Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 20 grudnia 2025 00:16
  • Data zakończenia: 20 grudnia 2025 00:18

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż oznaczenie literowe gwintu metrycznego.

A. M
B. Tr
C. W
D. S
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 2

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. przegubowy.
B. grzechotkowy.
C. udarowy.
D. dynamometryczny.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 3

Do montażu przewodów do złączki przedstawionej na zdjęciu należy użyć

Ilustracja do pytania
A. klucza nasadowego.
B. wkrętaka krzyżowego.
C. wkrętaka płaskiego.
D. klucza oczkowego.
Użycie wkrętaka płaskiego do montażu przewodów w złączkach jest standardową procedurą w wielu zastosowaniach elektrycznych. Wkrętak płaski, znany również jako śrubokręt płaski, idealnie pasuje do śrub z prostymi nacięciami, które są często stosowane w tego typu złączkach. Tego typu śruby są powszechnie używane ze względu na swoją prostotę i dostępność. Praktyka ta jest wspierana przez wiele standardów branżowych, które zalecają stosowanie odpowiednich narzędzi do konkretnego typu śrub, aby uniknąć ich uszkodzenia i zapewnić bezpieczne połączenie. Moim zdaniem, warto zainwestować w dobrej jakości wkrętak płaski, który ułatwi pracę i zwiększy jej efektywność. Przykładem mogą być instalacje elektryczne w domu, gdzie często spotykamy się z koniecznością montażu przewodów w rozdzielnicach czy puszkach przyłączeniowych. Dobrze dobrane narzędzie nie tylko przyspiesza pracę, ale również minimalizuje ryzyko uszkodzenia urządzeń czy przewodów.

Pytanie 4

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację przełożenia.
B. ruch przerywany.
C. multiplikację obrotów.
D. ruch ciągły.
Mechanizm przedstawiony na rysunku to mechanizm genewski, który zapewnia ruch przerywany. To znany mechanizm w automatyce i mechanice, który przekształca ruch obrotowy w przerywany. Kluczowym elementem jest tutaj krzywka z wycięciami, która okresowo wchodzi w interakcję z czerwonym elementem, nadając mu ruch na krótkie odcinki. Tego rodzaju mechanizmy można znaleźć w zegarach mechanicznych albo maszynach pakujących, gdzie potrzebna jest precyzyjna kontrola czasowa ruchu. Dzięki przerywanemu ruchowi można uzyskać kontrolowane, cykliczne przemieszczenia, co jest kluczowe w wielu zastosowaniach przemysłowych. Mechanizm genewski to doskonały przykład zastosowania prostych zasad mechaniki do rozwiązywania skomplikowanych problemów inżynieryjnych. Z mojego doświadczenia wiem, że jest to też świetne wprowadzenie do nauki o ruchach przerywanych dla studentów technikum.

Pytanie 5

Który z bloków oprogramowania sterowników PLC działa wg diagramu przedstawionego na rysunku?

Ilustracja do pytania
A. Blok przerzutnika synchronicznego RS z dominującym wejściem R
B. Blok przerzutnika asynchronicznego RS z dominującym wejściem R
C. Blok przerzutnika synchronicznego RS z dominującym wejściem S
D. Blok przerzutnika asynchronicznego RS z dominującym wejściem S
Świetnie, że wybrałeś przerzutnik asynchroniczny RS z dominującym wejściem R. To oznacza, że zrozumiałeś, jak działa ten typ przerzutnika. Przerzutniki asynchroniczne działają bez potrzeby sygnału zegarowego, co pozwala na bardziej elastyczne sterowanie. W tym przypadku, wejście R ma priorytet, co oznacza, że gdy jest aktywne, wymusi stan niski na wyjściu Q niezależnie od stanu wejścia S. Jest to kluczowe w aplikacjach, gdzie ważne jest, by móc natychmiastowo zresetować układ, np. w systemach sterowania awaryjnego. W praktyce takie przerzutniki są często stosowane w automatyce przemysłowej, gdzie priorytet resetu zapewnia bezpieczeństwo i stabilność systemu. Z mojego doświadczenia wynika, że znajomość różnic między przerzutnikami synchronicznymi i asynchronicznymi jest fundamentalna dla każdego inżyniera automatyki. Wiedza ta pozwala na bardziej efektywne projektowanie układów logicznych i unikanie potencjalnych błędów w implementacji algorytmów sterowania.

Pytanie 6

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Częstotliwościomierz.
B. Woltomierz.
C. Omomierz.
D. Amperomierz.
Amperomierz to właściwy wybór, ponieważ mierzy prąd płynący przez obwód. W miejscu oznaczonym literą X mamy do czynienia z typową konfiguracją obwodu, gdzie chcemy zmierzyć prąd przepływający przez R2 i R3. Amperomierz włączamy szeregowo z elementami, przez które płynie prąd, co umożliwia dokładny pomiar bez zakłóceń. W praktyce, dobrze zamontowany amperomierz ma mały opór wewnętrzny, aby nie wpływać na obwód. Warto pamiętać, że dla bezpieczeństwa i dokładności pomiaru, amperomierz powinien być przystosowany do zakresu mierzonego prądu. W sytuacjach przemysłowych, gdzie mamy do czynienia z większymi wartościami prądów, używa się czasem przekładników prądowych. Przykładowo, w instalacjach elektrycznych takie pomiary pomagają w diagnozowaniu problemów i optymalizacji zużycia energii. Moim zdaniem, zrozumienie działania amperomierza to kluczowy element dla każdego początkującego elektryka, bo to narzędzie jest podstawą w codziennej pracy z obwodami elektrycznymi.

