Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 26 grudnia 2025 21:23
  • Data zakończenia: 26 grudnia 2025 21:51

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie fragmentu algorytmu przedstawionego za pomocą sieci GRAFCET określ, jaki warunek musi być spełniony, aby został wykonany krok 8.

Ilustracja do pytania
A. S1 = 1 i S2 = 0 i S3 = 1 i S4 = 1
B. S1 = 0 lub S2 = 1 lub S3 = 0 lub S4 = 0
C. S1 = 0 i S2 = 1 i S3 = 0 i S4 = 0
D. S1 = 1 lub S2 = 0 lub S3 = 1 lub S4 = 1
Odpowiedź S1 = 0 i S2 = 1 i S3 = 0 i S4 = 0 jest prawidłowa, ponieważ wszystkie wymienione zmienne muszą być spełnione jednocześnie, aby krok 8 algorytmu GRAFCET został wykonany. W kontekście automatyki, GRAFCET jest używany do modelowania sekwencyjnych procesów, gdzie każdy krok w algorytmie odpowiada konkretnemu stanowi urządzenia. Wymaganie, aby S1 było równe 0, oznacza, że dany element musi być wyłączony, podczas gdy S2 powinno być równe 1, co wskazuje, że inny element musi być aktywny. Takie podejście pozwala na precyzyjne kontrolowanie stanu maszyny i zabezpiecza przed niepożądanymi efektami, jakie mogą wystąpić w wyniku błędnych warunków. W praktyce, na przykład w systemach sterowania, właściwe ustawienie tych stanów jest kluczowe dla zapewnienia bezpieczeństwa operacji. Standardy takie jak IEC 61131 dotyczące programowania sterowników PLC zalecają jasne definiowanie warunków przejścia między stanami, co jest zgodne z zasadami opisanymi w GRAFCET. Warto również zauważyć, że stosowanie operatorów logicznych „i” w warunkach przejścia pozwala na wyeliminowanie sytuacji, w których niepożądane stany mogłyby wpływać na działanie procesu.

Pytanie 2

W układzie sterowania realizowanym za pomocą sterownika PLC sygnał z wyjścia Q0.1 sterownika podawany jest na cewkę stycznika. Za pomocą której linii programu zapisanego w języku LD realizowane jest załączanie stycznika na 10 sekund po podaniu 1 logicznej na 10.0?

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Odpowiedź, która została wybrana, jest poprawna, ponieważ linia programu numer 3 wykorzystuje timer typu TP (Timer Pulse), który jest kluczowy w realizacji zadań czasowych w systemach automatyki. Timer ten pozwala na włączenie sygnału na określony czas, w tym przypadku 10 sekund. Po otrzymaniu sygnału logicznego 1 na wejściu %I0.0, timer zaczyna odmierzać czas. Po upływie 10 sekund na wyjściu %Q0.1 występuje sygnał, który załącza stycznik. To podejście jest szeroko stosowane w automatyce przemysłowej, zwłaszcza przy realizacji procesów, które wymagają precyzyjnego sterowania czasem, jak na przykład w procesach produkcyjnych, gdzie czas włączenia i wyłączenia urządzeń ma kluczowe znaczenie. Znajomość tego rodzaju timerów oraz ich zastosowania jest istotna w pracy z programowalnymi sterownikami PLC, co jest uznawane za standard w branży.

Pytanie 3

Na podstawie danych znamionowych prądnicy tachometrycznej określ, jaką wartość napięcia będzie wskazywał woltomierz na wyjściu prądnicy, jeżeli wirnik obraca się z prędkością 4800 obr/min.

Dane znamionowe prądnicy tachometrycznej
PZTK 51-18
ku = 12,5 V/1000 obr/min
Robc min = 5 kΩ
nmax = 8000 obr/min
A. 5 V
B. 12,5 V
C. 60 V
D. 18 V
Poprawna odpowiedź to 60 V. Wartość napięcia generowanego przez prądnicę tachometryczną jest bezpośrednio związana z prędkością obrotową wirnika, a stała napięcia wyznacza tę relację. W praktyce, prądnice tachometryczne są szeroko stosowane w systemach automatyki i regulacji, gdzie precyzyjne pomiary prędkości obrotowej są kluczowe. Na przykład, w silnikach elektrycznych, sygnał napięciowy z prądnicy tachometrycznej może służyć do regulacji prędkości silnika poprzez sprzężenie zwrotne, co pozwala na utrzymanie stabilnych parametrów pracy. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność, co jest niezbędne w systemach wymagających wysokiej precyzji. Przy prędkości 4800 obr/min, generowane napięcie 60 V wskazuje na poprawne działanie prądnicy oraz zgodność z jej charakterystyką znamionową, co jest kluczowe dla dalszych zastosowań w systemach sterowania oraz monitorowania.

Pytanie 4

Jaką funkcję logiczną realizuje układ przedstawiony na schemacie?

Ilustracja do pytania
A. NAND
B. OR
C. NOR
D. AND
Układ przedstawiony na schemacie realizuje funkcję logiczną NAND. W istocie, składa się on z dwóch bramek: pierwszej, typu AND, oraz drugiej, będącej negacją wyjścia z bramki AND. Taki układ przyjmuje dwa wejścia (I1 i I2) i produkuje wyjście, które jest 0 tylko wtedy, gdy oba wejścia są w stanie 1. W przeciwnym razie, wyjście wynosi 1. Funkcja NAND jest istotna w cyfrowych układach logicznych, ponieważ może być wykorzystana do budowy wszystkich innych podstawowych bramek logicznych, takich jak AND, OR, czy NOT. Dzięki temu, bramki NAND znajdują szerokie zastosowanie w projektowaniu złożonych układów cyfrowych, w tym mikroprocesorów i układów FPGA. W praktyce, możliwość zrealizowania dowolnej funkcji logicznej przy użyciu jedynie bramek NAND czyni je niezwykle wszechstronnymi i popularnymi w inżynierii elektronicznej. Dodatkowo, w kontekście minimalizacji obwodów, wykorzystanie bramek NAND pozwala na oszczędność miejsca i zasobów, co jest kluczowe w nowoczesnych projektach elektronicznych.

Pytanie 5

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. L
B. N
C. S
D. R
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 6

Jakie ciśnienie cieczy powinno być w układzie hydraulicznym, aby siłownik o powierzchni czynnej tłoka A = 80 cm2 był w stanie wygenerować siłę F = 150 kN?

