Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 18 grudnia 2025 17:38
  • Data zakończenia: 18 grudnia 2025 17:46

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. częstościomierz
B. woltomierz
C. galwanometr
D. omomierz
Omomierz to super przyrząd do mierzenia oporu elektrycznego, a to znaczy, że jest świetny do sprawdzania, czy żyły w przewodzie teletechnicznym działają tak, jak powinny. Z mojego doświadczenia, sprawdzanie ciągłości żył jest naprawdę ważne, bo jak będą jakieś przerwy, to cała instalacja teletechniczna może po prostu nie działać. Kiedy używasz omomierza, możesz zmierzyć opór między końcami przewodów; jeśli wartość jest bliska zeru, to wiadomo, że przewód działa jak trzeba. Warto też pamiętać, że standardy takie jak IEC 61010 mówią, jak istotny jest pomiar oporu dla bezpieczeństwa instalacji elektrycznych. Dobrze jest też robić takie pomiary przed włączeniem systemu oraz regularnie je kontrolować, żeby uniknąć problemów później. Ogólnie mówiąc, omomierz to jedno z tych narzędzi, które naprawdę szybko pomogą zdiagnozować problemy z ciągłością, a to może zaoszczędzić czas i kasę na przyszłość.

Pytanie 2

Jakim symbolem oznaczany jest parametr głośników wskazujący moc ciągłą (moc znamionową)?

A. PMPO
B. RMS
C. S
D. Q
Parametr RMS, czyli Root Mean Square, jest powszechnie stosowany do określenia mocy ciągłej głośników. To miara skuteczności głośnika w przetwarzaniu sygnału audio, która uwzględnia zarówno amplitudę, jak i częstotliwość dźwięku. W praktyce oznacza to, że moc RMS informuje o tym, jaką moc głośnik może utrzymać w czasie bez ryzyka uszkodzenia. Na przykład, głośnik o mocy RMS 100 W może bezpiecznie pracować przy mocy 100 W bez przegrzewania się czy zniekształceń dźwięku. W branży audio standardy dotyczące mocy RMS są uznawane za najbardziej wiarygodne, ponieważ pozwalają na porównanie różnych modeli głośników w bardziej obiektywny sposób. Warto również zauważyć, że moc PMPO (Peak Music Power Output) nie jest miarą rzeczywistej mocy, a jedynie szacunkowym wskazaniem maksymalnego poziomu, co może być mylące dla konsumentów. Dlatego w przypadku wyboru głośników, zawsze należy zwracać uwagę na parametry RMS, które odzwierciedlają rzeczywistą jakość i wydajność urządzenia.

Pytanie 3

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 100,00 zł
B. 146,40 zł
C. 122,00 zł
D. 117,60 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 4

Jak nazywa się jednostka ładunku elektrycznego?

A. kelwin
B. kulomb
C. farad
D. herc
Kulomb (C) jest jednostką ładunku elektrycznego w układzie SI, który jest powszechnie stosowany w naukach przyrodniczych oraz inżynierii elektrycznej. Definiuje się go poprzez ilość ładunku, która przepływa przez przewodnik, gdy prąd elektryczny o natężeniu jednego ampera płynie przez ten przewodnik przez jedną sekundę. Jest kluczowy w kontekście prawa Coulomba, które opisuje siłę elektrostatyczną między naładowanymi ciałami. Zrozumienie kulomba ma praktyczne zastosowanie w projektowaniu układów elektronicznych, gdzie precyzyjne obliczenie ładunku jest niezbędne do zapewnienia efektywności działania komponentów takich jak kondensatory, które przechowują ładunek elektryczny. W praktyce, w elektronice, często korzysta się z kulombów do określania pojemności kondensatorów, co jest kluczowe przy projektowaniu układów filtrujących oraz w systemach zasilania. Warto również zaznaczyć, że kulomb jest jednostką stosunkowo dużą, a w wielu zastosowaniach inżynieryjnych wykorzystuje się jego podwielkości, takie jak mikro-kulomb (μC) czy nano-kulomb (nC).

Pytanie 5

Podczas wymiany (demontażu) złącza kompresyjnego typu F, jak należy postąpić z tym złączem?

A. odkręcić
B. odlutować
C. wyrwać
D. odciąć
Odpowiedź "odciąć" jest poprawna, ponieważ demontaż złącza kompresyjnego typu F wymaga precyzyjnego podejścia, które zapewnia minimalne uszkodzenia pozostałych elementów systemu. Złącza typu F są najczęściej wykorzystywane w instalacjach telewizyjnych i satelitarnych, gdzie zapewniają stabilne połączenie. W sytuacji, gdy złącze ma być wymienione, odcięcie go z użyciem odpowiednich narzędzi, takich jak nożyce do kabli, gwarantuje, że nie dojdzie do uszkodzenia przewodów czy innych komponentów systemu. Praktyczne zastosowanie tej metody może obejmować sytuacje, gdzie złącze uległo uszkodzeniu mechanicznemu lub korozji. Zgodnie z normami branżowymi, takimi jak ISO 9001, warto stosować procedury, które minimalizują ryzyko niepowodzeń w systemach transmisji sygnału. Ważne jest także, aby po odcięciu złącza przeprowadzić dokładną inspekcję przewodu w celu upewnienia się, że nie ma uszkodzeń, które mogłyby wpływać na jakość sygnału.

Pytanie 6

Urządzenie, które może być używane na zewnątrz i cechuje się wysoką odpornością na negatywne działanie warunków atmosferycznych, to

A. konwerter satelitarny.
B. tuner telewizji satelitarnej.
C. multiswitch.
D. głowica w.cz.
Konwerter satelitarny to naprawdę ważne urządzenie w telewizji satelitarnej. Działa tak, że zamienia sygnały z satelity na coś, co dekodery lub tunery mogą zrozumieć i wykorzystać. Jest bardzo odporny na różne złe warunki pogodowe, więc spokojnie można go używać na zewnątrz. W praktyce montuje się go na antenach satelitarnych, gdzie musi znosić deszcz, śnieg, wiatr i wysokie lub niskie temperature. Jakość materiałów, z jakich jest zrobiony, ma ogromne znaczenie, bo to zapewnia jego trwałość i niezawodność. Istnieją różne standardy budowy konwerterów, jak na przykład EN 50083, które określają, jak powinny działać i jakie muszą być odporne na pogodę. Dzięki temu, użytkownicy mogą cieszyć się dobrym sygnałem telewizyjnym, nawet jak pogoda jest zmienna. Ważne jest, żeby dobrze wybrać konwerter, bo to wpływa na jakość odbioru, szczególnie w miejscach, gdzie sygnał nie jest najlepszy.

