy od konkretnej aplikacji i wymagań systemu, więc warto znać różnice między NPN a PNP oraz między NO a NC.

Pytanie 31

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. OR
B. Ex-NOR
C. NOR
D. Ex-OR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja Ex-OR, znana także jako XOR, jest jedną z podstawowych operacji logicznych wykorzystywanych w systemach cyfrowych i automatyce. Charakteryzuje się tym, że zwraca wartość prawdziwą tylko wtedy, gdy dokładnie jedno z wejść jest prawdziwe. W kontekście drabinki logicznej przedstawionej na rysunku, widzimy, że układ realizuje sumę logiczną wykluczającej lub (o czym świadczy połączenie szeregowe i równoległe styczników). Praktycznie, Ex-OR jest szeroko stosowany w aplikacjach, gdzie istotne jest wykrycie różnicy pomiędzy sygnałami, np. w układach zabezpieczeń, gdzie różne stany wejściowe mogą odpowiadać za różne tryby pracy. W standardach automatyki przemysłowej, takich jak IEC 61131, Ex-OR jest często używany do realizacji zaawansowanych funkcji kontrolnych. Moim zdaniem, zrozumienie tej funkcji jest kluczowe dla każdego automatyka, ponieważ pozwala na projektowanie elastycznych i funkcjonalnych systemów sterowania.

Pytanie 32

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. sumy rezystancji żył L1, L2, L3, PEN
B. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.
C. sumy rezystancji izolacji żył L1, L2, L3
D. rezystancji żył L1, L2, L3, PEN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Izolacja ma za zadanie zapobiegać niepożądanym przepływom prądu między przewodami, które mogą prowadzić do zwarć lub porażenia prądem. Normy takie jak PN-EN 61557 określają minimalne wartości rezystancji izolacji, które powinny być zachowane w instalacjach elektrycznych. W praktyce, wysoka rezystancja izolacji, na poziomie kilku megaomów, świadczy o dobrej jakości izolacji i bezpieczeństwie użytkowania. Regularne pomiary pozwalają na wczesne wykrycie uszkodzeń mechanicznych lub starzenia się materiału izolacyjnego, co jest szczególnie istotne w środowiskach o wysokiej wilgotności lub narażonych na wpływy chemiczne. Przykład z życia: w przemyśle ciężkim, gdzie maszyny są narażone na działanie olejów i smarów, takie pomiary są standardową praktyką, aby zapobiec awariom i kosztownym przestojom produkcyjnym.

Pytanie 33

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

Ilustracja do pytania
A. 1
B. 3
C. 4
D. 2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ na schemacie zespołu przygotowania powietrza, manometr jest oznaczony cyfrą 2. Manometr to instrument pomiarowy służący do mierzenia ciśnienia płynów i gazów. W przypadku systemów pneumatycznych, takich jak zespoły przygotowania powietrza, manometry pełnią kluczową rolę w monitorowaniu ciśnienia roboczego, co jest niezbędne do prawidłowego działania całego układu. Poprawne odczytywanie i interpretacja danych z manometru pozwala na szybkie reagowanie na wszelkie odchylenia od normy, co może zapobiec awariom i zwiększyć efektywność systemu. Standardy w branży pneumatycznej, takie jak ISO 1219, precyzują oznaczanie urządzeń na schematach, co ułatwia identyfikację i obsługę. Moim zdaniem, umiejętność czytania takich schematów jest fundamentalna dla każdego technika pracującego w dziedzinie automatyki i pneumatyki. Dobrze jest także znać różne typy manometrów, jak te z rurką Bourdona, które są popularne ze względu na swoją niezawodność i precyzję.