A. 18,75 bara
B. 187,5 bara
C. 1,875 bara
D. 1875 barów
Poprawna odpowiedź to "187,5 bara." Ciśnienie cieczy zasilającej układ hydrauliczny jest kluczowym parametrem, który pozwala na uzyskanie odpowiedniej siły z siłowników hydraulicznych. W tym przypadku, aby obliczyć ciśnienie, wykorzystujemy wzór p=F/A, gdzie F to siła, a A to powierzchnia czynna tłoka. Podstawiając wartości: F=150 kN (czyli 150000 N) oraz A=80 cm² (czyli 0,008 m²), otrzymujemy p=150000 N/0,008 m²=18750000 Pa, co w przeliczeniu na bary daje nam 187,5 bara. Zastosowanie odpowiedniego ciśnienia w układach hydraulicznych jest zgodne z normami branżowymi, które określają wymagania dotyczące bezpieczeństwa i efektywności pracy maszyn. W praktyce, ciśnienie to pozwala na sprawne działanie siłowników w różnych zastosowaniach, takich jak w przemyśle ciężkim, budowlanym czy motoryzacyjnym, gdzie precyzyjne sterowanie ruchem i siłą ma kluczowe znaczenie. Utrzymanie właściwego ciśnienia w układzie nie tylko zwiększa wydajność, ale także minimalizuje ryzyko uszkodzeń i awarii, co jest istotne dla długoterminowej niezawodności systemów hydraulicznych.

Pytanie 7

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. Na zewnątrz obiektów
B. W pomieszczeniach z dużym zakurzeniem
C. W pomieszczeniach o niskich temperaturach
D. W pobliżu przewodów silnoprądowych
Odpowiedź, że przewody sieci komunikacyjnych nie powinny znajdować się blisko przewodów silnoprądowych, jest prawidłowa z kilku istotnych względów. Przede wszystkim, są to dwa różne typy przewodów, które z definicji pełnią różne funkcje: przewody silnoprądowe dostarczają energię elektryczną, podczas gdy przewody komunikacyjne przesyłają sygnały danych. Umieszczanie ich w bliskiej odległości może prowadzić do zakłóceń elektromagnetycznych, co negatywnie wpływa na jakość przesyłanych danych. Dodatkowo, w przypadku uszkodzenia przewodów silnoprądowych, istnieje ryzyko powstania zwarcia, co może zagrażać bezpieczeństwu nie tylko kabli komunikacyjnych, ale i całej instalacji. W praktyce, zgodnie z normami branżowymi, np. PN-EN 50174-2, zaleca się utrzymanie odpowiednich odległości między tymi przewodami oraz stosowanie odpowiednich osłon i ochrony kablowej. Dzięki przestrzeganiu tych zasad, można zminimalizować ryzyko zakłóceń oraz zapewnić bezpieczeństwo i niezawodność obu systemów.

Pytanie 8

Ile par biegunów powinno mieć uzwojenie stojana silnika o wielu prędkościach, aby po podłączeniu do źródła zasilania 230/240 V, 50 Hz jego wał obracał się z prędkością zbliżoną do 1500 obr/min?

A. dwie
B. trzy
C. cztery
D. jedna
Aby silnik wielobiegowy mógł działać z prędkością bliską 1500 obr/min przy zasilaniu 230/240 V i częstotliwości 50 Hz, uzwojenie stojana powinno mieć dwie pary biegunów. Prędkość obrotowa silnika synchronicznego jest określona równaniem: n = (120 * f) / P, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość zasilania w Hz, a P to liczba par biegunów. Podstawiając wartości: n = 1500, f = 50, otrzymujemy P = (120 * 50) / 1500, co daje 4. Ponieważ liczba biegunów to P, mamy 2 pary biegunów (2P = 4). Taka konfiguracja silnika jest standardowa w zastosowaniach, które wymagają stabilnej prędkości obrotowej, jak w napędach elektrycznych w przemyśle. Zrozumienie wpływu liczby biegunów na prędkość obrotową jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektroenergetycznych oraz automatyki, gdzie precyzyjne kontrolowanie prędkości jest niezbędne dla wydajności procesu.

Pytanie 9

Która z podanych zasad musi być przestrzegana przed przystąpieniem do konserwacji lub naprawy urządzenia mechatronicznego posiadającego oznaczenie przedstawione na rysunku?

Ilustracja do pytania
A. Przeczytaj instrukcję dla większego bezpieczeństwa.
B. Odczytaj informacje o producencie i skontaktuj się z nim przed realizacją działań.
C. Zanotuj wyniki pomiarów podczas diagnostyki.
D. Zapisz czynności wykonane podczas eksploatacji.
Poprawna odpowiedź "Przeczytaj instrukcję dla większego bezpieczeństwa" odzwierciedla istotę bezpieczeństwa w pracy z urządzeniami mechatronicznymi. Oznaczenie na rysunku to piktogram, który zwraca uwagę na obowiązek zapoznania się z instrukcją obsługi przed przystąpieniem do jakichkolwiek działań konserwacyjnych lub naprawczych. Instrukcja obsługi dostarcza istotnych informacji na temat poprawnej obsługi urządzenia, procedur bezpieczeństwa oraz wskazówek dotyczących konserwacji. Ignorowanie tych informacji może prowadzić do poważnych uszkodzeń sprzętu lub nawet zagrożeń dla zdrowia użytkownika. Przykładowo, w branży motoryzacyjnej, zaleca się zawsze czytać instrukcje dotyczące wymiany oleju lub filtrów, aby uniknąć błędów, które mogą zagrażać bezpieczeństwu pojazdu. Standardy ISO oraz normy branżowe, takie jak ISO 12100, podkreślają znaczenie oceny ryzyka oraz przestrzegania instrukcji obsługi jako kluczowych elementów bezpiecznej eksploatacji maszyn. W związku z tym, zapoznanie się z instrukcją jest kluczowym krokiem przed każdą interwencją serwisową.

Pytanie 10

Którą funkcję realizuje w programie napisanym w języku FBD przedstawiony na rysunku blok funkcjonalny?

Ilustracja do pytania
A. Zliczania w dół.
B. Zliczania w górę.
C. Wyłączania z opóźnieniem.
D. Załączania z opóźnieniem.
Blok funkcjonalny TOF (Timer OFF) w języku FBD jest kluczowym narzędziem do realizacji funkcji wyłączania z opóźnieniem. Działa on w sposób, który zapewnia, że po aktywacji wejścia EN (Enable), urządzenie pozostaje w stanie aktywnym przez zdefiniowany czas PT (Preset Time). Po upływie tego czasu, wyjście Q zostaje wyłączone. Takie podejście jest nie tylko praktyczne, ale także zgodne z najlepszymi praktykami inżynieryjnymi w automatyce przemysłowej. Dzięki zastosowaniu bloków czasowych, można łatwo kontrolować procesy, które wymagają określonego opóźnienia przed dezaktywacją. Na przykład, w systemach automatyki budynkowej, funkcja ta może być używana do wyłączania oświetlenia po opuszczeniu pomieszczenia, co przyczynia się do oszczędności energii. Stosowanie takich bloków jest zgodne z normami IEC 61131-3, które definiują programowanie w języku FBD, co zapewnia interoperacyjność i ułatwia integrację różnych systemów sterowania.