Pytanie 7

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Rezystancji izolacji między przewodami L1 i L2 i L3.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji żył L1, L2, L3.
Wykonanie pomiaru rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowe w ocenie bezpieczeństwa elektrycznego instalacji. Taki pomiar pomaga zidentyfikować możliwe uszkodzenia izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Rezystancja izolacji jest mierzona przy użyciu specjalnych mierników, które podają wysokie napięcie pomiarowe, aby dokładnie ocenić stan izolacji. Standardy branżowe, takie jak PN-HD 60364, zalecają regularne wykonywanie takich pomiarów w celu utrzymania bezpieczeństwa instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w przemyśle budowlanym, gdzie bezpieczeństwo instalacji elektrycznych jest priorytetem. W domowych warunkach, choć rzadko wykonywane przez laików, pomiary te mogą być kluczowe przy odbiorze nowych instalacji. Moim zdaniem, znajomość i wykonywanie takich pomiarów to podstawa zdrowego rozsądku w zawodzie elektryka. Z doświadczenia wiem, że regularne pomiary rezystancji izolacji pozwalają na wczesne wykrycie potencjalnych problemów, co przekłada się na bezpieczeństwo użytkowników.

Pytanie 8

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. A
C. B
D. T
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 9

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Częstotliwościomierz.
B. Amperomierz.
C. Omomierz.
D. Woltomierz.
Świetnie, wybrałeś amperomierz! To prawidłowy wybór, bo w miejscu oznaczonym literą X chcemy zmierzyć natężenie prądu płynącego przez rezystory R2 i R3, które są połączone szeregowo. Amperomierz to przyrząd, który włączamy w obwód szeregowo, tak aby prąd płynął przez niego, co pozwala na dokładny pomiar. Moim zdaniem, to jedno z podstawowych zastosowań amperomierza, bo często chcemy wiedzieć, jaki prąd płynie przez konkretne elementy obwodu. Ważne jest, aby pamiętać, że amperomierz ma bardzo mały opór własny, co minimalizuje wpływ na obwód. Standardy branżowe, takie jak IEC, podkreślają konieczność właściwego podłączenia amperomierzy, aby uniknąć błędów pomiarowych. W praktyce, amperomierze są nieodzowne w diagnostyce i utrzymaniu systemów elektrycznych, zarówno w elektronice konsumenckiej, jak i w systemach przemysłowych. Dobrze, że o tym pamiętasz!

Pytanie 10

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DS-w
B. DY-w
C. DG-w
D. LY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 11

Który przyrząd pomiarowy należy wykorzystać do przygotowania korytek montażowych o wskazanej długości?

A. Czujnik zegarowy.
B. Mikrometr.
C. Przymiar kreskowy.
D. Średnicówkę.
Przymiar kreskowy, często zwany też miarą lub linijką, jest podstawowym narzędziem pomiarowym używanym do mierzenia długości na płaskich powierzchniach. To precyzyjne narzędzie, które pozwala na dokładne odmierzanie korytek montażowych, co jest kluczowe podczas prac konstrukcyjnych i montażowych. Przymiar kreskowy jest wykonany z metalu lub tworzywa sztucznego i ma naniesione podziałki, zazwyczaj w milimetrach i centymetrach. Dzięki swojej prostej konstrukcji i łatwości w użyciu, jest niezastąpiony w warsztatach i na budowach. W praktyce, przy produkcji korytek montażowych, ważne jest, aby długość była dokładnie taka, jaka została zaplanowana, aby uniknąć problemów z montażem. Przymiar kreskowy to narzędzie, które daje pewność, że wszystko jest mierzone precyzyjnie i zgodnie z projektem. W branży budowlanej i mechanicznej, dokładne wymiary są kluczowe dla trwałości i niezawodności konstrukcji, dlatego przymiar kreskowy jest tak powszechnie stosowany. Dodatkowo, jego kompaktowy rozmiar i łatwość w przechowywaniu sprawiają, że jest to narzędzie pierwszego wyboru, gdy mówimy o podstawowych narzędziach pomiarowych. Warto też wspomnieć, że w standardowych praktykach przemysłowych, użycie przymiaru kreskowego jest preferowane ze względu na jego dostępność i niską cenę, co czyni go idealnym dla małych i dużych projektów.