Pytanie 7

Na rysunku przedstawiono symbol

Ilustracja do pytania
A. anteny satelitarnej.
B. gniazda abonenckiego.
C. zacisku zasilania.
D. wzmacniacza dystrybucyjnego.
Odpowiedzi sugerujące inne elementy, takie jak zaciski zasilania, anteny satelitarne czy wzmacniacze dystrybucyjne, wskazują na pewne niedopowiedzenia w zakresie zrozumienia rysunków schematycznych w instalacjach telekomunikacyjnych. Zacisk zasilania, chociaż również istotny w infrastrukturze telekomunikacyjnej, służy do dostarczania energii do urządzeń, a nie do podłączania urządzeń końcowych. Antena satelitarna jest elementem, który umożliwia odbiór sygnałów z satelitów, ale nie ma związku z bezpośrednim podłączeniem użytkowników do sieci. Wzmacniacz dystrybucyjny, z kolei, jest urządzeniem stosowanym w celu zwiększenia sygnału w instalacji, co czyni go istotnym, ale nie bezpośrednio związanym z gniazdem, które jest punktem dostępu dla użytkowników. Podstawowym błędem myślowym w tych odpowiedziach jest pomylenie funkcji różnych elementów systemów telekomunikacyjnych. Każdy z wymienionych symboli ma swoją unikalną rolę, która nie powinna być mylona z funkcją gniazda abonenckiego. Zrozumienie różnic między tymi komponentami jest kluczowe dla efektywnej budowy i diagnozowania systemów telekomunikacyjnych.

Pytanie 8

Jakie zakresy miernika należy ustawić w celu sprawdzenia wszystkich parametrów elektrycznych z przedstawionej specyfikacji technicznej czujki ruchu po jej zainstalowaniu?

Specyfikacja techniczna
Typ elementu detekcyjnegoPodwójny, PIR
Kształt geometrycznyProstokątny
Zasięg11m x11m; 88.5°; wiązki centralne 15m
Wskaźnik alarmuZielona dioda LED; Indykacja na 3 sek.
Wysokość instalacji2,1m do 2,7m
Temperatura pracy-20°C do +50°C
Napięcie11 do 16VDC
Pobór prądu11mA max
SoczewkaFresnela (druga generacja)
Wyjścia alarmoweNO
Przełącznik sabotażowyNC
Szybkość detekcji0,2m/sek do 7m/sek
A. 200 mA DC, 20 V DC
B. 20 mA DC, 200 V AC
C. 200 mA AC, 20 V AC
D. 20 mA DC, 200 V DC
Wybór nieodpowiednich zakresów pomiarowych może prowadzić do nieprawidłowych pomiarów i w konsekwencji do błędnych wniosków dotyczących działania czujki ruchu. Zakres 20 mA DC jest niewystarczający do pomiaru maksymalnego prądu czujki, której pobór mocy wynosi 31 mA. Ustawienie miernika na ten zakres może spowodować, że pomiar nie pokaże pełnej wartości prądu, co może prowadzić do błędnej oceny stanu urządzenia. Z kolei zakres 200 V DC nie jest kompatybilny z parametrami czujki, ponieważ czujka zasilana jest napięciem nieprzekraczającym 16 V DC. Użycie tak wysokiego zakresu może skutkować pomiarami, które są nieprecyzyjne lub wręcz niebezpieczne, jeśli urządzenie nie jest przystosowane do takich napięć. Warto również zauważyć, że zakresy AC nie są odpowiednie do pomiaru czujek działających na prąd stały, co tylko potęguje problem. W kontekście standardów branżowych, pomiarów dokonuje się zgodnie z normą IEC 61010, która podkreśla znaczenie odpowiedniego doboru zakresów pomiarowych dla bezpieczeństwa i dokładności wyników. Kluczowe jest zrozumienie, że niewłaściwe ustawienia mogą prowadzić do niebezpiecznych sytuacji, jak uszkodzenie sprzętu lub zagrożenie dla użytkowników. Właściwe podejście do pomiarów elektrycznych jest fundamentem profesjonalizmu i bezpieczeństwa w każdym środowisku technicznym.

Pytanie 9

Złącza BNC umieszcza się na końcach kabli

A. skrętka STP
B. symetrycznych
C. skrętka UTP
D. koncentrycznych
Złącza BNC (Bayonet Neill-Concelman) są powszechnie wykorzystywane w systemach telekomunikacyjnych do przesyłania sygnałów wideo oraz danych. Montuje się je na końcach przewodów koncentrycznych, co wynika z ich konstrukcji i przeznaczenia. Przewody koncentryczne składają się z centralnego rdzenia przewodnika otoczonego dielektrykiem oraz ekranem, co zapewnia doskonałą izolację i ochronę przed zakłóceniami elektromagnetycznymi. Złącza BNC są idealne do tego typu przewodów, ponieważ ich konstrukcja zapewnia stabilne połączenie oraz łatwe rozłączanie. Typowymi zastosowaniami złącz BNC są instalacje CCTV, systemy telewizji kablowej oraz wszelkie aplikacje wymagające wysokiej jakości przesyłania sygnałów analogowych. W kontekście standardów branżowych, złącza BNC są zgodne z normami IEEE 802.3, co czyni je wiarygodnym wyborem w wielu środowiskach inżynieryjnych, gdzie jakość sygnału jest kluczowa.

Pytanie 10

Na zdjęciu przedstawiono odgałęźnik telewizyjny

Ilustracja do pytania
A. 6-krotny.
B. 3-krotny.
C. 2-krotny.
D. 4-krotny.
Odpowiedź "4-krotny" jest poprawna, ponieważ na zdjęciu przedstawiony jest odgałęźnik telewizyjny oznaczony jako "4-WAY TAP". Tego typu urządzenia są powszechnie stosowane w instalacjach telewizyjnych, szczególnie w budynkach wielorodzinnych oraz domach jednorodzinnych z wieloma punktami odbioru sygnału. Odgałęźniki tego rodzaju umożliwiają podłączenie czterech różnych odbiorników do jednego źródła sygnału, co jest praktycznym rozwiązaniem w wielu sytuacjach. Warto zwrócić uwagę, że stosowanie odpowiedniego odgałęźnika zapewnia nie tylko wygodę w korzystaniu z telewizji, ale także wpływa na jakość sygnału. Zastosowanie odgałęźników telewizyjnych powinno być zgodne z normami branżowymi, takimi jak EN 50083-1, które określają wymagania dotyczące urządzeń używanych w systemach telewizyjnych. Również ważne jest, aby przy instalacji zwrócić uwagę na odpowiednie parametry techniczne, takie jak tłumienie sygnału, co wpływa na jakość odbioru. W praktyce, używanie odgałęźników 4-krotnych pozwala na elastyczność i rozbudowę systemu telewizyjnego bez konieczności dodatkowych inwestycji w nowe źródła sygnału.