Pytanie 11

Kontrola instalacji hydraulicznej obejmuje

A. zmianę rozdzielacza
B. ocenę stanu przewodów
C. wymianę filtra oleju w systemie
D. pomiar natężenia prądu zasilającego pompę
Odpowiedź "sprawdzenie stanu przewodów" jest poprawna, ponieważ w ramach oględzin instalacji hydraulicznej kluczowe jest ocenienie stanu technicznego systemu. Oględziny powinny obejmować kontrolę szczelności przewodów, co jest niezwykle ważne dla zapobiegania wyciekom oraz zapewnienia efektywności całego układu. Ponadto, sprawdzając przewody, należy ocenić ich stan izolacji, co ma na celu uniknięcie potencjalnych uszkodzeń mechanicznych, które mogą być spowodowane różnymi czynnikami, takimi jak korozja czy działanie wysokiego ciśnienia. Dobre praktyki branżowe zalecają regularne przeprowadzanie takich oględzin, aby spełniały one normy bezpieczeństwa i efektywności, a także przedłużały żywotność systemu hydraulicznego. Przykładem zastosowania tej wiedzy może być rutynowa inspekcja w zakładach przemysłowych, gdzie niewłaściwy stan przewodów może prowadzić do poważnych awarii oraz wysokich kosztów naprawy.

Pytanie 12

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 230 V DC
B. 400 V DC
C. 400 V AC
D. 230 V AC
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 13

W układzie, którego schemat przestawiony został na rysunku, po wciśnięciu przycisku S1 lampka świeci światłem ciągłym. Wynika z tego, że najprawdopodobniej uszkodzony jest

Ilustracja do pytania
A. zestyk rozwierny K1.
B. przekaźnik czasowy K2.
C. zasilacz zasilający układ.
D. przycisk S1.
Odpowiedź wskazująca na przekaźnik czasowy K2 jako uszkodzony jest prawidłowa. W sytuacji, gdy po wciśnięciu przycisku S1 lampka świeci światłem ciągłym, oznacza to, że obwód elektryczny jest zamknięty, a inne elementy układu działają poprawnie. Działający przekaźnik K1, zestyk rozwierny oraz przycisk S1 zapewniają, że sygnał jest przekazywany, a zasilacz zasila lampkę. Przekaźnik czasowy K2 powinien wprowadzać przerywanie w świeceniu lampki, co wskazuje, że jego uszkodzenie powoduje, iż lampka świeci w sposób ciągły. Przekaźniki czasowe są kluczowymi elementami w automatyce, używanymi do kontrolowania cykli pracy urządzeń. Ich poprawne działanie jest niezbędne w systemach automatyzacji, takich jak systemy oświetleniowe, gdzie wymagana jest zmiana stanu w określonych interwałach czasowych. Zrozumienie funkcji przekaźników czasowych oraz ich zastosowań w praktyce inżynieryjnej jest istotne, aby skutecznie projektować i diagnozować systemy elektromechaniczne.

Pytanie 14

Jaką zmianę należy wprowadzić w zamieszczonym programie na sterownik PLC, aby po 2 s od włączenia sterownika w tryb RUN na wyjściu Q0.2 pojawił się stan wysoki?

Ilustracja do pytania
A. Cewkę Q0.3 zmienić na SET Q0.3
B. I0.1 z NO zmienić na NC
C. Timer TON zmienić na TOF
D. Styk T37 z NO zmienić na NC
Odpowiedź, która wybiera zmianę styku I0.1 z NO na NC, jest prawidłowa, ponieważ umożliwia to natychmiastowe aktywowanie cewki Q0.3 po włączeniu sterownika w tryb RUN. W kontekście programowania PLC, styk NO (normally open) wymaga aktywacji sygnału, aby umożliwić przepływ prądu, co w tym przypadku oznacza, że cewka Q0.3 nie będzie aktywna do momentu, gdy I0.1 będzie w stanie wysokim. Zmiana na NC (normally closed) sprawi, że cewka Q0.3 stanie się aktywna natychmiastowo, co jest kluczowe dla uruchomienia timera TON od razu po włączeniu systemu. Po 2 sekundach, styk T37 zamknie się, co spowoduje, że na wyjściu Q0.2 pojawi się stan wysoki. Tego rodzaju logika jest używana w automatyce przemysłowej, gdzie czas reakcji i precyzyjne sterowanie są kluczowe. Przykładem zastosowania może być proces kontroli maszyny, która wymaga natychmiastowego uruchomienia stanu operacyjnego po aktywacji systemu. Poprawność działania w takich systemach jest zgodna z dobrymi praktykami w programowaniu PLC, które podkreślają znaczenie dokładnych i spójnych warunków aktywacji.

Pytanie 15

Jaki rodzaj tranzystora oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Bipolarny npn.
B. Unipolarny z izolowaną bramką.
C. Unipolarny złączowy.
D. Bipolarny pnp.
Wybór jednego z typów tranzystorów bipolarnego, takich jak npn lub pnp, jest błędny, ponieważ tranzystory te działają na zupełnie innej zasadzie. Tranzystory bipolarne wymagają prądu bazy do regulacji przepływu prądu kolektora, co oznacza, że ich działanie opiera się na interakcji dwóch rodzajów nośników ładunku – elektronów i dziur. W przypadku tranzystorów unipolarnych, takich jak JFET, kontrola przepływu prądu odbywa się wyłącznie za pomocą jednego typu nośników, co czyni je bardziej efektywnymi w wielu zastosowaniach, szczególnie w układach o wysokiej impedancji. Odpowiedzi sugerujące tranzystory unipolarne z izolowaną bramką, takie jak MOS-FET, również są mylące, ponieważ ten typ tranzystora ma inny symbol graficzny, w którym występuje okrąg reprezentujący bramkę. W praktyce, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących funkcji bramki oraz rodzaju nośników ładunku w różnych rodzajach tranzystorów. Dlatego istotne jest zrozumienie różnic pomiędzy tymi typami komponentów oraz ich zastosowań w projektowaniu układów elektronicznych.

Pytanie 16

Obserwując zarejestrowany przebieg wartości regulowanej w systemie regulacji dwustanowej, dostrzeżono zbyt silne oscylacje wokół wartości docelowej. W celu zredukowania amplitudy tych oscylacji, należy w regulatorze cyfrowym

A. powiększyć szerokość histerezy
B. zmniejszyć wartość sygnału ustawiającego
C. zwiększyć amplitudę sygnału kontrolującego
D. zmniejszyć szerokość histerezy
Zwiększenie amplitudy sygnału regulującego nie jest skuteczną metodą na redukcję oscylacji w układzie regulacji dwustanowej. W rzeczywistości, podniesienie amplitudy sygnału prowadzi do jeszcze większych odchyleń od wartości zadanej, co z kolei potęguje oscylacje i wprowadza dodatkowe problemy w stabilności systemu. W sytuacjach, gdy amplituda sygnału regulującego jest zbyt wysoka, system może stać się niestabilny, co skutkuje chaotycznym zachowaniem. Zwiększenie szerokości histerezy również nie prowadzi do pożądanej stabilizacji; wręcz przeciwnie, może pogłębić problem. Szerokość histerezy ma kluczowy wpływ na dynamikę układu – im szersza histereza, tym większe odchylenia, co prowadzi do dłuższych czasów reakcji i większych oscylacji. Zmniejszenie wartości sygnału zadającego także nie jest rozwiązaniem, ponieważ może to prowadzić do niedostatecznej reakcji regulatora na zmiany w systemie. Skuteczne zarządzanie oscylacjami wymaga zrozumienia i precyzyjnego dostosowania parametrów regulatora, a nie jedynie zwiększania lub zmniejszania wartości sygnałów. Warto pamiętać, że kluczowym celem regulacji jest utrzymanie stabilności i precyzji, a niewłaściwe działania mogą prowadzić do przeciwnych efektów niż zamierzone.