Pytanie 12

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. MUL
B. SUB
C. ADD
D. DIV
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 13

Czujnik indukcyjny służy do detekcji elementów

A. drewnianych.
B. plastikowych.
C. szklanych.
D. metalowych.
Czujnik indukcyjny to jedno z najczęściej stosowanych urządzeń w automatyce przemysłowej. Jego głównym zadaniem jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego generowanego przez cewkę wewnątrz czujnika. Gdy metalowy przedmiot znajdzie się w polu działania czujnika, następuje zmiana indukcyjności, co jest interpretowane jako sygnał obecności. Taka technologia jest niezwykle przydatna w środowiskach produkcyjnych, gdzie detekcja metalowych elementów jest kluczowa, na przykład w systemach montażowych czy liniach produkcyjnych. W przeciwieństwie do czujników optycznych, czujniki indukcyjne są odporne na zabrudzenia i kurz, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych. Normy takie jak IEC 60947-5-2 określają wymagania dotyczące czujników zbliżeniowych, zapewniając ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Moim zdaniem, wiedza o tych czujnikach to podstawa dla każdego, kto chce zrozumieć współczesną automatykę. Dzięki temu można lepiej projektować systemy, które są bardziej wydajne i mniej podatne na awarie.

Pytanie 14

Do przykręcania lub odkręcania nakrętki przedstawionej na rysunku przeznaczony jest klucz

Ilustracja do pytania
A. nasadowy.
B. imbusowy.
C. czołowy.
D. hakowy.
Nakrętka przedstawiona na rysunku to nakrętka rowkowa, do której przykręcania lub odkręcania stosuje się klucz hakowy. Ten typ klucza jest specjalnie zaprojektowany, aby pasować do rowków lub otworów w nakrętce, umożliwiając łatwe manewrowanie nawet w trudno dostępnych miejscach. Klucze hakowe są powszechnie używane w przemyśle maszynowym i motoryzacyjnym, gdzie precyzja i siła są kluczowe. Ich konstrukcja umożliwia równomierne rozłożenie siły, co minimalizuje ryzyko uszkodzenia elementów złącznych. Przy pracy z maszynami, nakrętki rowkowe często są stosowane do mocowania łożysk lub elementów obrotowych, a użycie klucza hakowego zapewnia, że proces ten jest bezpieczny i efektywny. Standardy przemysłowe, takie jak DIN 1810, określają wymiary i specyfikacje dla kluczy hakowych, co jest kluczowe dla utrzymania kompatybilności i bezpieczeństwa w pracy. W praktyce, klucz hakowy to niezastąpione narzędzie w warsztatach i fabrykach, a jego użycie jest często preferowane ze względu na wygodę i niezawodność w trudnych warunkach.

Pytanie 15

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. kluczy imbusowych.
B. kluczy oczkowych.
C. wkrętaków krzyżowych.
D. wkrętaków płaskich.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 16

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Do testowania okablowania strukturalnego należy użyć specjalistycznego miernika sieciowego Fluke Networks CableIQ. To urządzenie zostało zaprojektowane właśnie do kwalifikacji i diagnostyki kabli miedzianych w instalacjach komputerowych i teleinformatycznych. Pozwala sprawdzić, czy dany odcinek przewodu spełnia wymagania dla transmisji 10BASE-T, 100BASE-TX, 1000BASE-T lub VoIP. Miernik ten wykonuje testy ciągłości, mapy połączeń, długości żył, a także wykrywa błędy takie jak zwarcia, przerwy, zamiany par czy przesłuchy. Co więcej, potrafi określić jakość toru transmisyjnego – czyli tzw. kwalifikację kabla – bez potrzeby używania certyfikatora. W praktyce Fluke Networks to standard w branży telekomunikacyjnej i instalatorskiej; dzięki prostemu interfejsowi i automatycznym raportom jest niezastąpiony przy odbiorach sieci LAN. Moim zdaniem to najlepsze rozwiązanie do pracy w terenie – szybkie, dokładne i odporne na błędy użytkownika.

Pytanie 17

Na podstawie danych zawartych w tabeli wskaż co oznacza litera H w oznakowaniu przewodu elektrycznego, układanego na stałe?

Ilustracja do pytania
A. Izolacja żył wykonana z polwinitu.
B. Zewnętrzna powłoka izolacyjna wykonana z materiału bezhalogenowego.
C. Zewnętrzna powłoka izolacyjna wykonana z gumy silikonowej.
D. Izolacja żył wykonana z gumy.
Litera 'H' w oznakowaniu przewodów elektrycznych wskazuje na materiał bezhalogenowy użyty do zewnętrznej powłoki izolacyjnej. To istotna informacja, zwłaszcza w kontekście bezpieczeństwa pożarowego. Materiały bezhalogenowe nie emitują toksycznych gazów podczas spalania, co jest kluczowe w środowiskach, gdzie ludzie mogą być narażeni na dym, jak np. budynki użyteczności publicznej czy transport publiczny. Z mojego doświadczenia, coraz więcej firm stawia na takie rozwiązania, ponieważ pożary mogą stanowić duże zagrożenie dla życia. Takie przewody są zgodne z normami międzynarodowymi, takimi jak IEC 60754 czy EN 50267, które określają limity emisji dymu i toksycznych gazów. W praktyce, instalując przewody z oznaczeniem 'H', zapewniamy wyższy poziom bezpieczeństwa i spełniamy rygorystyczne wymagania ochrony środowiska. Warto zwrócić uwagę, że coraz częściej przepisy wymagają stosowania przewodów bezhalogenowych w miejscach publicznych. Wiedza o materiałach izolacyjnych i ich właściwościach jest kluczem do prawidłowego doboru przewodów w projektach elektroinstalacyjnych.