Pytanie 11

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
B. zmierzyć impedancję falową kabla koncentrycznego
C. określić rezystancję falową kabla i w razie potrzeby ją skorygować
D. oczyścić oraz pomalować antenę, a następnie ją ustawić
Pomiar impedancji falowej kabla koncentrycznego, chociaż istotny w kontekście projektowania systemów telewizyjnych, nie jest krokiem, który należy wykonać podczas okresowego przeglądu instalacji telewizyjnej. Podczas przeglądu głównym celem jest zapewnienie, że sygnał dociera do odbiorcy w odpowiedniej jakości. Rezystancja falowa kabla nie jest parametrem, który użytkownicy odbiorników telewizyjnych bezpośrednio kontrolują ani nie ma bezpośredniego wpływu na jakość obrazu. Podobnie, wyznaczanie rezystancji falowej i jej korekcja są bardziej zaawansowanymi zagadnieniami inżynieryjnymi, które mają zastosowanie w projektowaniu i optymalizacji systemów, ale nie są one rutynowymi czynnościami w trakcie regularnego przeglądu. W kontekście mycia i malowania anteny, choć może to być korzystne w przypadku, gdy antena jest zanieczyszczona lub uszkodzona, to nie jest to standardowa praktyka ani nie wpływa na jakość sygnału. Często pojawiające się błędne przekonania dotyczące konieczności estetycznej konserwacji sprzętu mogą prowadzić do zaniedbania ważniejszych aspektów technicznych, takich jak pomiar sygnału i kontrola jakości połączeń. Właściwe podejście do przeglądów instalacji powinno skupiać się na rzeczywistych parametrach sygnału i ich jakości, co jest kluczowe dla efektywnego funkcjonowania systemu telewizyjnego.

Pytanie 12

Utrzymanie w pełni funkcjonalnych elektronicznych systemów zabezpieczeń powinno być realizowane w okresach określonych normami technicznymi, a jeżeli nie zostały one ustalone - nie rzadziej niż co:

A. sześć miesięcy
B. rok
C. trzy miesiące
D. miesiąc
Wybór okresów konserwacji krótszych lub dłuższych niż sześć miesięcy może prowadzić do poważnych konsekwencji. Na przykład, konserwacja raz w roku może wydawać się wystarczająca, jednak w praktyce okres ten może być zbyt długi, co zwiększa ryzyko awarii systemu zabezpieczeń. Systemy te są narażone na różnorodne czynniki, takie jak zmiany temperatury, wilgotności czy zanieczyszczenia, które mogą wpływać na ich działanie. Z kolei konserwacja co miesiąc może generować niepotrzebne koszty i obciążenie dla personelu, a także prowadzić do nieefektywności w zarządzaniu systemami, gdyż niektóre zadania konserwacyjne mogą być wykonywane rzadziej. Ponadto, podejście oparte na zbyt częstych lub zbyt rzadkich przeglądach często wynika z błędnego rozumienia dynamiki działania systemów zabezpieczeń i ich wymagań. Warto pamiętać, że efektywna konserwacja powinna być dostosowana do specyfiki danego systemu, jego lokalizacji oraz charakterystyki użytkowania. Ustalając właściwe interwały konserwacyjne, należy kierować się nie tylko ogólnymi zaleceniami, ale także analizą ryzyka, co zapewnia zgodność z najlepszymi praktykami w branży. Niewłaściwe podejście do konserwacji może prowadzić do awarii systemu w kluczowych momentach, przez co bezpieczeństwo obiektów i ich użytkowników może być poważnie zagrożone.

Pytanie 13

W analizie parametrów anteny reflektometry używa się do pomiaru

A. temperatury szumów
B. rezystancji promieniującej
C. współczynnika odbicia
D. impedancji na wejściu
W odpowiedzi na pytanie, współczynnik odbicia jest kluczowym parametrem, który pozwala na ocenę efektywności działania anteny. Mierzenie współczynnika odbicia, zazwyczaj oznaczanego jako S11, pozwala na ocenę, jak dużo energii z sygnału wejściowego jest odbijane z powrotem do źródła. W praktyce, im mniejszy współczynnik odbicia, tym lepsza dopasowanie impedancji anteny do linii przesyłowej, co prowadzi do minimalnych strat sygnału. Istotnym standardem w tej dziedzinie jest pomiar w warunkach rzeczywistych, zgodny z normą IEEE 472-1987, która określa metody oceny i pomiarów anten. Przykładowo, poprawna regulacja anteny na podstawie wyników pomiarów S11 może znacząco poprawić jakość sygnału w systemach komunikacji radiowej, telewizyjnej czy mobilnej. Dbanie o odpowiednie wartości współczynnika odbicia jest niezbędne dla zapewnienia optymalnej efektywności i minimalizacji zakłóceń w systemach radiowych.

Pytanie 14

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Liczba użytkowników
B. Temperatura otoczenia
C. Poziom wilgotności powietrza
D. Grubość ścian oraz stropów
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 15

Jak nazywa się przedstawiony na zdjęciu przyrząd pomiarowy?

Ilustracja do pytania
A. Logometr.
B. Fazomierz.
C. Galwanometr.
D. Fluksometr.
Galwanometr to precyzyjny przyrząd pomiarowy służący do pomiaru małych wartości prądu elektrycznego. Jego działanie opiera się na zasadzie wychylania igły na skali, co jest wynikiem oddziaływania prądu na cewkę umieszczoną w polu magnetycznym. Oznaczenie 'mA' na skali galwanometru wskazuje, że przyrząd ten jest przystosowany do pracy z miliamperami, co czyni go niezwykle użytecznym w zastosowaniach wymagających dużej precyzji. Galwanometry znajdują zastosowanie w laboratoriach badawczych, inżynierii elektrycznej oraz w edukacji technicznej, gdzie precyzyjne pomiary prądu są kluczowe. Na przykład, w eksperymentach dotyczących charakterystyki różnych komponentów elektronicznych, takich jak diody czy tranzystory, galwanometr pozwala na dokładne określenie zachowania obwodów w różnych warunkach. Zgodnie z dobrymi praktykami, przed każdym pomiarem należy kalibrować urządzenie, aby zapewnić dokładność wyników. Galwanometry, zarówno analogowe, jak i cyfrowe, są ważnym narzędziem w dziedzinie elektrotechniki i elektroniki, przyczyniając się do precyzyjnych analiz i badań naukowych.

