Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 lutego 2026 08:59
  • Data zakończenia: 9 lutego 2026 09:03

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W systemach operacyjnych Windows konto z najwyższymi uprawnieniami domyślnymi przynależy do grupy

A. użytkownicy zaawansowani
B. administratorzy
C. operatorzy kopii zapasowych
D. gości
Odpowiedź "administratorzy" jest prawidłowa, ponieważ konta użytkowników w systemie operacyjnym Windows, które należą do grupy administratorów, posiadają najwyższe uprawnienia w zakresie zarządzania systemem. Administratorzy mogą instalować oprogramowanie, zmieniać konfigurację systemu, zarządzać innymi kontami użytkowników oraz uzyskiwać dostęp do wszystkich plików i zasobów na urządzeniu. Przykładowo, gdy administrator musi zainstalować nową aplikację, ma pełne uprawnienia do modyfikacji rejestru systemowego oraz dostępu do folderów systemowych, co jest kluczowe dla prawidłowego działania oprogramowania. W praktyce, w organizacjach, konta administratorów są często monitorowane i ograniczane do minimum, aby zminimalizować ryzyko nadużyć i ataków złośliwego oprogramowania. Dobre praktyki w zarządzaniu kontami użytkowników oraz przydzielaniu ról wskazują, że dostęp do konta administratora powinien być przyznawany wyłącznie potrzebującym go pracownikom, a także wdrażane mechanizmy audytowe w celu zabezpieczenia systemu przed nieautoryzowanym dostępem i działaniami. W kontekście bezpieczeństwa, standardy takie jak ISO/IEC 27001 mogą być stosowane do definiowania i utrzymywania polityk kontrolnych dla kont administratorów.

Pytanie 2

Po przeanalizowaniu wyników testu dysku twardego, jakie czynności powinny zostać wykonane, aby zwiększyć jego wydajność?

Wolumin (C:)
Rozmiar woluminu=39,06 GB
Rozmiar klastra=4 KB
Zajęte miejsce=27,48 GB
Wolne miejsce=11,58 GB
Procent wolnego miejsca=29 %
Fragmentacja woluminu
Fragmentacja całkowita=15 %
Fragmentacja plików=31 %
Fragmentacja wolnego miejsca=0 %
A. Usuń niepotrzebne pliki z dysku
B. Zdefragmentuj dysk
C. Przeprowadź formatowanie dysku
D. Rozdziel dysk na różne partycje
Oczyszczenie dysku polega na usuwaniu zbędnych plików tymczasowych i innych niepotrzebnych danych aby zwolnić miejsce na dysku. Choć może to poprawić nieco szybkość operacyjną i jest częścią dobrych praktyk zarządzania dyskiem nie rozwiązuje problemu związanego z fragmentacją. Formatowanie dysku to czynność usuwająca wszystkie dane i przygotowująca dysk do ponownego użycia co eliminuje fragmentację ale jest drastycznym krokiem wiążącym się z utratą danych i nie jest zalecane jako rozwiązanie problemu fragmentacji. Dzielnie dysku na partycje to proces który może ułatwić organizację danych i zarządzanie nimi ale nie adresuje problemu fragmentacji na poziomie systemu plików w ramach pojedynczej partycji. Typowym błędem myślowym jest przekonanie że te działania poprawią szybkość odczytu i zapisu danych w sposób porównywalny do defragmentacji. W rzeczywistości tylko defragmentacja adresuje bezpośrednio problem rozproszenia danych co jest kluczowe dla poprawy wydajności dysku w sytuacji gdy fragmentacja plików osiąga wysoki poziom taki jak 31% jak w przedstawionym przypadku. Zrozumienie właściwego zastosowania każdej z tych operacji jest kluczowe dla efektywnego zarządzania zasobami dyskowymi w środowisku IT.

Pytanie 3

Wykonanie polecenia tar -xf dane.tar w systemie Linux spowoduje

A. stworzenie archiwum dane.tar, które zawiera kopię katalogu /home
B. pokazanie informacji o zawartości pliku dane.tar
C. wyodrębnienie danych z archiwum o nazwie dane.tar
D. przeniesienie pliku dane.tar do katalogu /home
Polecenie 'tar -xf dane.tar' jest używane w systemie Linux do wyodrębnienia zawartości archiwum tar o nazwie 'dane.tar'. Flaga '-x' oznacza 'extract', co jest kluczowe, ponieważ informuje program tar, że zamierzamy wydobyć pliki z archiwum. Flaga '-f' wskazuje, że będziemy pracować z plikiem, a następnie podajemy nazwę pliku archiwum. Pozycjonowanie tych flag jest istotne, ponieważ tar interpretuje je w określony sposób. W praktyce, kiedy używasz tego polecenia, otrzymujesz dostęp do zawartości archiwum, która może zawierać różne pliki i katalogi, w zależności od tego, co zostało pierwotnie skompresowane. Użycie tar jest powszechne w zadaniach związanych z tworzeniem kopii zapasowych oraz przenoszeniem zbiorów danych między systemami. Dobrą praktyką jest również używanie flagi '-v', co pozwala na wyświetlenie informacji o plikach podczas ich wyodrębniania, co ułatwia monitorowanie postępu. Warto również wspomnieć, że tar jest integralną częścią wielu procesów w systemach opartych na Unixie, a znajomość jego działania jest niezbędna dla administratorów systemów.

Pytanie 4

Którego protokołu działanie zostało zobrazowane na załączonym rysunku?