Pytanie 18

Który blok czasowy należy zastosować w programie, by realizował on bezpośrednio zależności czasowe przedstawione na rysunku?

Ilustracja do pytania
A. TOF
B. TONR
C. TON
D. TP
Wybór bloku TON jako poprawnej odpowiedzi jest absolutnie słuszny. TON, czyli Timer On-Delay, jest używany, gdy chcemy, aby sygnał wyjściowy był opóźniony o określony czas po otrzymaniu sygnału wejściowego. Na diagramie widać, że po aktywacji wejścia I0.0, wyjście Q0.0 zostaje opóźnione o pewien czas, co dokładnie odpowiada działaniu bloku TON. Jest to bardzo przydatne w aplikacjach, gdzie wymagane jest wprowadzenie pewnego opóźnienia, na przykład w sekwencyjnym załączaniu urządzeń, aby zapobiec nagłemu obciążeniu sieci elektrycznej. Moim zdaniem, stosowanie bloku TON jest jednym z najlepszych sposobów na wprowadzenie takiego kontrolowanego opóźnienia, ponieważ zapewnia przewidywalne i stabilne działanie systemu. Dobrą praktyką w branży jest dokładne określenie czasu opóźnienia, aby zoptymalizować działanie całego układu, a TON jest niezastąpiony w tego typu zadaniach. Stosowanie tego bloku to standard w automatyce przemysłowej, głównie w programowalnych sterownikach logicznych (PLC).

Pytanie 19

Element zabezpieczający silnik, zaznaczony na schemacie linią przerywaną, jest wyzwalany

Ilustracja do pytania
A. nadnapięciowo.
B. podprądowo.
C. cieplnie.
D. ciśnieniowo.
Element zabezpieczający, który jest wyzwalany cieplnie, to najczęściej wyłącznik termiczny lub przekaźnik termiczny. Tego typu zabezpieczenia stosuje się przede wszystkim w obwodach silników elektrycznych, aby chronić je przed przegrzaniem. Dlaczego to takie ważne? Silniki elektryczne, zwłaszcza te pracujące w trudnych warunkach, mogą się przegrzewać z powodu przeciążenia lub zablokowania. Przekaźnik termiczny działa na zasadzie wydłużania się elementów bimetalicznych pod wpływem ciepła, co po przekroczeniu określonej temperatury przerywa obwód. To proste, ale bardzo skuteczne rozwiązanie. Standardy branżowe, na przykład normy IEC, zalecają stosowanie takich zabezpieczeń, aby zapewnić długowieczność maszyn i bezpieczeństwo pracy. Praktyczne zastosowanie? Wyobraź sobie, że masz silnik w fabryce, który napędza taśmociąg. Jeśli coś utknie na taśmie, silnik zaczyna pracować ciężej, co prowadzi do wzrostu temperatury. Dzięki przekaźnikowi termicznemu obwód zostaje przerwany, zanim dojdzie do uszkodzenia.

Pytanie 20

Które ze stwierdzeń dotyczących prowadzenia przewodów sygnałowych w układach sterowania napędami nie jest poprawne?

A. Przewody sygnałowe należy prowadzić w odległości minimum 20 cm od przewodów zasilających.
B. Końcówki nieużywanych żył przewodów sygnałowych w szafie należy połączyć ze sobą i uziemić.
C. Przewody sygnałowe należy prowadzić w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania.
D. Wszystkie krzyżowania przewodów sygnałowych z innymi rodzajami przewodów należy wykonać pod kątem prostym.
Wybór odpowiedzi mówiącej, że przewody sygnałowe powinny być prowadzone w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania, jest błędny. Koryta i rury PVC nie oferują właściwości ekranujących, które są kluczowe dla przewodów sygnałowych. Głównym celem prowadzenia przewodów sygnałowych w ekranie jest ochrona sygnałów przed zakłóceniami elektromagnetycznymi, które mogą powodować błędy w transmisji danych. W praktyce, zamiast PVC, stosuje się specjalne koryta metalowe lub przewody ekranowane, których zadaniem jest odizolowanie sygnałów od zewnętrznych pól elektromagnetycznych. Dobrym przykładem są przewody z ekranem z oplotu miedzianego lub aluminiowego, które są skuteczne w tłumieniu zakłóceń. Norma PN-EN 60204-1 podkreśla znaczenie stosowania odpowiednich materiałów w instalacjach elektrycznych, aby zapewnić właściwe działanie systemów sterowania. Przy projektowaniu systemów sterowania warto pamiętać, że właściwe ekranowanie jest kluczowe dla niezawodności całego układu. Warto również mieć na uwadze, że złe praktyki w tym zakresie mogą prowadzić do przestojów produkcyjnych związanych z błędami sterowania.