Pytanie 16

Aby prawidłowo uziemić system antenowy, nie powinno się używać

A. gołych przewodów miedzianych
B. ciągłych rur z instalacji grzewczej
C. przewodu zerowego z sieci zasilającej
D. ciągłych rur z instalacji wodociągowej
Przewód zerowy sieci zasilającej, znany również jako przewód neutralny, nie powinien być wykorzystywany do uziemienia systemu antenowego z kilku istotnych powodów. Przede wszystkim, uziemienie powinno zapewniać skuteczną ochronę przed przepięciami oraz minimalizować ryzyko porażenia prądem elektrycznym. Użycie przewodu zerowego może wprowadzać niebezpieczeństwo, ponieważ w przypadku uszkodzenia może on stać się przewodnikiem prądu, co stwarza poważne zagrożenie dla użytkowników. W standardach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie oddzielania funkcji uziemienia od funkcji neutralnych. Właściwym podejściem jest wykorzystanie oddzielnego przewodu uziemiającego, który ma na celu skuteczne odprowadzanie prądu do ziemi. Przykładem praktycznego zastosowania tego rozwiązania jest instalacja anten, gdzie stosuje się specjalne systemy uziemiające, aby zabezpieczyć zarówno sprzęt, jak i osoby w jego otoczeniu przed skutkami wyładowań atmosferycznych czy innych zakłóceń elektrycznych.

Pytanie 17

Reflektometr optyczny to urządzenie wykorzystywane do zlokalizowania uszkodzeń w

A. matrycach LED RGB
B. światłowodach
C. matrycach LCD
D. ogniwach fotowoltaicznych
Reflektometr optyczny, czyli popularnie nazywany OTDR (ang. Optical Time Domain Reflectometer), to jedno z tych urządzeń, których naprawdę nie da się zastąpić podczas pracy ze światłowodami. Moim zdaniem każdy technik, który miał do czynienia z budową lub serwisowaniem sieci światłowodowych, prędzej czy później spotkał się z tym sprzętem. Reflektometr pozwala na dokładne zlokalizowanie uszkodzeń, osłabień sygnału czy miejsc złączeń na całej długości włókna optycznego. Działa to tak, że urządzenie wysyła krótkie impulsy światła do światłowodu i mierzy, ile światła wraca w postaci odbić od nieciągłości – analizując te sygnały, można określić, gdzie dokładnie jest problem. W praktyce reflektometr jest niezastąpiony przy diagnozowaniu awarii, odbiorach nowych instalacji czy ocenie jakości wykonania spawów. Branżowe standardy, jak np. zalecenia ITU-T G.652 czy wytyczne ISO/IEC 14763-3 wręcz wymagają stosowania OTDR do testów akceptacyjnych. Dobrą praktyką jest też regularne wykonywanie pomiarów reflektometrycznych, by monitorować stan sieci światłowodowej w czasie. Tylko reflektometr może realnie wskazać na przykład mikropęknięcia czy źle wykonane spawy – żadne inne narzędzie nie da tak precyzyjnego obrazu. Mówiąc wprost, bez reflektometru diagnoza długich tras światłowodowych byłaby praktycznie niemożliwa, a naprawy trwałyby wieki.

Pytanie 18

W instalacji należy wykonać pomiary wartości napięć, prądów i mocy. Wskaż prawidłowe umiejscowienie mierników.

Ilustracja do pytania
A. 1 – watomierz, 2 – amperomierz, 3 – woltomierz
B. 1 – amperomierz, 2 – watomierz, 3 – woltomierz
C. 1 – woltomierz, 2 – amperomierz, 3 – watomierz
D. 1 – woltomierz, 2 – watomierz, 3 – amperomierz
Wybór błędnego umiejscowienia mierników w obwodzie elektrycznym prowadzi do niewłaściwych odczytów, które mogą zafałszować wyniki analiz energetycznych. W przypadku wskazania woltomierza jako pierwszego urządzenia, pomiar prądu będzie niewłaściwy, ponieważ woltomierz powinien być podłączony równolegle, a nie szeregowo. Ważne jest, aby pamiętać, że amperomierz musi być umieszczony w obwodzie szeregowo, co oznacza, że wszystkie prądy przepływające przez obciążenie muszą przechodzić przez ten przyrząd. Podłączenie watomierza jako pierwszego również jest nieprawidłowe, ponieważ wymaga on zarówno połączenia szeregowego dla prądu, jak i równoległego dla napięcia. Nieprawidłowe umiejscowienie tych urządzeń skutkuje brakiem możliwości obliczenia rzeczywistej mocy czynnej w układzie elektrycznym. Typowym błędem myślowym jest mylenie funkcji tych urządzeń, co prowadzi do błędnych wniosków o efektywności energetycznej całego systemu. W praktyce, niezrozumienie zasad podłączania tych mierników może prowadzić do nieefektywnego zarządzania energią i zwiększonych kosztów operacyjnych, co jest niezgodne z aktualnymi standardami przemysłowymi, które promują optymalizację procesów energetycznych.

Pytanie 19

Podczas konserwacji systemu telewizyjnego, oceniając jakość sygnału w gniazdku abonenckim, co należy zmierzyć?

A. MER i BER
B. moc
C. prąd
D. napięcie
Odpowiedź MER i BER jest prawidłowa, ponieważ są to kluczowe wskaźniki jakości sygnału w instalacjach telewizyjnych. MER (Modulation Error Ratio) oraz BER (Bit Error Rate) służą do oceny jakości sygnału cyfrowego. MER mierzy stosunek błędów modulacji do sygnału, a jego wysoka wartość wskazuje na dobrą jakość sygnału, co jest kluczowe dla prawidłowego odbioru sygnału telewizyjnego. Z kolei BER informuje nas o liczbie błędnych bitów w transmisji, co pozwala na ocenę stabilności i niezawodności połączenia. W praktyce, podczas konserwacji systemów telewizyjnych, technicy powinni używać dedykowanych mierników, które umożliwiają pomiar tych wartości. Przykładowo, w systemach DVB-T/T2, stosowanie wartości MER powyżej 30 dB jest zalecane dla zapewnienia wysokiej jakości odbioru. Dobre praktyki w tym zakresie obejmują również regularne sprawdzanie parametrów sygnału w różnych porach dnia, aby zidentyfikować potencjalne problemy związane z zakłóceniami w otoczeniu.

Pytanie 20

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBmA
B. dBmW
C. dBµV
D. dBµΩ
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 21

Rysunek przedstawia symbol graficzny

Ilustracja do pytania
A. komparatora.
B. demultipleksera.
C. przerzutnika.
D. multipleksera.
Poprawna odpowiedź to multiplekser, ponieważ rysunek przedstawia urządzenie, które posiada wiele wejść (D0 do D7) oraz jedno wyjście (Q), a także trzy linie adresowe (A0, A1, A2). Multiplekser jest kluczowym elementem w systemach cyfrowych, służącym do selekcji jednego z wielu sygnałów wejściowych i przekazywania go na pojedyncze wyjście. Przykładem zastosowania multipleksera jest jego użycie w telekomunikacji, gdzie wybiera on określony kanał sygnałowy z wielu dostępnych, co pozwala na efektywne zarządzanie pasmem i zwiększenie wydajności systemu. W praktyce, multipleksery są stosowane również w urządzeniach obliczeniowych, gdzie umożliwiają wybór danych do przetworzenia przez procesor. Zastosowanie standardów, jak np. IEEE 802.3, potwierdza znaczenie multiplekserów w nowoczesnych systemach komunikacji. Właściwe zrozumienie działania multipleksera oraz jego zastosowań jest fundamentem w projektowaniu i implementacji systemów cyfrowych.