Ilustracja do pytania
A. Dynamic Host Configuration Protocol (DHCP)
B. Security Shell (SSH)
C. Telnet
D. Domain Name System(DNS)
Domain Name System (DNS) jest protokołem używanym do tłumaczenia nazw domenowych na adresy IP, co umożliwia użytkownikom łatwiejsze poruszanie się po Internecie bez potrzeby zapamiętywania skomplikowanych adresów liczbowych. DNS działa w oparciu o hierarchiczny system serwerów i nie uczestniczy w procesie przypisywania adresów IP, ale w mapowaniu nazw na już przypisane adresy. Często mylnie utożsamiany z DHCP ze względu na rolę w zarządzaniu zasobami sieciowymi, lecz jego funkcje są całkowicie różne. Secure Shell (SSH) to protokół sieciowy zapewniający bezpieczne zdalne logowanie i komunikację w niezabezpieczonych sieciach. Jest używany głównie do zarządzania serwerami przez bezpieczne kanały komunikacyjne. W przeciwieństwie do DHCP, SSH koncentruje się na ochronie danych i autoryzacji użytkowników, a nie na konfiguracji sieci. Telnet to starszy protokół komunikacyjny używany do zdalnego połączenia z urządzeniami w sieci, jednak nie zapewnia zabezpieczeń, takich jak szyfrowanie danych, co czyni go podatnym na podsłuch i ataki. Zarówno SSH, jak i Telnet, koncentrują się na komunikacji między urządzeniami, podczas gdy DHCP ma na celu automatyzację przydzielania zasobów sieciowych. Mylenie tych protokołów wynika często z niezrozumienia ich specyfiki i odmiennych zastosowań w sieciach komputerowych. Ważne jest, aby zrozumieć, że każdy z tych protokołów ma swoje unikalne, niekrzyżujące się funkcje i zastosowania, co pozwala na ich właściwy dobór w zależności od potrzeb sieciowych organizacji. Błędne przypisanie funkcji jednemu z nich może prowadzić do nieefektywności i problemów bezpieczeństwa w zarządzaniu infrastrukturą sieciową. W przypadku zarządzania siecią kluczowe jest dokładne określenie roli, jaką każdy protokół odgrywa w jej funkcjonowaniu i odpowiednie ich wdrożenie zgodnie z najlepszymi praktykami branżowymi.

Pytanie 5

Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD mogą spowodować uszkodzenie

A. przycisków znajdujących na panelu monitora.
B. inwertera oraz podświetlania matrycy.
C. przewodów sygnałowych.
D. układu odchylania poziomego.
Problem spuchniętych kondensatorów elektrolitycznych w sekcji zasilania monitora LCD jest dość charakterystyczny i prowadzi przede wszystkim do niestabilności napięcia zasilającego komponenty wymagające wysokiej jakości zasilania. Często pojawia się przekonanie, że uszkodzenie takich kondensatorów może oddziaływać na przewody sygnałowe lub układ odchylania poziomego – i to jest bardzo typowy błąd myślowy, który wynika zapewne z przenoszenia doświadczeń ze starych monitorów CRT. W monitorach LCD nie mamy klasycznego układu odchylania poziomego, bo obraz jest generowany zupełnie inaczej niż w kineskopach. Przewody sygnałowe z kolei przesyłają dane do matrycy i nie są bezpośrednio zasilane z tej sekcji, więc nawet poważna awaria kondensatorów raczej nie wpłynie na ich fizyczny stan czy parametry transmisji. Przyciskom na panelu monitora również nic szczególnego nie grozi – one pobierają minimalną ilość prądu, a uszkodzenie kondensatorów objawia się najczęściej zanikiem podświetlenia, migotaniem obrazu, wymuszonym resetem monitora albo całkowitym brakiem reakcji na włączenie. Najbardziej wrażliwym elementem na niestabilne lub tętnieniowe napięcie jest inwerter oraz układ podświetlania matrycy – to one przestają pracować poprawnie, bo wymagają bardzo precyzyjnych parametrów zasilania. W praktyce spotyka się nawet przypadki, gdy kondensatory nie wyglądają na spuchnięte, ale już mają znacznie obniżoną pojemność i to też prowadzi do podobnych usterek. Podsumowując: błędne jest zakładanie, że uszkodzone kondensatory bezpośrednio uszkodzą sygnał, przewody czy przyciski – to raczej problem napięcia podawanego na sekcję inwertera i podświetlania, zgodnie z tym, jak działają nowoczesne monitory LCD. Zwracanie uwagi na poprawność działania zasilacza i regularna kontrola kondensatorów to podstawa dobrej praktyki serwisowej.

Pytanie 6

Jaki adres stanowi adres rozgłoszeniowy dla hosta o IP 171.25.172.29 oraz masce sieci 255.255.0.0?

A. 171.25.172.255
B. 171.25.0.0
C. 171.25.255.0
D. 171.25.255.255
Podane opcje, które nie są prawidłowym adresem rozgłoszeniowym, mogą wprowadzać w błąd z powodu nieprawidłowego zrozumienia struktury adresacji IP i masowania sieci. Adres 171.25.255.0 wskazuje na sieć, a nie na adres rozgłoszeniowy, ponieważ ostatni bajt (0) w kontekście adresacji IP oznacza, że jest to adres sieci, a nie adres rozgłoszeniowy. Adres 171.25.172.255 również nie jest poprawnym adresem rozgłoszeniowym w tej konfiguracji, gdyż maska 255.255.0.0 przydziela 16 bitów na część sieci, a ten adres dotyczy hosta w innej podsieci. Z drugiej strony, 171.25.0.0 to adres sieci, który nie może być użyty jako adres rozgłoszeniowy. Kluczowym błędem myślowym w tych przypadkach jest mylenie adresów rozgłoszeniowych z adresami sieciowymi, co może prowadzić do problemów w konfiguracji i zarządzaniu siecią. Zrozumienie, że adres rozgłoszeniowy to maksymalna wartość w danej podsieci, jest fundamentalne w kontekście projektowania i administrowania sieciami IP. W praktyce, takie błędy mogą prowadzić do zakłóceń w komunikacji w sieci oraz problemów z routingiem, dlatego ważne jest, aby zawsze dokładnie obliczać adresy rozgłoszeniowe zgodnie z przyjętymi standardami i dobrymi praktykami w dziedzinie sieci komputerowych.

Pytanie 7

Jakie urządzenie ilustruje ten rysunek?