Pytanie 21

Urządzenie przedstawione na ilustracji to

Ilustracja do pytania
A. koncentrator sieciowy.
B. zasilacz impulsowy.
C. panel operatorski.
D. sterownik PLC.
To urządzenie to rzeczywiście sterownik PLC, co jest skrótem od Programmable Logic Controller. PLC to podstawowe narzędzie w automatyce przemysłowej, które służy do sterowania maszynami i procesami. W praktyce, PLC jest wykorzystywany do realizacji funkcji logicznych, czasowych, zliczania i sekwencyjnych, które są niezbędne w kontrolowaniu złożonych systemów produkcyjnych. Moim zdaniem, największą zaletą PLC jest jego elastyczność - można go łatwo zaprogramować i dostosować do różnych aplikacji, co znacznie ułatwia pracę inżynierów automatyki. Warto również podkreślić, że PLC są projektowane z myślą o pracy w trudnych warunkach przemysłowych, co oznacza, że są odporne na wstrząsy, wibracje i zakłócenia elektromagnetyczne. Standardy, takie jak IEC 61131, definiują języki programowania dla PLC, co ułatwia naukę i przenoszenie wiedzy między różnymi platformami. W praktyce, sterowniki PLC znajdują zastosowanie w różnych branżach, od produkcji samochodów po przemysł spożywczy, wszędzie tam, gdzie potrzebna jest precyzyjna i niezawodna kontrola procesów. To naprawdę niesamowite, jak wszechstronne są te urządzenia!

Pytanie 22

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S1:4/WE2 ∞
B. S0:2/WE1 0,1
C. V0:A2/V1:A2 0,1
D. WY1/V0:A1 0,1
Wartość rezystancji dla odcinka S1:4/WE2 została wpisana jako nieskończoność (∞), co oznacza, że obwód jest otwarty. W praktyce, taka wartość wskazuje na brak połączenia elektrycznego, czyli że przewód nie przewodzi prądu. W układzie sterowania, szczególnie w przypadku przewodów łączących elementy takie jak przełączniki czy sterowniki PLC, poprawna rezystancja powinna być bardzo niska, zbliżona do zera, aby zapewnić prawidłowe działanie systemu. Otwarty obwód uniemożliwi działanie komponentów, które powinny być zasilane lub kontrolowane przez ten przewód. W praktyce, jeśli napotkasz nieskończoną rezystancję, powinieneś sprawdzić, czy przewód jest poprawnie podłączony lub czy nie został przerwany. Standardy branżowe wymagają od techników, aby regularnie sprawdzali rezystancję w przewodach jako część konserwacji prewencyjnej, co pozwala uniknąć przestojów wynikających z niewłaściwego działania systemu.

Pytanie 23

W której przemysłowej sieci komunikacyjnej stosowane jest urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. DeviceNet
B. Modbus
C. Profibus
D. Profinet
To urządzenie to switch przemysłowy, wykorzystywany w sieciach Profinet. Profinet to nowoczesny otwarty standard przemysłowy, który opiera się na technologii Ethernetu. Jest to jeden z najczęściej wykorzystywanych protokołów w automatyce przemysłowej. Umożliwia integrację systemów automatyki z IT, co jest kluczowe w erze Przemysłu 4.0. Switche takie jak ten zarządzają ruchem danych w sieci, co pozwala na szybki i niezawodny przesył informacji między urządzeniami. Dzięki temu można łatwo monitorować i kontrolować procesy produkcyjne. Standard Profinet zapewnia wysoką wydajność i niezawodność, a także łatwość integracji z innymi systemami. Co ciekawe, Profinet obsługuje również przesył danych w czasie rzeczywistym, co jest niezbędne w wielu aplikacjach przemysłowych. Moim zdaniem, znajomość tego standardu to podstawa dla każdego inżyniera automatyki, zwłaszcza w kontekście rosnącego znaczenia sieci przemysłowych.

Pytanie 24

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczyska obu siłowników wysuną się.
B. Tłoczyska obu siłowników pozostaną wsunięte.
C. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
D. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.

Pytanie 25

Na ilustracji przedstawiono

Ilustracja do pytania
A. przekaźnik.
B. bezpiecznik.
C. dławik.
D. stycznik.
Stycznik to urządzenie elektryczne, które umożliwia zdalne sterowanie obwodami elektrycznymi. Zasadniczo działa na zasadzie elektromagnesu – po podaniu napięcia na cewkę, styki ruchome są przyciągane do styków stałych, co zamyka obwód. Styczniki są kluczowe w automatyce przemysłowej, służą do załączania i wyłączania obwodów o wysokim napięciu i prądzie. Często stosuje się je w aplikacjach takich jak sterowanie silnikami, gdzie mogą pracować w trudnych warunkach środowiskowych i mechanicznych. Istnieją standardy, jak IEC 60947, które definiują parametry i wymagania dotyczące styczników. Z mojego doświadczenia, to jeden z najczęściej używanych elementów w szafach sterowniczych. Warto zauważyć, że jakość stycznika wpływa na niezawodność całego systemu, dlatego wybór odpowiedniego modelu i producenta jest istotny. Zmiana na stycznik o wyższej mocy może być konieczna, jeśli system zacznie wymagać większych prądów.