Pytanie 22

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. nastąpi wzrost jego impedancji
B. zredukowana zostanie jego impedancja
C. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
D. może to prowadzić do obniżenia odporności na zakłócenia
Odpowiedź prawidłowa wskazuje, że rozkręcanie par przewodów na odcinku większym niż 13 mm może doprowadzić do zmniejszenia odporności na zakłócenia. W przypadku kabli krosowych, które są stosowane w systemach telekomunikacyjnych i sieciach komputerowych, ważne jest, aby zachować odpowiednią długość skręcenia przewodów w parze. Skręcenie przewodów w parze ma na celu zminimalizowanie wpływu zakłóceń elektromagnetycznych, które mogą pochodzić z otoczenia lub innych urządzeń. Dobre praktyki zalecają, aby długość rozkręcenia nie przekraczała 13 mm, ponieważ dłuższe odcinki mogą prowadzić do zwiększenia indukcyjności i zmniejszenia zdolności do tłumienia zakłóceń. W kontekście standardów, takich jak TIA/EIA-568, istotne jest, aby stosować się do takich wytycznych, aby zapewnić wysoką jakość transmisji danych i zminimalizować ryzyko utraty sygnału. Przykładem zastosowania tych zasad jest instalacja sieci LAN w biurze, gdzie właściwe skręcenie przewodów zapewnia stabilny i szybki transfer danych.

Pytanie 23

Jaką maksymalną liczbę urządzeń sieciowych da się podłączyć do komputerowej sieci, której maska podsieci wynosi 255.255.255.248?

A. 8 urządzeń
B. 2 urządzenia
C. 6 urządzeń
D. 4 urządzenia
W przypadku adresu maski podsieci 255.255.255.248, pojawiają się powszechne nieporozumienia dotyczące liczby urządzeń, które można podłączyć do danej sieci. Wiele osób może błędnie zakładać, że maska 255.255.255.248, co oznacza 29 bitów, pozwala na podłączenie 8 urządzeń. Takie podejście opiera się na myśleniu, że wszystkie adresy w podsieci są dostępne dla hostów, co jest nieprawidłowe. Ważne jest zrozumienie, że adresy IP w każdej podsieci są zorganizowane w taki sposób, że jeden adres jest zarezerwowany jako adres sieci (identyfikujący samą sieć), a jeden jako adres rozgłoszeniowy (służący do komunikacji z wszystkimi urządzeniami w sieci). Dlatego z 8 potencjalnych adresów IP, tylko 6 może być przypisanych do urządzeń. Takie błędne myślenie może prowadzić do niewłaściwego projektowania sieci, co w praktyce może skutkować problemami z konfiguracją i skalowalnością. Ponadto, zrozumienie efektywnego zarządzania podziałem na podsieci jest kluczowe w infrastrukturze sieciowej, zwłaszcza w większych organizacjach, gdzie optymalne wykorzystanie adresów IP jest kluczowe dla prawidłowego funkcjonowania sieci.

Pytanie 24

Element, którego symbol graficzny przedstawiono na rysunku to

Ilustracja do pytania
A. rezystor nastawny.
B. dioda elektroluminescencyjna.
C. tranzystor.
D. transoptor.
Symbol przedstawiony na rysunku to dioda elektroluminescencyjna, znana również jako LED (Light Emitting Diode). Dioda ta emituje światło, gdy przez nią przepływa prąd elektryczny, co jest jasno sygnalizowane przez charakterystyczną strzałkę w symbolu. Dioda LED znajduje szerokie zastosowanie w różnych dziedzinach, od oświetlenia po sygnalizację i wyświetlacze. Przykładowo, diody LED są powszechnie używane w oświetleniu ulicznym, oświetleniu wnętrz oraz w urządzeniach elektronicznych, gdzie efektywność energetyczna i długowieczność są kluczowe. W porównaniu z tradycyjnymi żarówkami, diody LED zużywają znacznie mniej energii, a ich trwałość wynosi często kilkanaście tysięcy godzin. Stosowanie diod LED w projektowaniu układów elektronicznych jest zgodne z najlepszymi praktykami branżowymi, które podkreślają konieczność efektywności energetycznej i minimalizacji kosztów eksploatacji. Dzięki temu, ich rola w nowoczesnym projektowaniu sprzętu elektronicznego staje się coraz bardziej istotna.

Pytanie 25

Do styku oznaczonego jako TMP w czytniku kart umiejscowionym przy wejściu należy podłączyć

A. do zacisku uziemiającego w centrali
B. równolegle do zasilania czytnika
C. do linii antysabotażowej systemu alarmowego
D. szeregowo do zasilania czytnika
Podłączenie styku TMP równolegle do zasilania czytnika jest błędne, ponieważ nie zapewnia to właściwej detekcji stanu sabotażu. Tego typu rozwiązanie może wprowadzić fałszywe poczucie bezpieczeństwa, ponieważ nie monitoruje integralności samego urządzenia. W sytuacji, gdy system zasilania zostanie przerwane, styk TMP nie zgłosi żadnego alarmu, co jest kluczowe w kontekście ochrony obiektów. Plasowanie styku w szereg z zasilaniem czytnika również nie jest poprawne, ponieważ w takim przypadku, jeśli dojdzie do wyłączenia czytnika, również nie zostanie zarejestrowane żadne zdarzenie alarmowe. Ponadto, podłączenie do zacisku uziemiającego w centrali nie tylko jest niezgodne z zasadami instalacji, ale również nie ma sensu w kontekście monitorowania stanu czytnika. Uziemienie ma na celu jedynie ochronę przed przepięciami i nie jest odpowiednim sposobem na detekcję sabotażu. Zastosowanie niepoprawnych metod podłączenia może prowadzić do nieefektywności systemu alarmowego oraz narazić obiekt na ryzyko związane z włamaniami czy innymi nieautoryzowanymi działaniami. Bez odpowiedniego monitorowania, skuteczność systemu zabezpieczeń zostaje znacznie ograniczona.