Ilustracja do pytania
A. Hub
B. Switch
C. Bramka VoIP
D. Access Point
Hub to urządzenie sieciowe które służy do łączenia segmentów sieci komputerowej lecz nie zarządza ruchem ani nie kieruje danych do odpowiednich odbiorców co jest kluczową funkcjonalnością switcha. Hub przesyła wszystkie dane do każdego podłączonego urządzenia co może prowadzić do przeciążenia sieci i zmniejszenia wydajności w porównaniu do switcha który inteligentnie kieruje pakiety danych na odpowiednie porty. Switch z kolei to zaawansowane urządzenie sieciowe które pracuje na warstwie drugiej modelu OSI. Switchy używa się w miejscach gdzie potrzebna jest większa kontrola nad ruchem sieciowym przepustowość oraz izolacja segmentów sieci. Access Point jak już wspomniano zarządza połączeniami bezprzewodowymi co nie jest funkcjonalnością switcha. Bramka VoIP to urządzenie które konwertuje sygnał telefoniczny na dane cyfrowe umożliwiając prowadzenie rozmów głosowych przez Internet. Bramka VoIP jest kluczowa we wdrażaniu nowoczesnych rozwiązań telekomunikacyjnych ale nie ma funkcji związanych z zarządzaniem ruchem sieciowym czy bezprzewodowym dostępem do Internetu. Typowe błędy myślowe to mylenie funkcji urządzeń na skutek podobieństw w wyglądzie zewnętrznym lub niewystarczająca znajomość ich specyfikacji technicznych. Dlatego ważne jest zrozumienie specyficznych ról i funkcji każdego rodzaju urządzenia sieciowego co pozwala na ich właściwe zastosowanie w praktyce zawodowej.

Pytanie 8

Jaką rolę pełni protokół DNS?

A. mapowanie fizycznych adresów MAC na adresy IP
B. mapowanie nazw domenowych na adresy IP
C. automatyczne przypisywanie adresacji urządzeniom w sieci
D. statyczne przypisywanie adresacji urządzeniom w sieci
No to tutaj jest ważne do zapamiętania. Adresami MAC zajmuje się protokół ARP, nie DNS. ARP przekłada adresy IP na MAC w lokalnych sieciach, co jest niezbędne do komunikacji na poziomie łącza danych. Często ludzie mylą te protokoły, bo nie do końca rozumieją, jak one działają w sieciach. Jeśli mówimy o statycznym przydzielaniu adresów, to administracja polega na ręcznym przypisywaniu adresów IP, co nie jest zbyt wygodne, szczególnie w dużych sieciach, gdzie często coś się zmienia. Z drugiej strony, DHCP automatycznie przypisuje adresy IP i inne parametry, co jest znacznie prostsze. W sumie, zrozumienie, co każdy protokół robi i jak różnią się od siebie, jest mega ważne dla dobrej konfiguracji i zarządzania siecią. Częstym błędem jest mylenie DNS z innymi protokołami oraz ignorowanie ich różnych ról w modelu OSI.

Pytanie 9

Najmniejszymi kątami widzenia charakteryzują się matryce monitorów typu

A. PVA
B. MVA
C. TN
D. IPS/S-IPS
Matryce typu TN (Twisted Nematic) faktycznie mają najmniejsze kąty widzenia spośród wszystkich popularnych technologii LCD. Z mojego doświadczenia wynika, że nawet przy niewielkim odchyleniu od osi prostopadłej do ekranu kolory na monitorze TN potrafią się bardzo mocno zmieniać. Często można zaobserwować efekt zanikania kontrastu, przebarwień czy wręcz negatywu, jeżeli patrzymy z boku lub z góry. To duża wada, zwłaszcza w zastosowaniach, gdzie kilka osób ogląda obraz jednocześnie lub monitor jest używany jako wyświetlacz informacyjny w przestrzeni publicznej. Z kolei zaletą TN-ek jest ich bardzo szybki czas reakcji (nadal niektórzy gracze preferują te matryce), no i są przeważnie tańsze w produkcji. Jeśli chodzi o profesjonalne zastosowania graficzne, branża foto-wideo czy projektowanie, standardem stały się matryce IPS, które wygrywają pod względem szerokości kątów i wierności kolorów. Co ciekawe, nowoczesne matryce IPS i pochodne (np. S-IPS, AH-IPS) potrafią oferować kąty widzenia powyżej 170°, co jest już naprawdę blisko ideału. TN sprawdzi się raczej w podstawowych monitorach biurowych, laptopach budżetowych albo ekranach, gdzie liczy się niska cena lub bardzo szybkie odświeżanie. W praktyce, jeżeli zależy Ci na dobrej widoczności obrazu z różnych stron, TN po prostu się nie sprawdzi – i tutaj naprawdę nie ma co się łudzić.

Pytanie 10

W jakiej warstwie modelu ISO/OSI wykorzystywane są adresy logiczne?

A. Warstwie fizycznej
B. Warstwie transportowej
C. Warstwie sieciowej
D. Warstwie łącza danych
Wybór warstwy fizycznej jest nietrafiony, bo ta warstwa skupia się na przesyłaniu sygnałów, takich jak elektryczność czy światło, a nie na adresowaniu. W modelu ISO/OSI warstwa fizyczna odpowiada za to, co się dzieje na poziomie kabli i różnych urządzeń, a nie na identyfikacji komputerów w sieci. Adresy logiczne raczej nie mają tu zastosowania. Z drugiej strony warstwa łącza danych, choć też dotyczy przesyłania danych, zajmuje się błędami transmisji i ramkami danych w lokalnej sieci. Używa adresów MAC, które są przypisane do sprzętu i służą do identyfikacji w danej sieci lokalnej, a nie do komunikacji między różnymi sieciami. Warstwa transportowa za to odpowiada za niezawodne przesyłanie danych między aplikacjami na końcu, używając protokołów jak TCP czy UDP. Tak więc, wybór warstwy fizycznej, łącza danych lub transportowej jako miejsca dla adresów logicznych wynika z nieporozumień co do ich funkcji i celów w modelu ISO/OSI. Rozumienie roli każdej z tych warstw jest naprawdę kluczowe, gdy chodzi o projektowanie i zarządzanie sieciami.