Pytanie 26

Element przedstawiany na schemacie symbolem graficznym jak na przedstawionym rysunku najczęściej w układzie automatyki pełni funkcję elementu

Ilustracja do pytania
A. wykonawczego.
B. regulującego.
C. pomiarowego.
D. sterującego.
Symbol przedstawiony na rysunku to symbol silnika elektrycznego, który w automatyce przemysłowej pełni funkcję elementu wykonawczego. Silniki elektryczne są kluczowe w układach automatyzacji, ponieważ przekształcają energię elektryczną w mechaniczną, co pozwala na napędzanie różnych maszyn i urządzeń. W praktyce, kiedy mówimy o elementach wykonawczych, mamy na myśli komponenty, które faktycznie wykonują zadanie, takie jak włączanie taśmy produkcyjnej, obracanie wałka czy podnoszenie ładunku. W układach sterowania, silniki są sterowane przez układy elektryczne, które regulują ich prędkość, kierunek obrotu oraz moment obrotowy. Standardowe praktyki w inżynierii obejmują użycie falowników do płynnej regulacji parametrów silnika. Ważne jest, aby odpowiednio dobrać silnik do aplikacji, biorąc pod uwagę jego moc, napięcie zasilania oraz charakterystykę obciążenia. W systemach automatyki, silniki są często używane w tandemach z przekładniami, co pozwala na zwiększenie momentu obrotowego przy niskiej prędkości, co jest pożądane w wielu aplikacjach przemysłowych. Moim zdaniem, zrozumienie roli elementów wykonawczych, takich jak silniki, jest kluczowe dla projektowania efektywnych i niezawodnych systemów automatyki.

Pytanie 27

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. wkrętaka gwiazdkowego.
B. klucza „francuskiego”.
C. klucza hydraulicznego nastawnego.
D. klucza imbusowego.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 28

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 10001100, output SW2 - 0000.
B. input SW1 - 01011010, output SW2 - 1001.
C. input SW1 - 01011010, output SW2 - 0110.
D. input SW1 - 01001001, output SW2 - 0000.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 29

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. kolejność podłączeń elementów wejściowych do sterownika.
B. kolejność podłączeń elementów wyjściowych do sterownika.
C. prawidłowość podłączeń przewodów ochronnych w układzie.
D. położenie przełącznika trybu pracy sterownika PLC.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest absolutnie kluczowe przy uruchamianiu systemów opartych na sterownikach PLC. Bezpieczeństwo to podstawa, a przewody ochronne zapewniają, że w razie awarii prąd nie będzie stanowił zagrożenia dla osób obsługujących urządzenie. Moim zdaniem to właśnie dlatego takie sprawdzenie powinno być zawsze na pierwszym miejscu. Przewody ochronne to nie tylko kwestia zgodności z normami, takimi jak PN-EN 60204, ale i dobra praktyka inżynierska. Wyobraź sobie sytuację, w której bez tego sprawdzenia system zostaje uruchomiony, a w przypadku zwarcia nie ma odpowiedniej drogi dla prądu upływowego. To prosta droga do porażenia prądem. Z mojego doświadczenia wynika, że niedocenianie tej prostej czynności może prowadzić do poważnych konsekwencji. W przemyśle zawsze mówimy, że lepiej dmuchać na zimne. Podczas szkoleń często powtarzam, że zabezpieczenia to twoi najlepsi przyjaciele. Zawsze warto poświęcić czas na solidne sprawdzenie, zanim przejdziemy do bardziej skomplikowanych czynności.

Pytanie 30

Jaka jest właściwa kolejność czynności przy wymianie elektropneumatycznego zaworu kulowego?

  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Zainstalować nowy zawór.
  4. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
A.
  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
B.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu.
  3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu.
  4. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
C.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  3. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  4. Zainstalować nowy zawór.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
D.
A. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
B. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Zainstalować nowy zawór. 4. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
C. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu. 4. Za pomocą klucza maszynowego odkręcić zawór kulowy. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
D. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 3. Za pomocą klucza maszynowego odkręcić zawór kulowy. 4. Zainstalować nowy zawór. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
To pytanie dotyczy wymiany elektropneumatycznego zaworu kulowego, gdzie odpowiednia sekwencja czynności jest kluczowa dla bezpiecznego i skutecznego przeprowadzenia całej operacji. Zaczynamy od wyłączenia mediów zasilających, co jest podstawowym krokiem bezpieczeństwa, aby uniknąć jakichkolwiek niespodziewanych sytuacji zagrażających zdrowiu i życiu. Następnie odłączenie przewodów elektrycznych i pneumatycznych jest konieczne, zanim zaczniemy demontaż zaworu – to pozwala na pracę bez ryzyka uszkodzeń instalacji czy porażenia prądem. Po odłączeniu przewodów możemy przystąpić do fizycznego demontażu zaworu kulowego przy użyciu odpowiedniego klucza maszynowego. Kiedy stary zawór jest już usunięty, instalujemy nowy, co musi być wykonane z należytą starannością, aby zapewnić szczelność i prawidłowe działanie. Podłączenie przewodów do nowo zainstalowanego zaworu kończy etap montażowy przed ponownym włączeniem mediów zasilających. Cała operacja musi przebiegać zgodnie z zasadami bezpieczeństwa i standardami przemysłowymi, aby zapewnić długotrwałe i bezawaryjne działanie układu. W praktyce, takie procedury są podstawą utrzymania ruchu w zakładach przemysłowych i często są ujęte w wewnętrznych instrukcjach BHP.