Pytanie 26

U osoby, która została porażona prądem elektrycznym, występuje zatrzymanie akcji serca oraz brak oddechu. W trakcie udzielania pierwszej pomocy należy wykonać masaż serca oraz sztuczne oddychanie w następującym tempie

A. 2 oddechy przy 30 uciskach na serce
B. 5 oddechów przy 30 uciskach na serce
C. 5 oddechów przy 5 uciskach na serce
D. 2 oddechy przy 5 uciskach na serce
Odpowiedź '2 oddechy na 30 ucisków na serce' jest zgodna z aktualnymi wytycznymi dotyczącymi resuscytacji krążeniowo-oddechowej (RKO) w przypadku dorosłych. Zgodnie z wytycznymi American Heart Association oraz Europejskiej Rady Resuscytacji, stosuje się stosunek 30 ucisków klatki piersiowej do 2 oddechów ratunkowych. Uciskanie serca ma na celu zapewnienie krążenia krwi w organizmie, a sztuczne oddychanie dostarcza tlen do płuc osoby poszkodowanej. Taki schemat działania jest niezbędny, aby zminimalizować ryzyko uszkodzenia mózgu i innych organów spowodowanego brakiem tlenu. Przykładem praktycznym może być sytuacja, w której świadek zdarzenia musi szybko zareagować, aby podjąć RKO, co znacząco zwiększa szanse na przeżycie osoby poszkodowanej. Warto również pamiętać o tym, że po wykonaniu 30 ucisków, należy upewnić się, że drogi oddechowe są drożne przed podaniem oddechów ratunkowych, co jest kluczowe dla skuteczności resuscytacji.

Pytanie 27

Aby przesłać sygnał telewizyjny z anteny zbiorczej w budynku wielorodzinnym, należy zastosować kabel

A. koncentryczny o impedancji falowej 75 Ω
B. koncentryczny o impedancji falowej 300 Ω
C. symetryczny o impedancji falowej 75 Ω
D. symetryczny o impedancji falowej 300 Ω
Odpowiedź koncentryczny o impedancji falowej 75 Ω jest prawidłowa, ponieważ kable koncentryczne o tej impedancji są standardem w transmisji sygnałów telewizyjnych, zarówno analogowych, jak i cyfrowych. Impedancja 75 Ω została wybrana ze względu na jej optymalne właściwości w zakresie tłumienia sygnału oraz minimalizacji odbić, co jest kluczowe przy przesyłaniu sygnałów wysokiej częstotliwości. W praktyce, stosowanie kabli koncentrycznych o impedancji 75 Ω jest zgodne z normami branżowymi, takimi jak IEC 61196, które definiują wymagania dotyczące kabli koncentrycznych stosowanych w systemach telekomunikacyjnych. Przykładem zastosowania są instalacje telewizji kablowej, gdzie sygnał z anteny zbiorczej jest przesyłany do mieszkań w budynku wielorodzinnym, a użycie kabli koncentrycznych 75 Ω zapewnia wysoką jakość odbioru oraz stabilność sygnału. Dodatkowo, kable te są powszechnie wykorzystywane w systemach CCTV oraz w instalacjach satelitarnych, co podkreśla ich uniwersalność i znaczenie na rynku telekomunikacyjnym.

Pytanie 28

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Średnią
B. Chwilową
C. Skuteczną
D. Maksymalną
Wybierając inne wartości, można wprowadzić się w błąd co do natury pomiarów napięcia przemiennego. W przypadku maksymalnej wartości napięcia, chodzi o wartość szczytową, która jest największa osiągana w cyklu napięcia sinusoidalnego, ale nie obrazuje rzeczywistego efektu, jaki napięcie wywiera na obciążenie. Chwilowa wartość napięcia to natomiast wartość zmieniająca się w czasie, co również nie oddaje rzeczywistego wpływu na wydajność energetyczną obwodu. Wartość średnia napięcia sinusoidalnego, która wynosi zero w przypadku pełnego cyklu, niewłaściwie przedstawia energię dostarczaną do obciążenia. W praktyce, błędne zrozumienie tych wartości może prowadzić do nieprawidłowego projektowania obwodów, co może skutkować nieefektywnym wykorzystaniem energii i problemami z bezpieczeństwem. Przykładem może być projektowanie systemów zasilania, gdzie użycie wartości szczytowej zamiast skutecznej może prowadzić do niedoszacowania wymagań dotyczących izolacji, a tym samym stwarzać ryzyko awarii. Dlatego tak istotne jest, aby w pomiarach napięcia przemiennego opierać się na wartościach skutecznych, aby uzyskać wiarygodne i użyteczne dane do analizy i projektowania systemów elektrycznych.

Pytanie 29

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. usunęcia kondensatora filtrującego
B. podłączenia obciążenia sztucznego
C. zwarcia wejścia układu
D. odłączenia układu od zasilania
Odłączenie układu od zasilania przed przystąpieniem do wymiany uszkodzonego tranzystora stopnia końcowego przetwornicy napięcia jest kluczowym krokiem zapewniającym bezpieczeństwo oraz ochronę sprzętu. Przed rozpoczęciem jakichkolwiek prac serwisowych, zawsze należy zidentyfikować źródło zasilania i je odłączyć, aby uniknąć porażenia prądem oraz uszkodzenia komponentów. Dobre praktyki inżynieryjne w elektronice nakazują stosowanie takich protokołów, aby zapewnić, że wszelkie potencjalnie niebezpieczne napięcia są wyeliminowane. W przypadku przetwornic napięcia, które często operują przy wysokich napięciach i prądach, jest to szczególnie istotne. Po odłączeniu zasilania, można bezpiecznie wymontować uszkodzony tranzystor, a następnie zainstalować nowy, mając pewność, że nie ma ryzyka dla technika ani dla innych elementów układu. Należy również pamiętać o odpowiednim wyładowaniu wszelkich kondensatorów, które mogą przechowywać ładunek elektryczny, co również jest częścią standardowych procedur konserwacyjnych.

Pytanie 30

Montaż wtyku F na kablu koncentrycznym polega na

A. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
B. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
C. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
D. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
W analizowanych odpowiedziach pojawiają się różne błędne koncepcje dotyczące montażu wtyku F na przewodzie koncentrycznym. Nacięcie powłoki zewnętrznej, jak sugerują niektóre z odpowiedzi, nie jest odpowiednią metodą, ponieważ może prowadzić do uszkodzenia struktury przewodu i obniżenia jakości sygnału. Usunięcie folii, które jest wspomniane w odpowiedziach, powinno dotyczyć tylko izolacji, a nie materiału ochronnego, który jest istotny dla właściwego przewodzenia sygnału. Użycie terminu 'nacięcie' sugeruje również, że można usunąć warstwę izolacyjną w sposób, który nie jest zgodny z dobrymi praktykami. Oplot pełni kluczową funkcję w ochronie przed zakłóceniami i powinien być właściwie przygotowany do montażu. Z kolei pominięcie etapu ułożenia oplotu wzdłuż przewodu prowadzi do nieprawidłowego połączenia wtyku, co może skutkować złym jakościowo sygnałem. Przykłady błędów myślowych mogą wynikać z braku zrozumienia roli poszczególnych elementów kabla koncentrycznego oraz procesu montażu. Ważne jest, aby podczas pracy z instalacjami koncentrycznymi stosować właściwe narzędzia oraz przestrzegać standardów branżowych, co pozwoli na uzyskanie trwałych i niezawodnych połączeń.