Pytanie 11

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 2 modułów, każdy po 8 GB.
B. 1 modułu 16 GB.
C. 1 modułu 32 GB.
D. 2 modułów, każdy po 16 GB.
W tym zadaniu kluczowe są dwie rzeczy: liczba fizycznych modułów pamięci RAM oraz pojemność pojedynczej kości. Na filmie można zwykle wyraźnie zobaczyć, ile modułów jest wpiętych w sloty DIMM na płycie głównej. Każdy taki moduł to oddzielna kość RAM, więc jeśli widzimy dwie identyczne kości obok siebie, oznacza to dwa moduły. Typowym błędem jest patrzenie tylko na łączną pojemność podawaną przez system, np. „32 GB”, i automatyczne założenie, że jest to jeden moduł 32 GB. W praktyce w komputerach stacjonarnych i w większości laptopów bardzo często stosuje się konfiguracje wielomodułowe, właśnie po to, żeby wykorzystać tryb dual channel lub nawet quad channel. To jest jedna z podstawowych dobrych praktyk przy montażu pamięci – zamiast jednej dużej kości, używa się dwóch mniejszych o tej samej pojemności, częstotliwości i opóźnieniach. Dzięki temu kontroler pamięci w procesorze może pracować na dwóch kanałach, co znacząco zwiększa przepustowość i zmniejsza wąskie gardła przy pracy procesora. Odpowiedzi zakładające pojedynczy moduł 16 GB lub 32 GB ignorują ten aspekt i nie zgadzają się z tym, co widać fizycznie na płycie głównej. Kolejna typowa pułapka polega na myleniu pojemności całkowitej z pojemnością modułu. Jeśli system raportuje 32 GB RAM, to może to być 1×32 GB, 2×16 GB, a nawet 4×8 GB – sam wynik z systemu nie wystarcza, trzeba jeszcze zweryfikować liczbę zainstalowanych kości. Właśnie dlatego w zadaniu pojawia się odniesienie do filmu: chodzi o wizualne rozpoznanie liczby modułów. Dobrą praktyką w serwisie i diagnostyce jest zawsze sprawdzenie zarówno parametrów logicznych (w BIOS/UEFI, w systemie, w narzędziach diagnostycznych), jak i fizycznej konfiguracji na płycie. Pomija się też czasem fakt, że producenci płyt głównych w dokumentacji wprost rekomendują konfiguracje 2×8 GB, 2×16 GB zamiast pojedynczej kości, z uwagi na wydajność i stabilność. Błędne odpowiedzi wynikają więc zwykle z szybkiego zgadywania pojemności, bez przeanalizowania, jak pamięć jest faktycznie zamontowana i jak działają kanały pamięci w nowoczesnych platformach.

Pytanie 12

Sygnatura (ciąg bitów) 55AA (w systemie szesnastkowym) kończy tablicę partycji. Jaka jest odpowiadająca jej wartość w systemie binarnym?

A. 101101001011010
B. 101010110101010
C. 1,0100101101001E+015
D. 1,0101010010101E+015
Patrząc na błędne odpowiedzi, widać, że występują typowe zawirowania przy konwersji z szesnastkowych na binarne. Na przykład liczby 1,0100101101001E+015 oraz 1,0101010010101E+015 mają fragmenty wyglądające jak notacja naukowa, która tu nie pasuje. Ta notacja służy do przedstawiania bardzo dużych lub małych liczb, a nie do cyfr w różnych systemach liczbowych. Te błędne konwersje mogły wynikać z niepewności co do tego, jak szesnastkowe cyfry przechodzą na bity. I jeszcze odpowiedzi jak 101101001011010 czy inne w pytaniu nie trzymają standardów konwersji. Wiadomo, że każda cyfra szesnastkowa to cztery bity w binarnym systemie, co jest kluczowe. Często pomija się poszczególne kroki w konwersji, co kończy się błędami. Przy 55AA każda cyfra musi być przeliczona z dokładnością, żeby wyszła dobra reprezentacja binarna, co wymaga staranności i znajomości reguł konwersji.

Pytanie 13

W systemie Linux komenda cd ~ umożliwia

A. odnalezienie znaku ~ w zapisanych danych
B. przejście do folderu głównego
C. stworzenie katalogu /~
D. przejście do katalogu domowego użytkownika
Wszystkie pozostałe odpowiedzi są nieprawidłowe i opierają się na błędnych założeniach dotyczących działania polecenia 'cd ~'. Twierdzenie, że 'cd ~' tworzy katalog '/~', jest całkowicie nieporozumieniem. W rzeczywistości polecenie 'cd' (change directory) nie ma funkcji tworzenia katalogów; jego głównym zadaniem jest zmiana bieżącego katalogu roboczego na podany w argumentach. Podobnie, stwierdzenie, że polecenie to przenosi użytkownika do katalogu głównego, jest mylące. Katalog główny, reprezentowany przez '/', jest odrębnym pojęciem w systemie plików, a 'cd ~' odnosi się wyłącznie do katalogu domowego aktualnie zalogowanego użytkownika. Próba zrozumienia tego polecenia jako wyszukiwania znaku '~' w zapisanych danych jest także błędna. Symbol '~' nie jest traktowany jako tekst do wyszukiwania, lecz jako specyficzny skrót w kontekście powłoki systemu Linux. Typowe błędy myślowe mogą wynikać z nieznajomości podstawowych koncepcji struktury systemu plików w Linuxie oraz domyślnych zachowań powłoki. Dlatego kluczowe jest zrozumienie, że polecenia w Linuxie są często kontekstowe i mają przypisane specyficzne znaczenie, które mogą różnić się od oczekiwań użytkownika, co podkreśla znaczenie znajomości dokumentacji oraz praktyki w codziennej pracy z systemem.