Pytanie 31

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4 ÷ 20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe.
B. rezystancyjne półprzewodnikowe.
C. termoelektryczne.
D. bimetalowe.
Czujniki Pt100 to jedne z najpopularniejszych elementów do pomiaru temperatury w systemach automatyki. Są to czujniki rezystancyjne metalowe, co oznacza, że ich działanie opiera się na zjawisku zmiany rezystancji metalu wraz ze zmianą temperatury. W przypadku Pt100, materiałem czujnika jest platyna, co zapewnia wysoką stabilność i liniowość pomiarów. Stąd nazwa Pt (od platyny) i 100 (rezystancja wynosząca 100 omów w temperaturze 0°C). Przetworniki z sygnałem wyjściowym 4 ÷ 20 mA są standardem przemysłowym, pozwalającym na przesyłanie danych z czujnika do systemu sterującego na duże odległości, przy minimalnych zakłóceniach. Z mojego doświadczenia, takie połączenie daje wysoką dokładność i niezawodność w różnych aplikacjach, od przemysłu spożywczego po energetykę. Przy projektowaniu systemów warto zwrócić uwagę na kalibrację czujników i kompatybilność z używanymi przetwornikami, co może znacznie zwiększyć efektywność i dokładność pomiarów. Warto też pamiętać, że czujniki Pt100 są szeroko stosowane, co ułatwia serwis i dostępność części zamiennych.

Pytanie 32

Tabliczka znamionowa przedstawiona na rysunku, to tabliczka znamionowa

Ilustracja do pytania
A. kondensatora.
B. silnika prądu przemiennego.
C. silnika prądu stałego.
D. transformatora.
Tabliczka znamionowa, którą widzimy, to klasyczna tabliczka silnika prądu przemiennego. Jest to ważny element, który zawiera kluczowe informacje o specyfikacji technicznej urządzenia. Na tej tabliczce znajdziemy między innymi dane dotyczące napięcia, mocy, prędkości obrotowej oraz częstotliwości. Te parametry są istotne dla poprawnego podłączenia i eksploatacji silnika. W przypadku silników prądu przemiennego, zgodnie z dobrymi praktykami, warto zwrócić uwagę na współczynnik mocy (cos φ), który wpływa na efektywność energetyczną urządzenia. Moim zdaniem, takie tabliczki są nie tylko praktyczne, ale wręcz niezbędne w procesie instalacji i konserwacji. W praktyce zawodowej często spotykamy się z sytuacjami, gdzie dokładne odczytanie tych informacji potrafi zaoszczędzić wiele problemów. Silniki prądu przemiennego są szeroko stosowane w przemyśle, od napędów maszyn po wentylatory, dlatego zrozumienie ich specyfikacji to podstawa.

Pytanie 33

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. parametrów ekonomicznych.
B. dopuszczalnego spadku napięcia.
C. skuteczności ochrony przeciwporażeniowej.
D. obciążalności prądowej.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 34

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. LD
B. IL
C. SFC
D. FBD
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 35

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i miernika natężenia przepływu powietrza.
B. termometru i miernika natężenia przepływu powietrza.
C. termometru i woltomierza.
D. woltomierza i amperomierza.
Moc czynna, zwana też mocą rzeczywistą, jest kluczowa w określaniu, ile energii elektrycznej urządzenie zużywa do wykonywania rzeczywistej pracy, w tym przypadku chłodzenia powietrza przez klimatyzator. Aby ją zmierzyć, niezbędne są dwa podstawowe przyrządy: woltomierz i amperomierz. Woltomierz mierzy napięcie elektryczne, które jest potencjałem, jaki napędza prąd przez urządzenie. Amperomierz z kolei mierzy natężenie prądu, które jest ilością przepływających ładunków elektrycznych. Moc czynna to iloczyn napięcia, natężenia oraz współczynnika mocy. Z tego wynika, że sama znajomość napięcia i natężenia nie wystarcza do pełnego zrozumienia zużycia energii przez urządzenie, ale są to kluczowe składniki. W praktyce, mierząc moc czynną, możemy efektywnie zarządzać zużyciem energii, optymalizować koszty i unikać przeciążeń w instalacji domowej. Standardy międzynarodowe, takie jak te opracowane przez IEC, zalecają regularne monitorowanie mocy czynnej w urządzeniach elektrycznych dla ich bezpiecznej i efektywnej pracy. Klimatyzatory, szczególnie w dużych budynkach, są znaczącymi odbiorcami energii i ich efektywne monitorowanie może przełożyć się na znaczne oszczędności energetyczne. Dlatego znajomość i umiejętność stosowania tych przyrządów pomiarowych to podstawa w zawodzie elektryka.