Pytanie 31

Z analizy schematu poniższego układu elektronicznego wynika, że wzrost napięcia +Uvar spowoduje

Ilustracja do pytania
A. przesunięcie charakterystyki częstotliwościowej w lewo (nowa częstotliwość rezonansowa będzie mniejsza od fr).
B. wzrost amplitudy sygnału wyjściowego przy częstotliwości fr.
C. przesunięcie charakterystyki częstotliwościowej w prawo (nowa częstotliwość rezonansowa będzie większa od fr).
D. pojawienie się składowej stałej napięcia na wyjściu układu.
Analizując błędne odpowiedzi, można zauważyć kilka powszechnych nieporozumień dotyczących zachowania układów elektronicznych. Odpowiedź wskazująca na wzrost amplitudy sygnału wyjściowego przy częstotliwości fr ignoruje fakt, że wzrost napięcia wpływa na pojemność diody warikapowej, co prowadzi do zmiany częstotliwości rezonansowej, a nie jedynie do zmiany amplitudy sygnału. Inną nieprawidłowością jest założenie, że charakterystyka częstotliwościowa przesunie się w lewo, co sugerowałoby, że częstotliwość rezonansowa zmaleje. W rzeczywistości, zgodnie z zasadami fizyki, zmniejszenie pojemności prowadzi do wzrostu częstotliwości rezonansowej. Przesunięcie charakterystyki w prawo jest zatem poprawne. Ponadto, twierdzenie o pojawieniu się składowej stałej napięcia na wyjściu układu nie uwzględnia dynamiki sygnałów zmiennych w czasie typowych dla obwodów rezonansowych. W przypadku obwodów LC, zmiany napięcia wpływają na charakterystykę, ale nie prowadzą do stałej składowej, co jest zrozumiałe w kontekście teorii obwodów. Zrozumienie mechanizmów działania diod warikapowych i obwodów rezonansowych jest kluczowe dla inżynierów zajmujących się elektroniką, aby unikać tych typowych błędów myślowych.

Pytanie 32

Na rysunku przedstawiono symbol

Ilustracja do pytania
A. tranzystora unipolarnego.
B. tranzystora bipolarnego.
C. diody prostowniczej.
D. tyrystora symetrycznego.
Symbol na rysunku przedstawia tranzystor unipolarny, znany również jako tranzystor polowy (FET). Kluczowym elementem jego budowy są trzy terminale: bramka (G), źródło (S) oraz dren (D). W odróżnieniu od tranzystorów bipolarności, które wymagają prądu do sterowania, tranzystory unipolarne wykorzystują pole elektryczne, co pozwala na osiągnięcie większej szybkości przełączania oraz mniejszych strat energii. W praktyce, tranzystory unipolarne są szeroko stosowane w układach analogowych i cyfrowych, w tym w aplikacjach takich jak wzmacniacze operacyjne, układy logiczne oraz w systemach zasilania. Ich zastosowanie w technologii scalonej i w elektronice mocy ma ogromne znaczenie, ponieważ pozwala na miniaturyzację urządzeń oraz zwiększenie ich wydajności. Zgodnie z aktualnymi standardami branżowymi, projektując układy elektroniczne, warto uwzględnić wybór odpowiedniego tranzystora unipolarnego w celu optymalizacji parametrów pracy, takich jak prędkość, moc i efektywność energetyczna.

Pytanie 33

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. układu zasilania
B. systemu masy
C. obwodów wejściowych
D. obwodów wyjściowych
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 34

Przedstawiony na rysunku zestaw podzespołów stosuje się w

Ilustracja do pytania
A. systemach kontroli dostępu.
B. sieciach automatyki przemysłowej.
C. rozległych sieciach komputerowych.
D. instalacjach telewizji satelitarnej.
Poprawna odpowiedź dotyczy systemów kontroli dostępu, w których stosuje się podzespoły przedstawione na zdjęciu, takie jak elektroniczne kłódki, czytniki kart RFID oraz kontrolery dostępu. Systemy te są niezbędne w nowoczesnych rozwiązaniach zabezpieczeń, umożliwiając autoryzację użytkowników oraz monitorowanie dostępu do określonych obszarów. W praktyce, takie rozwiązania stosuje się w biurach, instytucjach publicznych oraz obiektach przemysłowych, gdzie konieczne jest ścisłe kontrolowanie, kto może przebywać w danym miejscu. Warto również zaznaczyć, że systemy kontroli dostępu często integrują się z innymi systemami zabezpieczeń, takimi jak alarmy czy monitoring wizyjny. Przykładem mogą być rozwiązania oparte na normach ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, gdzie kontrola dostępu jest kluczowym elementem całego systemu zabezpieczeń. Właściwe wdrożenie tych technologii daje możliwość zarówno zwiększenia bezpieczeństwa, jak i optymalizacji procesów zarządzania dostępem.

Pytanie 35

Przedstawiony na schemacie układ pomiarowy służy do pomiaru

Ilustracja do pytania
A. sumy spadku napięć na odbiornikach R1 i R2
B. spadku napięcia na odbiorniku R1
C. różnicy spadku napięć na odbiornikach R1 i R2
D. spadku napięcia na odbiorniku R2
Twoje odpowiedzi, które nie są poprawne, pokazują, że często mylimy techniki pomiarowe w elektryce. Zauważ, że pomiar różnicy spadku napięć na R1 i R2 wymagałby zupełnie innego podłączenia, na przykład mogłeś użyć dwóch woltomierzy albo jakiejś bardziej złożonej konfiguracji. Gdy podłączasz woltomierz równolegle do R1, nie zmierzysz spadku napięcia na R2, bo woltomierz zawsze mierzy napięcie pomiędzy dwoma punktami i nie wpływa na obwód. Stąd pomysły, które sugerują taki pomiar, są błędne. Często mylimy równoległe podłączenie z szeregowym, a w przypadku szeregowego mielibyśmy do czynienia z sumą spadków napięć. Także jeśli chcesz poprawnie mierzyć spadki napięcia w obwodach, ważne jest, żeby trzymać się zasad podłączania instrumentów pomiarowych, co jest opisane w dokumentacji technicznej i na szkoleniach dla elektryków.