Pytanie 14

Który typ profilu użytkownika zmienia się i jest zapisywany na serwerze dla klienta działającego w sieci Windows?

A. Tymczasowy
B. Obowiązkowy
C. Lokalny
D. Mobilny
Tymczasowy profil użytkownika, choć czasami mylnie uważany za podobny do mobilnego, nie jest przechowywany na serwerze i nie umożliwia użytkownikowi synchronizacji ustawień między różnymi komputerami. Zamiast tego tworzy się go w sytuacjach, gdy występują problemy z ładowaniem profilu użytkownika, co skutkuje ograniczonym dostępem do danych i ustawień. Użytkownik korzystający z tymczasowego profilu może zauważyć, że jego preferencje i pliki nie są dostępne, co może prowadzić do frustracji i spadku efektywności w pracy. Lokalne profile użytkownika są przechowywane lokalnie na danym urządzeniu i nie mają możliwości synchronizacji ani zdalnego dostępu, co ogranicza ich użyteczność w środowiskach zdalnych lub rozproszonych. Obowiązkowe profile, chociaż pozwalają na pewne centralne zarządzanie, również nie są odpowiednie w kontekście mobilności, ponieważ wszelkie zmiany wprowadzone przez użytkownika nie są zapisywane. Użytkownicy często mylą te różne typy profili, co może prowadzić do nieporozumień w zarządzaniu środowiskiem IT. Warto zrozumieć, że mobilne profile użytkownika są zaprojektowane z myślą o łatwej integracji i użytkowaniu w złożonych środowiskach sieciowych, co stanowi ich kluczową przewagę w porównaniu do innych typów profili.

Pytanie 15

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. pierścienia
B. siatki
C. magistrali
D. gwiazdy
Wybór topologii gwiazdy, pierścienia lub magistrali w kontekście sieci Ad-Hoc IBSS jest nieprawidłowy, ponieważ każda z tych struktur ma swoje specyficzne ograniczenia i nie pasuje do natury Ad-Hoc. Topologia gwiazdy opiera się na centralnym punkcie dostępowym, co jest sprzeczne z decentralizowanym charakterem Ad-Hoc, gdzie każde urządzenie może pełnić rolę zarówno nadawcy, jak i odbiorcy. W przypadku topologii pierścienia, w której dane przemieszczają się w jednym kierunku przez wszystkie urządzenia, łatwo o zakłócenia i problemy z wydajnością, co w sieciach Ad-Hoc jest niepożądane. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest również nieodpowiednia, ponieważ wymaga stabilnej struktury, co nie jest możliwe w dynamicznym środowisku Ad-Hoc. Typowym błędem myślowym jest mylenie pojmowania struktury sieci z typowymi, stałymi instalacjami, podczas gdy Ad-Hoc ma na celu umożliwienie szybkiej i elastycznej komunikacji w zmieniających się warunkach. Te nieprawidłowe odpowiedzi nie uwzględniają również praktycznych aspektów rozwoju sieci bezprzewodowych, które opierają się na standardach takich jak IEEE 802.11, które promują elastyczność i decentralizację.

Pytanie 16

Jakie narzędzie jest używane do zarządzania alokacjami dyskowymi w systemach Windows 7 i Windows 8?

A. fsutil
B. dcpromo
C. perfmon
D. query
Odpowiedzi, które nie wskazują na narzędzie 'fsutil', nie są odpowiednie w kontekście zarządzania przydziałami dyskowymi w systemach Windows. Narzędzie 'dcpromo' służy do promowania serwera do roli kontrolera domeny, co nie ma związku z zarządzaniem woluminami czy przestrzenią dyskową. W wielu przypadkach administratorzy mogą mylić te dwa narzędzia, ale ich funkcjonalności są całkowicie różne. 'perfmon' to narzędzie do monitorowania wydajności systemu, które pomaga w analizie zasobów, ale nie oferuje funkcji związanych z zarządzaniem przydziałami dyskowymi. Użytkownicy mogą intuicyjnie myśleć, że 'perfmon' pomoże im w zarządzaniu dyskami, jednak w rzeczywistości nie jest to jego przeznaczenie. Z kolei 'query' jest zbyt ogólnym terminem, który w kontekście systemu Windows odnosi się do wielu różnych operacji, takich jak zapytania dotyczące stanu systemu czy zasobów. Dlatego ważne jest, aby mieć jasne zrozumienie funkcji każdego narzędzia i ich zastosowania w administracji systemami. Kluczowe jest unikanie mylenia funkcji narzędzi, co prowadzi do nieefektywnego wykorzystania zasobów i nieoptymalnego zarządzania systemem.

Pytanie 17

Aby w edytorze Regedit przywrócić stan rejestru systemowego za pomocą wcześniej utworzonej kopii zapasowej, należy użyć funkcji