Pytanie 36

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 2 oraz L
B. 5 oraz L
C. H oraz L
D. O oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 37

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. naprężeń.
B. pola magnetycznego.
C. temperatury.
D. ciśnienia.
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 38

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. interfejsu komunikacyjnego.
C. modułu wyjściowego.
D. modułu wejściowego.
Moduł wejściowy, w tym przypadku oznaczony jako ADMC-1801, to kluczowy komponent w systemach sterowania opartych na PLC. Jego główną funkcją jest przetwarzanie sygnałów z różnych czujników i przekazywanie ich do sterownika PLC. Dzięki temu sterownik może podjąć decyzje na podstawie aktualnych danych z procesu, co jest fundamentalne w automatyce przemysłowej. Moduły wejściowe mogą obsługiwać różne typy sygnałów, w tym cyfrowe i analogowe, co pozwala na elastyczność w projektowaniu systemów. W naszym przypadku, czujnik PT100, który jest czujnikiem temperatury, podłączony jest do tego modułu. To typowy przykład zastosowania modułu wejściowego do monitorowania parametrów procesowych. Dzięki takim rozwiązaniom, systemy sterowania mogą być bardziej precyzyjne i niezawodne. Dobre praktyki branżowe zalecają regularne testowanie i kalibrację modułów wejściowych, aby zapewnić ich dokładność i niezawodność. Warto również pamiętać o zgodności z normami, takimi jak IEC 61131, które definiują wymagania dla systemów sterowania. Moim zdaniem, zrozumienie roli modułów wejściowych jest kluczowe dla każdego, kto zajmuje się automatyką przemysłową, ponieważ pozwala to na lepsze zaprojektowanie i optymalizację procesów.

Pytanie 39

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 10 mm
B. 60 mm
C. 30 mm
D. 20 mm
Długość krawędzi X wynosi 20 mm. Widać to, gdy dokładnie przeanalizuje się wymiary całego rysunku – całość ma szerokość 70 mm, a fragment poziomy poniżej linii oznaczonej X ma wymiary 30 mm (od środka do prawej krawędzi) i 20 mm (po lewej stronie odcięcie ukośne). Oznacza to, że pozostaje odcinek 70 − 30 − 20 = 20 mm, czyli właśnie wartość X. Takie zadania bardzo dobrze uczą logicznego myślenia i analizy rysunku technicznego – trzeba czytać wymiary nie tylko tam, gdzie są podane, ale też szukać ich pośrednio przez różnice. W praktyce warsztatowej (np. w obróbce skrawaniem lub przy cięciu blach) takie proste obliczenia robi się niemal automatycznie. Moim zdaniem warto zawsze pamiętać o zasadzie: jeśli czegoś nie ma wprost wymiarowanego, to da się to wyliczyć z układu pozostałych wymiarów. W dokumentacji technicznej stosuje się wymiarowanie łańcuchowe lub współrzędne – tu mamy przykład łańcuchowego, więc każde przesunięcie w poziomie można łatwo zsumować lub odjąć. To niby drobny szczegół, ale takie rzeczy robią różnicę przy czytaniu rysunku jak zawodowiec.

Pytanie 40

Aby sprawdzić ciągłość połączeń elektrycznych, należy podłączyć przewody pomiarowe do zacisków

Ilustracja do pytania
A. 10A i COM i ustawić pokrętło w pozycji Ω
B. VΩ i COM i ustawić pokrętło w pozycji V
C. mA i COM i ustawić pokrętło w pozycji A
D. VΩ i COM i ustawić pokrętło w pozycji Ω
Sprawdzenie ciągłości połączeń elektrycznych za pomocą multimetru to podstawowa umiejętność w elektronice i elektrotechnice. Aby to zrobić poprawnie, musisz podłączyć przewody pomiarowe do zacisków VΩ i COM, a pokrętło ustawić w pozycji Ω. Dlaczego? Ponieważ tryb omomierza (Ω) pozwala na pomiar rezystancji. W trybie ciągłości miernik wysyła niewielki prąd przez obwód i mierzy, czy jest on zamknięty, co oznacza, że rezystancja powinna być bliska zeru. Jest to szczególnie użyteczne przy szukaniu przerw w przewodach, sprawdzaniu bezpieczników czy diagnozowaniu połączeń lutowanych. W praktyce, dobrym zwyczajem jest także upewnienie się, że przewody pomiarowe są nieuszkodzone, a styki czyste, by uzyskać wiarygodny odczyt. Multimetry cyfrowe często emitują sygnał dźwiękowy, gdy połączenie jest ciągłe. Pamiętanie o tych zasadach nie tylko zwiększa bezpieczeństwo, ale także skuteczność pracy z urządzeniami elektronicznymi. Z mojego doświadczenia wynika, że wielu początkujących zapomina o odpowiednim ustawieniu pokrętła, co prowadzi do błędnych odczytów.