Pytanie 17

Jakie oprogramowanie komputerowe, które między innymi zajmuje się zbieraniem, wizualizacją, archiwizowaniem danych oraz alarmowaniem i kontrolą procesów, monitoruje przebieg procesów w systemach?

A. SCADA
B. CAM
C. CNC
D. CAD
SCADA, czyli Supervisory Control and Data Acquisition, to naprawdę fajne oprogramowanie, które ma kluczowe znaczenie w automatyzacji różnych procesów w przemyśle. Głównie zajmuje się zbieraniem danych z różnych czujników i urządzeń, a potem pokazuje je w zrozumiały sposób na ładnych interfejsach graficznych. W dodatku, SCADA archiwizuje te informacje, żeby można było je później analizować. Co ciekawe, jeżeli coś idzie nie tak, to potrafi alarmować operatorów, a także kontrolować urządzenia na bieżąco. Jest to mega ważne dla zachowania ciągłości i bezpieczeństwa. Na przykład, w energetyce SCADA monitoruje różne parametry, jak ciśnienie czy temperatura, co jest kluczowe dla prawidłowego działania. Jeśli chodzi o standardy, to ISA-95 mówi o tym, jak skutecznie integrować SCADA z innymi systemami, co naprawdę może poprawić efektywność i zminimalizować błędy.

Pytanie 18

Który kabel w sieci elektrycznej zasilającej silnik trójfazowy jest oznaczony izolacją w kolorze żółto-zielonym?

A. Neutralny
B. Ochronny
C. Sterujący
D. Fazowy
Przewód z izolacją w kolorach żółto-zielonym jest klasycznym przewodem ochronnym, co jest zgodne z normą PN-EN 60446, która określa zasady oznaczania przewodów elektrycznych. Ochrona przed porażeniem prądem elektrycznym jest kluczowym aspektem bezpieczeństwa w instalacjach elektrycznych, zwłaszcza w kontekście urządzeń przemysłowych, takich jak silniki trójfazowe. Przewód ochronny jest odpowiedzialny za uziemienie urządzenia, co minimalizuje ryzyko porażenia w przypadku awarii izolacji. Przykładowo, w przypadku uszkodzenia silnika, przewód ochronny prowadzi niebezpieczny prąd do ziemi, zapobiegając poważnym wypadkom. Stosowanie przewodów ochronnych zgodnie z przyjętymi normami, takimi jak norma IEC 60364, jest niezbędne dla bezpieczeństwa pracowników oraz użytkowników urządzeń elektrycznych. Warto również zwrócić uwagę, że przewody ochronne powinny być regularnie kontrolowane oraz, w miarę potrzeby, wymieniane, by zapewnić ich skuteczność.

Pytanie 19

Która czynność (akcja) w kroku 3 sterowania sekwencyjnego przedstawionego na rysunku będzie wykonana z opóźnieniem czasowym?

Ilustracja do pytania
A. Czynność 3
B. Czynność 4
C. Czynność 1
D. Czynność 2
Czynność 4 jest poprawną odpowiedzią, ponieważ na schemacie sterowania sekwencyjnego oznaczona jest literą 'D', co wskazuje na opóźnienie czasowe. Opóźnienia czasowe są kluczowym elementem w projektowaniu systemów automatyki, gdyż umożliwiają synchronizację działań w procesach, które wymagają precyzyjnego zarządzania czasem. Przykładem zastosowania opóźnienia czasowego może być systemy produkcyjne, w których pewne czynności muszą być wstrzymane na określony czas, aby umożliwić inne procesy, takie jak transport materiałów lub osiągnięcie stabilnej temperatury w danym etapie produkcji. Zastosowanie opóźnień jest zgodne ze standardami automatyki, jak IEC 61131-3, które definiują różne typy sterowania, w tym sekwecję z opóźnieniem. Zrozumienie roli opóźnień w systemach sterowania sekwencyjnego pozwala na skuteczniejsze projektowanie i optymalizację procesów przemysłowych, a także redukcję błędów operacyjnych i poprawę efektywności operacyjnej.

Pytanie 20

Aby umożliwić wymianę informacji między urządzeniami sieciowymi, niezbędne jest zaangażowanie wszystkich elementów w sieci komunikacyjnej o określonej topologii

A. gwiazdy
B. drzewa
C. magistrali
D. pierścienia
Wybór innej topologii niż pierścień wiąże się z pewnymi nieporozumieniami co do sposobu wymiany informacji w sieciach. Topologia drzewa, choć zapewnia hierarchiczne połączenia, nie wymaga udziału wszystkich urządzeń w każdym etapie przesyłania danych, co oznacza, że może wystąpić sytuacja, w której jeden z segmentów sieci jest w stanie działać niezależnie. Podobnie, w topologii magistrali wszystkie urządzenia są podłączone do jednego wspólnego kabla, co sprawia, że dane są przesyłane w obie strony, ale mogą być odbierane tylko przez te urządzenia, które są aktywne w danym momencie. Ta konstrukcja również nie wymaga pełnej współpracy wszystkich urządzeń, co może prowadzić do opóźnień w komunikacji i trudności w utrzymaniu sieci. W topologii gwiazdy każde urządzenie jest podłączone do centralnego węzła, co oznacza, że awaria jednego z urządzeń nie wpływa na pozostałe, a przesyłanie danych odbywa się przez centralny punkt. To może być korzystne z punktu widzenia zarządzania, ale nie zapewnia tak bezpośredniej i w pełni zintegrowanej wymiany danych jak w topologii pierścienia. Dlatego ważne jest, aby przy projektowaniu sieci uwzględniać specyfikę oraz wymagania konkretnej aplikacji, co pozwala na wybranie odpowiedniej topologii w zależności od potrzeb organizacji.

Pytanie 21

Który z przedstawionych symboli graficznych odnosi się do przycisku bistabilnego?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Symbol przedstawiony w odpowiedzi A. jest charakterystyczny dla przycisków bistabilnych, które są kluczowymi elementami w wielu systemach elektronicznych i automatyce. W przeciwieństwie do przycisków monostabilnych, które wymagają ciągłego nacisku, przycisk bistabilny utrzymuje aktywowany stan po zwolnieniu nacisku. Przykładem zastosowania przycisków bistabilnych mogą być włączniki światła, które po naciśnięciu pozostają w stanie 'włączone' aż do kolejnego naciśnięcia, co jest wygodne w codziennym użytkowaniu. Zgodnie z normą IEC 61058, przyciski bistabilne powinny spełniać określone wymagania dotyczące trwałości i bezpieczeństwa. Dlatego ich użycie jest powszechne w instalacjach domowych oraz w systemach przemysłowych, gdzie niezawodność przełączania jest kluczowa. Zrozumienie różnicy między typami przełączników oraz ich zastosowaniem jest niezbędne dla projektantów systemów elektronicznych oraz inżynierów zajmujących się automatyką.