A. Eksportuj
B. Załaduj gałąź rejestru.
C. Importuj
D. Kopiuj nazwę klucza.
Wiele osób podczas pracy z edytorem rejestru może przez pomyłkę wybrać nieodpowiednią funkcję, myśląc, że w ten sposób przywróci stan rejestru. Funkcja „Eksportuj” służy nie do przywracania, ale do tworzenia kopii zapasowej – pozwala zapisać wybraną gałąź lub cały rejestr do pliku .reg. To jest trochę jak robienie zdjęcia tego, co mamy obecnie w rejestrze, natomiast nie daje możliwości cofnięcia zmian, jeśli coś pójdzie źle. Tylko plik utworzony przez eksport może być później zaimportowany, ale sam eksport nie przywraca żadnych danych do rejestru. „Kopiuj nazwę klucza” to bardzo przydatne narzędzie dla administratorów, gdy chcą szybko przekleić ścieżkę do konkretnego klucza, chociażby do dokumentacji, skryptów czy zapytań technicznych – jednak nie ma to nic wspólnego z operacjami na zawartości rejestru. Z kolei „Załaduj gałąź rejestru” jest używane w bardzo specyficznych sytuacjach, głównie podczas pracy offline z plikami rejestru innego systemu (na przykład podczas naprawy uszkodzonego systemu z zewnętrznego środowiska). Pozwala to tymczasowo dołączyć plik hive do rejestru aktywnej instancji Windows, ale nie nadaje się do typowego przywracania ustawień z kopii zapasowej. Często spotykam się z opinią, że załaduj gałąź jest „lekiem na wszystko”, ale to trochę przesada i w codziennych zadaniach administracyjnych ta funkcja raczej się nie pojawia. Podsumowując: tylko „Importuj” bezpośrednio służy do przywracania rejestru z wcześniej przygotowanej kopii, a reszta opcji ma zupełnie inne zastosowania. Mylenie tych funkcji prowadzi często do strat czasu lub co gorsza – utraty danych, dlatego warto dobrze rozumieć ich przeznaczenie i używać zgodnie z dokumentacją oraz dobrymi praktykami Microsoft.

Pytanie 18

Jak na diagramach sieciowych LAN oznaczane są punkty dystrybucyjne znajdujące się na różnych kondygnacjach budynku, zgodnie z normą PN-EN 50173?

A. CD (Campus Distribution)
B. MDF (Main Distribution Frame)
C. BD (BuildingDistributor)
D. FD (Floor Distribution)
Wybór BD (Building Distributor) może prowadzić do nieporozumień, ponieważ ten termin odnosi się do głównych punktów dystrybucyjnych, które łączą różne piętra w budynku, a nie do punktów rozdzielczych na poszczególnych poziomach. BD z reguły znajduje się na poziomie parteru lub w piwnicy i odpowiada za prowadzenie sygnałów do różnych punktów na piętrach. Każde piętro wymaga jednak osobnych punktów dystrybucyjnych, aby zapewnić optymalne połączenie i w każdej chwili umożliwić dostęp do sieci. CD (Campus Distribution) to termin dotyczący zewnętrznej dystrybucji między różnymi budynkami na terenie kampusu, co jest zupełnie inną koncepcją, nie mającą zastosowania w kontekście pojedynczego budynku. MDF (Main Distribution Frame) to natomiast główny punkt, w którym odbywa się dystrybucja sygnału w sieci telekomunikacyjnej, a nie dystrybucja na poziomie piętera. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania infrastruktury sieciowej. W praktyce, błędne przypisanie terminologii może prowadzić do komplikacji w instalacji i administrowaniu systemami, co z kolei może wpłynąć na wydajność pracy całej organizacji. Właściwe rozumienie i zastosowanie standardów, takich jak PN-EN 50173, jest istotne dla zapewnienia efektywności i organizacji sieci LAN.

Pytanie 19

W skanerach z systemem CIS źródłem światła oświetlającym dokument jest

A. zespół żarówek
B. lampa fluorescencyjna
C. świetlówka
D. grupa trójkolorowych diod LED
Wybór innych źródeł światła, takich jak świetlówki, układy żarówek czy lampy fluorescencyjne, jest nieodpowiedni w kontekście skanowania z użyciem technologii CIS. Świetlówki, mimo że były powszechnie stosowane w przeszłości, mają ograniczoną wydajność i mogą emitować pewne promieniowanie ultrafioletowe, co wpływa negatywnie na delikatne materiały skanowane. Układy żarówek generują znacznie więcej ciepła, co może prowadzić do deformacji skanowanych dokumentów oraz obniżenia jakości skanowania. Dodatkowo, żarówki mają krótszą żywotność i wyższe zużycie energii. Lampa fluorescencyjna z kolei, podobnie jak świetlówka, ma ograniczenia w zakresie odwzorowania kolorów i może powodować niejednolite oświetlenie skanowanego obszaru, co negatywnie wpływa na końcowy efekt skanowania. Takie podejścia do oświetlenia w skanowaniu mogą również prowadzić do błędnych interpretacji kolorów, co jest szczególnie problematyczne w dokumentach wymagających precyzyjnego odwzorowania barw, takich jak fotografie czy materiały promocyjne. Z tego powodu, wybór technologii LED jest nie tylko nowoczesny, ale także praktyczny, oferując znaczące korzyści w zakresie jakości i wydajności skanowania w różnych aplikacjach biurowych i archiwizacyjnych.

Pytanie 20

Głowica drukująca, składająca się z wielu dysz zintegrowanych z mechanizmem drukarki, wykorzystywana jest w drukarce

A. laserowej.
B. igłowej.
C. atramentowej.
D. termosublimacyjnej.
Wiele osób myli technologie druku, bo z pozoru mogą wyglądać podobnie z zewnątrz, a jednak ich zasada działania jest zupełnie inna. Drukarki termosublimacyjne, choć oferują bardzo wysoką jakość wydruków fotograficznych, wykorzystują w rzeczywistości specjalne folie barwiące, a proces polega na podgrzewaniu barwnika do momentu jego sublimacji i osadzania go na papierze. Tu nie ma żadnych dysz – zamiast tego stosuje się precyzyjnie sterowane grzałki. Z kolei drukarki laserowe w ogóle nie pracują ani na tuszu, ani na dyszach. Zamiast tego używają wiązki lasera do naświetlania bębna światłoczułego, a następnie toner (sproszkowany barwnik) przenoszony jest na papier dzięki elektrofotografii i utrwalany przez grzałki – zero dysz, wszystko odbywa się na poziomie elektrostatyki i ciepła. Jeżeli chodzi o drukarki igłowe, to jest tu jeszcze inaczej: głowica posiada igły, które mechanicznie uderzają w taśmę barwiącą, a ta odbija się od papieru, tworząc znak. Tę technologię kojarzę głównie z wydrukami faktur czy paragonów, gdzie nie liczy się jakość, a trwałość i możliwość druku na papierze samokopiującym. W żadnej z tych technologii nie znajdziemy jednak głowicy z dziesiątkami czy setkami mikrodysz – to jest charakterystyczne wyłącznie dla druku atramentowego. Moim zdaniem częsty błąd polega na zakładaniu, że każda drukarka z 'głowicą' ma też dysze, a przecież 'głowica' w drukarce igłowej czy termosublimacyjnej to zupełnie inne urządzenie, realizujące inną funkcję. Dlatego obecność wielu dysz zintegrowanych z mechanizmem urządzenia jest typowa tylko dla technologii atramentowej, gdzie bezpośrednio kształtuje jakość, ostrość i kolorystykę wydruku. Warto o tym pamiętać wybierając odpowiednią drukarkę do potrzeb – każda technologia ma swoje miejsce, ale głowica z dyszami to domena atramentu.