Pytanie 34

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
B. Zasady blokady programowej sygnałów wejściowych.
C. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
D. Zasady blokady sygnałów wyjściowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasady przerwy roboczej odnoszą się do sytuacji, kiedy w przypadku awarii lub potrzeby wyłączenia systemu, zewnętrzny sygnał wprowadza stan 0 na wejście sterownika PLC. To bardzo praktyczne podejście, ponieważ umożliwia szybkie i bezpieczne zatrzymanie działania systemu w sytuacji awaryjnej. W wielu aplikacjach przemysłowych, normy bezpieczeństwa, takie jak np. norma EN 60204-1 dotycząca bezpieczeństwa maszyn, zalecają, by wszystkie niebezpieczne urządzenia mogły być wyłączone przez odcięcie zasilania, co jest ekwiwalentem stanu 0. Moim zdaniem, taka zasada jest kluczem do utrzymania bezpieczeństwa w zakładzie produkcyjnym. Dodatkowo, zastosowanie przerwy roboczej jest intuicyjne i minimalizuje ryzyko błędów operatora, ponieważ zazwyczaj wyłączenie zasilania jest czymś naturalnym przy awariach. W praktyce, takie podejście może być implementowane za pomocą przycisków awaryjnych, które natychmiastowo wyłączają system przez zmuszenie sterownika do przejścia w stan 0. Warto też wspomnieć, że takie rozwiązania często są wspierane przez dodatkowe zabezpieczenia mechaniczne, co jeszcze bardziej podnosi poziom bezpieczeństwa.

Pytanie 35

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. ultradźwiękowy.
B. indukcyjny.
C. magnetyczny.
D. pojemnościowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 36

Zgodnie z programem sterującym przedstawionym na rysunku załączenie wyjścia %Q0.1 w sterowniku PLC nastąpi

Ilustracja do pytania
A. po 5 sekundach od zmiany stanu z 1 na 0 na wejściu %I0.1
B. natychmiast i będzie trwało przez 5 sekund gdy wejście %I0.1 będzie aktywne
C. po 5 sekundach od pojawienia się stanu 1 na wejściu %I0.1
D. natychmiast i będzie trwało 5 sekund od zmiany stanu z 0 na 1 na wejściu %I0.1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ timer TON w sterowniku PLC jest używany do opóźnienia załączenia wyjścia o określony czas po pojawieniu się sygnału wejściowego. W tym przypadku, gdy na wejściu %I0.1 pojawia się stan wysoki, timer zaczyna odliczać czas 5 sekund, co jest zdefiniowane w parametrach timera jako PT (preset time). Po upływie tego czasu wyjście %Q0.1 zostaje załączone. Timer TON jest jednym z najczęściej wykorzystywanych bloków w programowaniu PLC, szczególnie w automatyzacji procesów produkcyjnych, gdzie niezbędne jest precyzyjne sterowanie czasem. Typowymi zastosowaniami mogą być np. sterowanie oświetleniem w halach produkcyjnych, gdzie światło włącza się z opóźnieniem, aby zapewnić bezpieczeństwo pracowników opuszczających stanowiska pracy. Warto również pamiętać, że zgodnie ze standardami IEC 61131-3, timer TON jest jednym z elementów struktury programistycznej języka LD (Ladder Diagram), co czyni go uniwersalnym i powszechnie rozumianym w branży. Dzięki temu, że jest to rozwiązanie standardowe, można go łatwo zastosować w różnych systemach automatyki, co zwiększa elastyczność i kompatybilność projektów PLC.

Pytanie 37

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Przetwornica akumulatorowa 2x24 V / 230 V AC
B. Zasilacz 230 V AC / 24 V DC
C. Obiektowy separator napięć 24 V DC
D. Przetwornica napięcia 2x24 V DC / 230 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 38

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Sumy rezystancji żył L1, L2, L3 oraz PEN.
B. Rezystancji izolacji między przewodami L1 i L2 i L3.
C. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
D. Rezystancji żył L1, L2, L3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 39

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 40

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 2
Ilustracja do odpowiedzi A
B. Wynik 3
Ilustracja do odpowiedzi B
C. Wynik 1
Ilustracja do odpowiedzi C
D. Wynik 4
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.