Pytanie 36

W trakcie diagnozowania awarii sprzętu RTV zasilanego prądem, należy korzystać z narzędzi

A. wykazujących odporność na wysokie temperatury
B. stworzonych z materiałów ze stali chromoniklowej
C. charakteryzujących się wysoką odpornością na uszkodzenia mechaniczne
D. posiadających adekwatną izolację dla napięcia
Odpowiednia izolacja napięciowa narzędzi używanych podczas diagnostyki sprzętu RTV pod napięciem jest kluczowa dla zapewnienia bezpieczeństwa technika oraz dla właściwego przeprowadzania prób i pomiarów. Narzędzia te powinny posiadać odpowiednie certyfikaty, które potwierdzają ich zdolność do pracy przy określonym napięciu. Na przykład, przy pracy z urządzeniami o napięciu do 1000 V, narzędzia muszą posiadać izolację o napięciu co najmniej 1000 V. Stosowanie narzędzi izolowanych minimalizuje ryzyko porażenia prądem, co jest zgodne z zaleceniami norm międzynarodowych, takich jak IEC 60900, dotyczących narzędzi ręcznych do pracy pod napięciem. Ważne jest, aby technicy pamiętali o regularnym sprawdzaniu stanu izolacji narzędzi, ponieważ ich uszkodzenie, np. pęknięcia lub zużycie, może znacznie zwiększyć ryzyko wypadków. Przykładem mogą być izolowane śrubokręty, które pozwalają na bezpieczne dokonywanie napraw bez ryzyka kontaktu z elementami pod napięciem.

Pytanie 37

Stabilność systemu automatycznej regulacji to umiejętność systemu do

A. działania w skrajnie niskich lub skrajnie wysokich temperaturach
B. działania pod dużymi obciążeniami
C. utrzymywania stabilnych parametrów obiektu po ustaniu sygnału zakłócającego
D. minimalizowania zakłóceń wpływających na obiekt regulacji
Stabilność w układach automatycznej regulacji to kluczowa sprawa. Chodzi o to, że system musi umieć wrócić do ustawionej wartości, nawet jak coś nieprzewidzianego się wydarzy. Weźmy na przykład systemy HVAC – dzięki stabilności możemy mieć pewność, że temperatura w pomieszczeniu będzie utrzymana, nawet jeśli na zewnątrz nagle zrobi się zimniej. Jak wiadomo, standardy jak ISO 9001 kładą duży nacisk na monitorowanie i kontrolowanie procesów, żeby wszystko działało sprawnie. Dobrze zaprojektowane układy regulacji, na przykład z użyciem regulatorów PID, szybko i precyzyjnie odpowiadają na różne zakłócenia. Moim zdaniem, zrozumienie stabilności układów regulacji jest niezbędne, jeśli chcemy budować systemy, które poradzą sobie z różnymi zmianami w otoczeniu.

Pytanie 38

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. omomierza
B. oscyloskopu i zasilacza
C. oscyloskopu i generatora funkcyjnego
D. woltomierza
Podczas oceny stanu tranzystora, wybór narzędzia pomiarowego ma kluczowe znaczenie. Zastosowanie woltomierza, oscyloskopu czy generatora funkcyjnego w tej sytuacji nie jest optymalne. Woltomierz, choć może być użyty do pomiaru napięć, nie dostarcza informacji o rezystancji wewnętrznej tranzystora, co jest esencjonalne w ocenie jego sprawności. Z kolei oscyloskop w połączeniu z zasilaczem może pomóc w analizie sygnałów oraz charakterystyki dynamicznej tranzystora, ale wymaga złożonej konfiguracji oraz dostarcza jedynie pośrednie informacje o stanie komponentu. Generator funkcyjny, używany z oscyloskopem, głównie służy do testowania odpowiedzi tranzystora na sygnały zmienne, co również nie jest praktycznym sposobem na wykrycie uszkodzeń. Często w takich przypadkach można popełnić błąd myślowy, zakładając, że bardziej zaawansowane urządzenia pomiarowe zawsze dostarczają lepsze wyniki, co nie jest zgodne z rzeczywistością diagnostyki komponentów elektronicznych. Kluczowe jest zrozumienie, że dla szybkiej i efektywnej analizy stanu tranzystora, omomierz jest narzędziem o największej skuteczności w ocenie podstawowych parametrów.

Pytanie 39

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Gwiazdy.
B. Drzewa.
C. Siatki.
D. Pierścienia.
Wybór innych topologii, takich jak drzewo, gwiazda czy pierścień, prowadzi do ograniczonej niezawodności w porównaniu z siatką. Topologia drzewa, mimo że jest uporządkowana i łatwa do rozbudowy, jest podatna na awarie głównego węzła, co może spowodować utratę komunikacji w całej gałęzi. W przypadku awarii jednego z węzłów w strukturze drzewiastej, inne urządzenia w tej samej gałęzi przestają działać, co jest znaczącym ograniczeniem w kontekście niezawodności. Topologia gwiazdy natomiast, choć łatwa do zarządzania, również cierpi na problem centralnego węzła; jeśli centralny przełącznik ulegnie awarii, cała sieć przestaje funkcjonować. Natomiast pierścień, choć oferuje równomierną dystrybucję danych, ma swoje ograniczenia związane z potrzeba przekazywania sygnału przez wszystkie węzły. Awaria jednego z węzłów może przerwać komunikację w całym pierścieniu, co czyni ją mało odporną na błędy. Wybór odpowiedniej topologii powinien być oparty na analizie wymagań systemowych i środowiskowych. W praktyce, projektanci sieci powinni dążyć do implementacji rozwiązań, które zapewniają wysoką dostępność i odporność na awarie, co czyni topologię siatki najkorzystniejszą opcją w wielu współczesnych zastosowaniach.

Pytanie 40

Jakim skrótem literowym określa się wskaźnik błędów modulacji w cyfrowej telewizji?

A. BER
B. SNR
C. MER
D. PSNR
MER, czyli Modulation Error Ratio, jest kluczowym wskaźnikiem jakości sygnału w telewizji cyfrowej. Mierzy on stosunek energii sygnału do energii zakłóceń, co pozwala na ocenę, jak dobrze sygnał został zmodulowany i jak odporny jest na błędy w transmisji. W praktyce, wysoki wskaźnik MER oznacza lepszą jakość sygnału i mniejsze ryzyko wystąpienia błędów, co jest szczególnie istotne w systemach DVB-T, DVB-S oraz DVB-C, gdzie jakość obrazu jest uzależniona od integralności przesyłanego sygnału. Stosowanie wskaźnika MER w codziennym monitorowaniu sieci pozwala na szybką identyfikację problemów z jakością sygnału oraz optymalizację parametrów transmisji w celu zapewnienia stabilnej i wysokiej jakości obrazu. Przykładowo, operatorzy telewizyjni mogą analizować wartości MER w różnych lokalizacjach, aby skutecznie zarządzać zakłóceniami i dostosować moc sygnału do potrzeb widzów, co jest zgodne z najlepszymi praktykami w branży.