Pytanie 21

Jaki protokół stosują komputery, aby informować rutera o przynależności do konkretnej grupy multicastowej?

A. RIP
B. IGMP
C. OSPF
D. UDP
OSPF (Open Shortest Path First) to protokół routingu stosowany w sieciach IP, ale jego funkcjonalność jest zupełnie inna niż IGMP. OSPF służy do dynamicznego wykrywania i zarządzania trasami w sieci, a nie do zarządzania członkostwem w grupach multicastowych. Jego celem jest zapewnienie optymalnej ścieżki dla ruchu IP poprzez algorytmy takie jak Dijkstra, co ma kluczowe znaczenie w dużych, złożonych sieciach. UDP (User Datagram Protocol) to natomiast protokół transportowy, który umożliwia przesyłanie danych bez gwarancji dostarczenia, co czyni go nieodpowiednim do zarządzania członkostwem w grupach rozgłoszeniowych. W kontekście przesyłania multicastowego, UDP może być używany jako protokół transportowy dla strumieni danych, lecz nie zarządza on informacjami o tym, które urządzenia należą do danej grupy. RIP (Routing Information Protocol) to inny protokół routingu, który, podobnie jak OSPF, nie ma funkcji związanych z zarządzaniem grupami multicastowymi. W związku z tym, odpowiedzi związane z OSPF, UDP i RIP są nieprawidłowe, ponieważ nie odpowiadają na pytanie o sposób, w jaki komputery informują routery o członkostwie w grupach rozgłoszeniowych. Zrozumienie różnic między tymi protokołami a IGMP jest kluczowe dla prawidłowego projektowania i zarządzania sieciami, aby skutecznie wykorzystywać ich specyfikę w praktycznych zastosowaniach.

Pytanie 22

Podstawowym zadaniem mechanizmu Plug and Play jest

A. automatyczne tworzenie kopii zapasowych danych na nowo podłączonym nośniku pamięci
B. automatyczne uruchamianie ostatnio używanej gry
C. automatyczne usuwanie sterowników, które nie były używane przez dłuższy czas
D. rozpoznawanie nowo podłączonego urządzenia i automatyczne przydzielanie mu zasobów
Głównym celem mechanizmu Plug and Play (PnP) jest automatyczne wykrywanie nowo podłączonego sprzętu oraz efektywne przydzielanie mu wymaganych zasobów systemowych, takich jak adresy I/O, przerwania (IRQ) czy kanały DMA. Mechanizm ten znacząco ułatwia użytkownikom instalację urządzeń, eliminując konieczność ręcznego konfigurowania ustawień, co było standardem w starszych systemach operacyjnych. Przykładem zastosowania PnP może być podłączenie drukarki USB do komputera. System operacyjny automatycznie wykrywa urządzenie, instaluje odpowiednie sterowniki oraz konfiguruje zasoby potrzebne do jego poprawnej pracy. Z punktu widzenia dobrych praktyk, mechanizm ten wspiera zasadę ułatwienia użytkowania technologii, a także przyspiesza proces integracji nowych komponentów w infrastrukturze IT. Współczesne systemy operacyjne, takie jak Windows, Linux czy macOS, w pełni wykorzystują możliwości PnP, co świadczy o fundamentalnym znaczeniu tego mechanizmu w zarządzaniu sprzętem komputerowym. Dodatkowo, Plug and Play współczesne standardy, takie jak USB, są zgodne z tym mechanizmem, co pozwala na szeroką interoperacyjność urządzeń.

Pytanie 23

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. typu recovery
B. antywirusowy
C. antyspamowy
D. typu firewall
Antyspamowy program to narzędzie, które głównie ma za zadanie rozpoznawanie i blokowanie niechcianych maili. Często są to spamowe oferty lub wiadomości phishingowe. Ale trzeba pamiętać, że antyspam nie zajmuje się regułami ruchu w sieci, co jest kluczowe dla działania firewalla. Ludzie czasami mylą te dwa rozwiązania, co nie jest zbyt mądre. Oprogramowanie typu recovery, które służy do odzyskiwania danych po awarii, ma zupełnie inny cel niż ochrona w czasie rzeczywistym, którą zapewniają firewalle. Niektórzy mogą myśleć, że narzędzia recovery działają prewencyjnie, ale w rzeczywistości to nie to. Programy antywirusowe są stworzone do wykrywania i usuwania złośliwego oprogramowania, ale nie kontrolują one ruchu w sieci, chociaż mogą współpracować z firewallami, co jest całkiem rozsądne. Antywirus skanuje pliki i procesy w poszukiwaniu wirusów, ale to nie obejmuje zarządzania ruchem sieciowym. Ludzie często myślą, że antywirus chroni ich przed wszystkim, co dotyczy bezpieczeństwa sieci, ale to nieprawda. Żeby być dobrze chronionym, trzeba mieć zarówno antywirus, jak i firewall. Te dwa elementy razem tworzą solidny system zabezpieczeń, bo firewalle działają na poziomie sieci i zarządzają połączeniami, co jest naprawdę potrzebne w przypadku ataków sieciowych.