Pytanie 22

W systemie hydraulicznym zauważono spadek efektywności działania siłownika. Jakie działanie powinno być podjęte w pierwszej kolejności, aby naprawić tę usterkę?

A. Wymienić uszczelnienia siłownika
B. Zamienić pompę hydrauliczną
C. Zamienić mocowania siłownika
D. Ustawić wyższe ciśnienie na zaworze bezpieczeństwa
Wymiana uszczelnień siłownika jest kluczowym działaniem w przypadku zaobserwowania obniżenia jego sprawności. Uszczelnienia pełnią ważną rolę w utrzymaniu ciśnienia hydraulicznego w siłowniku, a ich zużycie prowadzi do wycieków oleju, co bezpośrednio wpływa na efektywność pracy siłownika. W praktyce, regularne serwisowanie i wymiana uszczelek powinny być standardową procedurą w eksploatacji systemów hydraulicznych, co pozwala na minimalizowanie ryzyka awarii oraz zapewnia dłuższą żywotność komponentów. Warto również zauważyć, że zgodnie z normami branżowymi, zaleca się stosowanie uszczelnień o odpowiednich parametrach technicznych dostosowanych do konkretnego zastosowania, co pomoże w osiągnięciu maksymalnej efektywności i niezawodności systemu hydraulicznego.

Pytanie 23

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
B. Uszkodzenie przewodu ochronnego PE
C. Uszkodzenie izolacji kabla zasilającego urządzenie
D. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
W przypadku awarii urządzenia II klasy ochronności, niektóre odpowiedzi mogą wydawać się logiczne, ale w rzeczywistości nie uwzględniają kluczowych aspektów ochrony przed porażeniem elektrycznym. Przepalenie uzwojeń silnika, mimo że może prowadzić do awarii, nie stwarza bezpośredniego zagrożenia porażenia prądem. W rzeczywistości, urządzenia te są projektowane tak, aby wytrzymały pewne obciążenia i przestarzałe uzwojenia zwykle powodują jedynie spadek efektywności. Z kolei przepalenie bezpiecznika wewnątrz urządzenia również nie jest bezpośrednim zagrożeniem, ponieważ jego funkcją jest ochrona przed przeciążeniem i zwarciem, co w rzeczywistości zapobiega potencjalnym uszkodzeniom. Uszkodzenie przewodu ochronnego PE, chociaż niebezpieczne, w urządzeniach klasy II nie jest tak krytyczne jak uszkodzenie izolacji przewodu zasilającego. W urządzeniach tej klasy, przewód PE jest zwykle zbędny, ponieważ ochrona przed porażeniem opiera się na podwójnej izolacji. Kluczowym błędem myślowym jest niedocenianie znaczenia izolacji oraz mylenie różnych rodzajów awarii. Zrozumienie, że izolacja stanowi pierwszą linię obrony przed porażeniem, jest krytyczne w przestrzeganiu standardów bezpieczeństwa, takich jak PN-EN 61140.

Pytanie 24

W systemie alarmowym, który jest aktywowany za pomocą pilota radiowego, zasięg jego działania znacznie się zmniejszył. Jakie może być najprawdopodobniejsze źródło tego problemu?

A. Zniszczenie przycisku w pilocie
B. Niewłaściwe kierowanie pilota na odbiornik
C. Rozładowana bateria w pilocie
D. Rozkodowanie pilota
Rozładowana bateria w pilocie jest najczęstszą przyczyną zmniejszenia zasięgu działania zdalnego sterowania w systemach alarmowych. Piloty działają na zasadzie wysyłania sygnału radiowego, który jest odbierany przez centralę alarmową. W miarę jak bateria się rozładowuje, moc sygnału znacząco maleje, co skutkuje osłabieniem zasięgu. W praktyce, użytkownicy powinni regularnie kontrolować stan baterii swoich pilotów, a także stosować wysokiej jakości akumulatory, które zapewniają stabilne zasilanie przez dłuższy czas. Ważne jest również, aby przy wymianie baterii stosować się do instrukcji producenta, co pozwoli uniknąć problemów z kompatybilnością. Zgodnie z dobrymi praktykami, zaleca się wymianę baterii co 6-12 miesięcy, aby zapewnić niezawodne działanie systemu alarmowego. Ponadto, użytkownicy powinni być świadomi, że inne czynniki, takie jak zakłócenia elektromagnetyczne czy przeszkody w postaci ścian, mogą również wpływać na zasięg, jednak w przypadku znacznej redukcji zasięgu, rozładowana bateria jest najprawdopodobniejszym czynnikiem.

Pytanie 25

Na rysunku przedstawiono program realizowany przez sterownik. Do wejścia I01 dołączono przycisk monostabilny NO, a do wyjścia Q01 – lampkę. W odpowiedzi na wciśnięcie, przytrzymanie i zwolnienie przycisku lampka

Ilustracja do pytania
A. świeci, gdy przycisk jest trzymany.
B. świeci, gdy przycisk jest zwolniony.
C. mignie, gdy przycisk jest wciskany.
D. mignie, gdy przycisk jest zwalniany.
Wybór odpowiedzi, w której lampka miałaby świecić, gdy przycisk jest zwolniony, jest błędny z kilku powodów. Przycisk monostabilny NO działa na zasadzie otwierania i zamykania obwodu tylko w momencie wciśnięcia. Gdy przycisk jest zwolniony, obwód jest otwarty, co oznacza, że nie ma przepływu prądu. Stąd lampka nie może świecić w tej chwili, co prowadzi do nieporozumienia w zakresie zasad działania przycisków i przekaźników. W sytuacji, gdy lampka byłaby ustawiona na świecenie w momencie zwolnienia przycisku, obwód musiałby być skonstruowany w sposób, który nie odpowiada standardowym rozwiązaniom. Dlatego także odpowiedzi sugerujące świecenie lampki podczas trzymania przycisku lub jej miganie podczas wciskania są mylące. Przycisk NO, będąc przyciskiem monostabilnym, nie może być używany do ciągłego zasilania lampki, co często jest źródłem błędnych przekonań o jego działaniu. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania systemów automatyki oraz sterowania, aby uniknąć potencjalnych usterek w instalacjach elektrycznych.

Pytanie 26

Prawidłowo strukturę kinematyczną PPO (TTR) urządzenia manipulacyjnego przedstawiono na

Ilustracja do pytania
A. rysunku 1.
B. rysunku 2.
C. rysunku 3.
D. rysunku 4.
Prawidłowa odpowiedź wskazuje na rysunek 1, który dokładnie ilustruje kinematyczną strukturę PPO (TTR) urządzenia manipulacyjnego. W tym przypadku rysunek przedstawia dwa przeguby obrotowe, które są reprezentowane przez okręgi, oraz jeden przegub liniowy, oznaczony kwadratem. Taka konfiguracja jest typowa dla urządzeń manipulacyjnych, w których przeguby obrotowe zapewniają ruch w wielu kierunkach, a przegub liniowy umożliwia ruch wzdłuż prostej linii. Zrozumienie tej struktury jest kluczowe dla inżynierów zajmujących się projektowaniem robotów oraz automatyzacji procesów. W praktyce, projektowanie urządzeń manipulacyjnych zgodnie z tym modelem pozwala na zwiększenie efektywności operacyjnej, co jest zgodne z najlepszymi praktykami w branży robotyki, gdzie każda z tych konfiguracji jest dostosowywana w oparciu o konkretne wymagania aplikacji. Dodatkowo, znajomość struktur kinematycznych pozwala na lepsze modelowanie ruchów, co jest istotne w programowaniu robotów oraz w symulacjach ruchu.

Pytanie 27

W programie sterowania przedstawionym na rysunku, na wyjściu Q0.0 sygnał logiczny 1 pojawi się po

Ilustracja do pytania
A. zliczeniu 3 impulsów w dół.
B. zliczeniu 4 impulsów w górę.
C. zliczeniu 4 impulsów w dół.
D. zliczeniu 3 impulsów w górę.
Sygnał logiczny 1 na wyjściu Q0.0 w programie sterowania pojawi się po zliczeniu trzech impulsów w górę, ponieważ licznik CTU (Count Up) jest zaprogramowany do osiągnięcia wartości zadanej (PV) wynoszącej 3. Liczniki są powszechnie stosowane w automatyce do monitorowania i sterowania procesami. Kiedy licznik zliczy wymagane impulsy, aktywuje odpowiednie wyjście, co w tym przypadku prowadzi do włączenia sygnału na Q0.0. W praktyce, wykorzystanie liczników CTU w systemach sterowania pozwala na realizację funkcji takich jak zliczanie produktów na taśmach produkcyjnych czy monitorowanie liczby cykli w maszynach. Zgodnie z dobrymi praktykami w automatyce, ważne jest, aby odpowiednio dobierać wartości zadane i monitorować stany wyjść, co zapewnia stabilność i efektywność procesów automatyzacji. Zrozumienie działania liczników oraz ich zastosowania w programowaniu PLC jest kluczowe dla inżynierów zajmujących się automatyką przemysłową.

Pytanie 28

Które z wymienionych zdarzeń może wydarzyć się w układzie ze sterownikiem PLC, jeżeli wykonuje on przedstawiony program?

Ilustracja do pytania
A. Kiedy działa element Y2 to nie działa element Y1
B. Elementy Y1 i Y2 mogą zadziałać jednocześnie przy aktywnym B2
C. Kiedy działa element Y1 to nie działa element Y2
D. Elementy Y1 i Y2 mogą zadziałać przy aktywnym S2
Wybór odpowiedzi sugerującej, że 'Kiedy działa element Y1 to nie działa element Y2' jest niepoprawny, ponieważ nie uwzględnia kluczowych zasad działania układów sterowania z PLC. W układzie, w którym obydwa elementy są współzależne, takie stwierdzenie zakłada, że Y1 może działać niezależnie od Y2 w sytuacji, gdy oba elementy są zasilane przez te same warunki. W rzeczywistości, jednak aktywacja Y1 wymaga, aby wszystkie warunki przypisane do jego działania były spełnione, co sprawia, że nie może on funkcjonować równocześnie z Y2 w kontekście, w którym Y2 zyskuje aktywację. Podobnie, stwierdzenie, że 'Elementy Y1 i Y2 mogą zadziałać przy aktywnym S2' nie jest zgodne z praktykami projektowymi, gdyż ignoruje specyfikę warunków, które muszą być spełnione dla działania poszczególnych elementów. W systemach PLC, każdy element jest zaprojektowany z myślą o konkretnych warunkach aktywacji, a błędna interpretacja tych warunków często prowadzi do nieefektywności w procesach automatyzacji. Warto zwrócić uwagę na to, że zrozumienie logiki działania poszczególnych elementów jest nie tylko kluczowe dla prawidłowego funkcjonowania systemu, lecz także dla unikania typowych błędów, takich jak mylenie relacji między elementami. Przykłady rzeczywistych aplikacji mogą pomóc w lepszym uchwyceniu tych zasad i ich praktycznego zastosowania.

Pytanie 29

Którego symbolu należy użyć rysując schemat elektroniczny z tranzystorem unipolarnym MOSFET-P?

Ilustracja do pytania
A. Symbolu 2.
B. Symbolu 4.
C. Symbolu 3.
D. Symbolu 1.
Wybór symbolu innego niż 2 może sugerować, że coś jest nie tak z zrozumieniem zasad dotyczących tranzystorów unipolarnych, zwłaszcza MOSFET-P. Często ludzie myślą, że tranzystory typu N i P mają podobne oznaczenia, ale w rzeczywistości to nie jest prawda. Każdy tranzystor ma swoje unikalne cechy, które moim zdaniem powinny być widoczne w jego symbolu. Na przykład MOSFET-N ma strzałkę na zewnątrz, co pokazuje, że nośnikami ładunku są elektrony, a w MOSFET-P są to dziury. Jak się wybierze zły symbol, jak 1, 3 czy 4, to można popełnić błędy w analizie układów, co może mieć poważne skutki w projektowaniu. Dlatego istotne jest, żeby w dokumentacji trzymać się standardowych symboli i norm, takich jak IEEE 315. Złe symbole mogą wprowadzać w błąd innych, a to prowadzi do złych połączeń i problemów z działaniem urządzeń. Ważne, żeby rozumieć różnice między symbolami i stosować je prawidłowo.

Pytanie 30

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Korbowód tłoka
B. Uszczelka głowicy
C. Zawór ssący
D. Gładź cylindra
Wybór zaworu ssącego, gładzi cylindra lub uszczelki głowicy jako elementów, które na pewno nie uległy uszkodzeniu, jest błędny, ponieważ każdy z tych komponentów może być bezpośrednio związany z problemem niskiego poziomu sprężania powietrza. Zawór ssący, odpowiedzialny za wprowadzenie powietrza do cylindra, może być zanieczyszczony lub uszkodzony, co prowadzi do nieszczelności. Nieszczelności te mogą drastycznie wpłynąć na wydajność sprężarki, uniemożliwiając prawidłowe sprężanie powietrza. Gładź cylindra, która tworzy powierzchnię do ruchu tłoka, również jest kluczowa. Jej zużycie lub zarysowanie mogą prowadzić do nieefektywnego uszczelnienia między tłokiem a cylindrem, co z kolei skutkuje utratą ciśnienia. Uszczelka głowicy pełni rolę uszczelniającą, a jej wada może także powodować przecieki, co jest główną przyczyną obniżonego poziomu sprężania. Takie podejście do oceny stanu sprężarki często prowadzi do błędnych wniosków, ponieważ nie uwzględnia się, iż uszkodzenia mogą być subtelne, ale mają istotny wpływ na wydajność całego systemu. W praktyce, diagnozowanie uszkodzeń w sprężarce wymaga szerokiego zrozumienia mechaniki i współdziałania tych elementów, a skupienie się tylko na korbowodzie jako stanie nienaruszonym może prowadzić do pominięcia krytycznych problemów w układzie. Ważne jest, aby każdy z tych komponentów był regularnie sprawdzany oraz konserwowany zgodnie z najlepszymi praktykami w branży, aby zapewnić optymalną wydajność sprężarki.

Pytanie 31

Jakie czujniki mogą dostarczać dane do sterownika PLC o poziomie cieczy nieprzewodzącej w zbiorniku mechatronicznym działającym jako niezależny system napełniania i dozowania?

A. Indukcyjne
B. Termoelektryczne
C. Magnetyczne
D. Pojemnościowe
Czujnik pojemnościowy to urządzenie, które mierzy poziom cieczy nieprzewodzącej poprzez pomiar zmiany pojemności elektrycznej między elektrodami, która zmienia się w zależności od poziomu cieczy. W przypadku cieczy nieprzewodzących, takich jak oleje czy niektóre chemikalia, czujnik pojemnościowy jest idealnym rozwiązaniem, ponieważ nie wymaga kontaktu z cieczą, co eliminuje ryzyko korozji czy zanieczyszczenia. Zastosowanie czujników pojemnościowych w systemach mechatronicznych, takich jak autonomiczne układy napełniania i dozowania, jest powszechne ze względu na ich dużą precyzję oraz niezawodność. Przykładowo, w przemyśle spożywczym, czujniki te mogą być wykorzystywane do monitorowania poziomu oleju w maszynach do pakowania, co zapewnia optymalne warunki pracy urządzenia. Stosowanie czujników pojemnościowych jest zgodne z normami ISO 9001 dotyczącymi zapewnienia jakości w procesach produkcyjnych.

Pytanie 32

Którego modułu funkcjonalnego powinno się użyć w programie, gdy konieczne jest zarejestrowanie momentu, w którym nastąpiło przerwanie sygnału na wejściu aktywującym timer?

A. TOF
B. TP
C. TONR
D. TON
Blok funkcjonalny TONR, czyli Timer On Delay Retentive, odpowiada za pamiętanie czasu, w którym sygnał na wejściu został przerwany. Dzięki tej funkcji retencyjnej, czas zostaje zachowany nawet, gdy sygnał już nie działa – to jest mega ważne, gdy trzeba zarejestrować moment wystąpienia zdarzenia i potem dalej to monitorować. Na przykład w automatyce przemysłowej, gdzie czasy cykli produkcyjnych są kluczowe, TONR pozwala na zapisanie momentu, kiedy cykl się zaczyna, a potem analizowanie tych danych po zakończeniu. Zgodnie z normą IEC 61131-3, korzystanie z takich bloków jak TONR przy programowaniu PLC jest naprawdę istotne, bo ułatwia tworzenie programów, które są niezawodne i łatwe do diagnozowania. Dodatkowo, użycie tych bloków poprawia czytelność kodu i sprawia, że łatwiej wprowadzać w nim zmiany czy rozbudowywać aplikację.

Pytanie 33

W jakim celu stosuje się enkodery w systemach automatyki?

A. Zwiększanie mocy silnika
B. Redukcja zużycia energii
C. Pomiar przemieszczenia i prędkości
D. Poprawa jakości dźwięku
Enkodery są niezbędnym elementem w systemach automatyki, ponieważ pozwalają na precyzyjny pomiar przemieszczenia i prędkości. Te urządzenia przetwarzają ruch mechaniczny na sygnał elektryczny, co umożliwia dokładne śledzenie pozycji i ruchu elementów w maszynach. Na przykład w robotyce, enkodery są używane do precyzyjnej kontroli położenia ramion robotów, co jest kluczowe dla dokładności i powtarzalności operacji. W przemyśle maszynowym, enkodery pomagają monitorować prędkość obrotową silników, co jest istotne dla synchronizacji procesów produkcyjnych. Stosowanie enkoderów to standard w branży automatyki, ponieważ ich zdolność do dostarczania dokładnych danych w czasie rzeczywistym znacząco poprawia efektywność i bezpieczeństwo systemów przemysłowych. Enkodery mogą być inkrementalne lub absolutne, w zależności od potrzeb aplikacji, co dodatkowo zwiększa ich wszechstronność. Dzięki temu, firmy mogą implementować bardziej zaawansowane systemy sterowania, które są w stanie dynamicznie reagować na zmiany w procesie produkcyjnym, optymalizując tym samym działanie całego systemu.

Pytanie 34

Przyczyny szarpania oraz niestabilności w działaniu hydraulicznych systemów napędowych mogą obejmować

A. wyciek w systemie hydraulicznym
B. zapowietrzenie czynnika roboczego
C. zbyt niską lepkość oleju
D. zbyt wysoką lepkość oleju
Zapowietrzenie czynnika roboczego jest kluczowym problemem, który wpływa na prawidłowe działanie układów hydraulicznych. Powstawanie pęcherzyków powietrza w oleju hydraulicznym prowadzi do zmniejszenia efektywności przepływu, co w konsekwencji może skutkować szarpaniem i destabilizacją ruchu napędów. W praktyce, aby zapobiec zapowietrzeniu, należy regularnie kontrolować ciśnienie w układzie oraz stosować odpowiednie uszczelnienia, aby uniknąć wnikania powietrza. Dobrym rozwiązaniem jest także stosowanie filtrów, które eliminują zanieczyszczenia i pęcherzyki powietrza. Zgodnie z normami branżowymi, takim jak ISO 4406, zaleca się regularne badania jakości oleju hydraulicznego, co pozwala na wczesne wykrywanie problemów i ich eliminację. Przykładem zastosowania tej wiedzy jest przeprowadzanie rutynowych przeglądów maszyn przemysłowych, gdzie dbałość o jakość oleju wpływa na wydajność całego systemu hydraulicznego.

Pytanie 35

Które z poniższych wskazówek dotyczących komunikacyjnej sieci sterowników PLC jest nieprawdziwe?

A. Kable używane powinny być miedziane
B. Kable powinny być niskorezystancyjne, czyli mieć duży przekrój żył
C. Kable komunikacyjne powinny być prowadzone równolegle z kablami zasilającymi
D. Kable powinny charakteryzować się niską pojemnością międzyżyłową
Prowadzenie kabli komunikacyjnych obok kabli zasilających to raczej zły pomysł, szczególnie w instalacjach dla sterowników PLC. Moim zdaniem, to może prowadzić do sporych zakłóceń elektromagnetycznych. Kiedy te kable są blisko siebie, może dochodzić do indukcji elektromagnetycznej, co może wprowadzać jakieś niepożądane napięcia do obwodów komunikacyjnych. To jest ważne zwłaszcza w systemach, gdzie jakość transmisji danych jest na wagę złota, jak w automatyce przemysłowej. Wiesz, zgodnie z normami, takimi jak IEC 61158, trzeba układać kable komunikacyjne tak, żeby zmniejszyć ryzyko zakłóceń. Często to znaczy, że te kable powinny być prowadzone osobno od kabli zasilających. Na przykład, przy budowaniu rozdzielnic czy szaf sterowniczych, fajnie jest prowadzić kable komunikacyjne w oddzielnych kanałach. To pomaga utrzymać stabilny sygnał i sprawić, że system działa niezawodnie. Z mojego doświadczenia, dbanie o te szczegóły jest kluczowe dla zapewnienia dobrej jakości i niezawodności w automatyce przemysłowej.

Pytanie 36

Który sposób adresowania zmiennych zastosowano w przedstawionym fragmencie programu?

Ilustracja do pytania
A. Bitowo-bajtowy.
B. Bajtowo-bitowy.
C. Absolutny.
D. Symboliczny.
Adresowanie symboliczne jest kluczowym aspektem w programowaniu, zwłaszcza w kontekście systemów automatyki i sterowania. W przedstawionym fragmencie programu mamy do czynienia z oznaczeniami S1, S2 oraz K1, które są logicznymi nazwami dla elementów programu, takich jak styki i cewki. Zastosowanie adresowania symbolicznego pozwala programiście na łatwiejsze zarządzanie kodem, ponieważ zamiast trudnych do zapamiętania adresów sprzętowych, używa on opisowych nazw. Daje to nie tylko lepszą czytelność, ale także ułatwia późniejsze modyfikacje i debugowanie programu. W praktyce, programy pisane z użyciem adresowania symbolicznego są bardziej zrozumiałe dla zespołów projektowych i mogą być łatwiej przenoszone między różnymi platformami. Przykładem dobrych praktyk w branży jest stosowanie konwencji nazewnictwa, które jasno wskazują na funkcjonalność elementów, co znacznie zwiększa efektywność pracy zespołowej. Warto zaznaczyć, że adresowanie symboliczne jest również zgodne z zasadami programowania strukturalnego, które zalecają minimalizację złożoności i zwiększenie modularności kodu.

Pytanie 37

Jak skutecznie programować sterownik PLC w celu sterowania silnikiem elektrycznym?

A. Zwiększyć ilość podłączonych przewodów, co zwykle nie jest konieczne
B. Zaprojektować algorytm sterowania uwzględniający warunki startu i zatrzymania
C. Zmienić napięcie wejściowe na wyższe, co może być niebezpieczne
D. Zainstalować dodatkowe czujniki podczerwieni, aby monitorować otoczenie
Programowanie sterownika PLC do sterowania silnikiem elektrycznym to zadanie wymagające uwzględnienia wielu czynników. Kluczem do sukcesu jest zaprojektowanie algorytmu sterowania, który uwzględnia warunki startu, zatrzymania oraz inne istotne elementy procesu sterowania. Algorytm powinien być przemyślany w kontekście bezpieczeństwa oraz efektywności energetycznej. Dobre praktyki branżowe wskazują, że należy używać strukturyzowanego podejścia do programowania, które umożliwia łatwe utrzymanie i modyfikację kodu w przyszłości. Przykładowo, przed uruchomieniem silnika należy upewnić się, że wszystkie warunki startowe są spełnione, a w przypadku zatrzymania – że proces ten odbywa się w sposób kontrolowany. Moim zdaniem, warto także uwzględnić mechanizmy zabezpieczające przed przeciążeniem silnika. Istotnym elementem jest również testowanie algorytmu w różnych scenariuszach przed wdrożeniem go w rzeczywistym środowisku.

Pytanie 38

Którego symbolu graficznego należy użyć, aby przedstawić na schemacie układu cyfrowego bramkę logiczną, której wyjście Y=1 tylko wtedy, gdy A ≠ B?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź D jest poprawna, ponieważ symbol ten reprezentuje bramkę logiczną XOR (exclusive OR). Bramki XOR są kluczowe w cyfrowych układach logicznych, ponieważ ich wyjście jest równe 1 tylko wtedy, gdy dokładnie jedno z wejść jest równe 1. W kontekście podanego zadania, mamy do czynienia z funkcją, która zwraca Y=1 w sytuacji, gdy wejścia A i B są różne, co idealnie odpowiada działaniu bramki XOR. Takie bramki znajdują zastosowanie w różnych dziedzinach, w tym w arytmetyce binarnej, przy budowie sumatorów, które zliczają bity w operacjach dodawania. Ponadto, bramki XOR są wykorzystywane w kryptografii oraz w kodowaniu informacji, gdzie kluczowe jest rozróżnienie między różnymi stanami logicznymi. Warto również zauważyć, że zgodnie z międzynarodowymi standardami projektowania układów cyfrowych, bramka XOR jest klasyfikowana jako bramka uniwersalna, co potwierdza jej wszechstronność i znaczenie w praktycznych zastosowaniach.

Pytanie 39

Na podstawie wymiarów łożysk podanych w tabeli dobierz łożysko kulkowe do silnika indukcyjnego o średnicy wału 10 mm i średnicy otworu w tarczy łożyskowej 30 mm.

Symbol łożyskaWymiary łożysk
śr. wewn. D
[mm]
śr. zewn. D
[mm]
wys. B, T, H
[mm]
600010268
620010309
6190112246
600112288
A. 6200
B. 61901
C. 6001
D. 6000
Odpowiedź 6200 jest na pewno dobra, bo to łożysko kulkowe ma wewnętrzną średnicę 10 mm i zewnętrzną średnicę 30 mm. To idealnie odpowiada wymaganiom, które były w pytaniu. W praktyce dobór odpowiedniego łożyska do silnika indukcyjnego to kluczowa sprawa. Dobrze dobrane łożysko pozwala na lepszą pracę silnika i wydłuża jego żywotność. Jak wiadomo, łożyska są mega ważne w maszynach, bo umożliwiają swobodne obracanie się części ruchomych, co zmniejsza tarcie. Łożysko 6200 ma naprawdę fajną konstrukcję, co zapewnia mu dużą nośność i odporność na zmęczenie, a to jest ważne, kiedy mamy do czynienia z dużymi prędkościami obrotowymi. Często znajdziesz je w różnych zakładach przemysłowych i urządzeniach elektrycznych, więc to pokazuje, jak wszechstronne to łożysko. Jak wybierasz łożysko, nie zapomnij zwrócić uwagi na oznaczenia i normy, które powinny pasować do standardów ISO. W przypadku 6200, to łożysko jest zgodne z tymi normami, co czyni je fajnym wyborem w różnych zastosowaniach.

Pytanie 40

Na ilustracji przedstawiono fragment ekranu oprogramowania typu

Ilustracja do pytania
A. SCADA/HMI
B. CAE
C. MES
D. CAD/CAM
Twoja odpowiedź to SCADA/HMI, co jest jak najbardziej trafne. Ilustracja, którą widzisz, to klasyczny interfejs użytkownika, który spotyka się w systemach SCADA i HMI. Te systemy są naprawdę istotne w różnych branżach, na przykład w przemyśle chemicznym czy energetycznym, bo pomagają monitorować i zarządzać procesami w czasie rzeczywistym. Interfejsy SCADA/HMI zawierają różne schematy procesów, dane z czujników i elementy, które umożliwiają operatorom szybkie podejmowanie decyzji i reagowanie na problemy. Dobrze jest też wspomnieć, że te systemy pozwalają na zdalne śledzenie maszyn, co znacząco podnosi efektywność produkcji i bezpieczeństwo. Stosowanie dobrych praktyk w projektowaniu, jak norma ISA-101, to klucz do intuicyjnych i efektywnych interfejsów. W końcu SCADA często jest łączone z innymi systemami, co jeszcze bardziej usprawnia zarządzanie infrastrukturą przemysłową.