Pytanie 24

Jakiego rodzaju złącze powinna mieć płyta główna, aby użytkownik był w stanie zainstalować kartę graficzną przedstawioną na rysunku?

Ilustracja do pytania
A. AGP
B. PCIe x16
C. PCI
D. PCIe x1
AGP (Accelerated Graphics Port) był poprzednim standardem złącz stosowanym do podłączania kart graficznych, który obecnie jest już przestarzały i nie stosuje się go w nowoczesnych płytach głównych. AGP oferował niższą przepustowość w porównaniu do PCIe, co ograniczało możliwości obsługi nowoczesnych gier i aplikacji graficznych. Z kolei PCI (Peripheral Component Interconnect) jest również starszym standardem, który nie jest wystarczająco szybki dla współczesnych kart graficznych, ponieważ oferuje znacznie niższą przepustowość danych. PCI był stosowany do różnych kart rozszerzeń, ale jego możliwości są ograniczone w porównaniu do PCIe. PCIe x1, choć jest wariantem interfejsu PCIe, oferuje tylko jedną linię danych, co oznacza, że nie jest wystarczający do obsługi kart graficznych, które wymagają większej przepustowości i wielu linii danych do przesyłania informacji. Typowym błędem jest zakładanie, że każda karta graficzna może działać na dowolnym złączu PCIe, jednak w rzeczywistości karty graficzne potrzebują większej liczby linii PCIe, zazwyczaj dostępnych w złączu PCIe x16. Prawidłowe zrozumienie różnic między tymi standardami jest kluczowe dla poprawnego doboru komponentów komputerowych i zapewnienia maksymalnej wydajności systemu. Wybór złącza niewłaściwego dla danej karty może prowadzić do jej niewłaściwej pracy lub wręcz do niemożności jej zainstalowania, co może wpłynąć na stabilność i funkcjonalność całego systemu komputerowego.

Pytanie 25

Podczas uruchamiania komputera wyświetla się komunikat CMOS checksum error press F1 to continue, press Del to setup) naciśnięcie klawisza Del skutkuje

A. wejściem do BIOSu komputera
B. przejściem do konfiguracji systemu Windows
C. skasowaniem zawartości pamięci CMOS
D. usunięciem pliku setup
Wybór opcji usunięcia pliku setup jest oparty na błędnym założeniu, że w BIOS-ie mogą znajdować się pliki, które można usunąć. Rzeczywistość jest taka, że BIOS nie przechowuje plików w tradycyjnym sensie, a jego interfejs służy do konfigurowania ustawień sprzętowych, a nie do operacji na plikach. Ponadto, sugerowanie, że wciśnięcie klawisza Del spowoduje skasowanie zawartości pamięci CMOS, ukazuje nieporozumienie dotyczące roli tego przycisku. W rzeczywistości, aby skasować zawartość pamięci CMOS, często konieczne jest fizyczne zresetowanie zworki na płycie głównej, a nie jedynie wciśnięcie klawisza. Koncepcja przechodzenia do konfiguracji systemu Windows jest również mylna, ponieważ BIOS działa na niższym poziomie niż sam system operacyjny. W praktyce, BIOS musi być skonfigurowany przed załadowaniem Windows, co oznacza, że wszystkie operacje związane z systemem operacyjnym odbywają się po zakończeniu sekwencji uruchamiania BIOS-u. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania komputerem i rozwiązywania problemów sprzętowych.

Pytanie 26

Zewnętrzny dysk 3,5 cala o pojemności 5 TB, przeznaczony do archiwizacji lub tworzenia kopii zapasowych, dysponuje obudową z czterema różnymi interfejsami komunikacyjnymi. Który z tych interfejsów powinno się użyć do podłączenia do komputera, aby uzyskać najwyższą prędkość transferu?

A. FireWire80
B. WiFi 802.11n
C. eSATA 6G
D. USB 3.1 gen 2
Wybór eSATA 6G, WiFi 802.11n lub FireWire80 jako interfejsu do podłączenia dysku zewnętrznego nie jest optymalnym rozwiązaniem, gdyż żaden z tych interfejsów nie oferuje tak wysokich prędkości przesyłu danych jak USB 3.1 gen 2. eSATA 6G może osiągnąć prędkości do 6 Gbps, co jest zbliżone, ale nadal niższe niż maksymalne możliwości USB 3.1 gen 2. Dodatkowo, eSATA nie obsługuje zasilania, co może wymagać dodatkowego zasilania dla dysku zewnętrznego, co jest niepraktyczne w wielu sytuacjach. WiFi 802.11n oferuje prędkości do 600 Mbps, ale z racji na zmienne warunki sygnału, opóźnienia i zakłócenia, rzeczywista wydajność przesyłu danych jest znacznie niższa. WiFi nie jest więc odpowiednie do transferu dużych plików, gdzie stabilność i szybkość są kluczowe. FireWire 80, mimo że był szybszy od wcześniejszych standardów FireWire, nie osiąga prędkości USB 3.1 gen 2, co czyni go przestarzałym wyborem w kontekście nowoczesnych zastosowań. Często pojawiającym się błędem w myśleniu jest przekonanie, że starsze standardy mogą wciąż konkurować z nowymi technologiami; rzeczywistość technologiczna zmienia się z dnia na dzień, a zatem korzystanie z przestarzałych interfejsów może prowadzić do znaczących opóźnień i utraty danych.

Pytanie 27

Aby zapobiec uszkodzeniu układów scalonych, podczas konserwacji sprzętu komputerowego należy używać

A. okularów ochronnych
B. opaski antystatycznej
C. rękawiczek gumowych
D. rękawiczek skórzanych
Opaska antystatyczna jest kluczowym elementem ochrony podczas naprawy sprzętu komputerowego, ponieważ zapobiega gromadzeniu się ładunków elektrycznych na ciele technika. Te ładunki mogą być niebezpieczne dla wrażliwych układów scalonych, które mogą ulec uszkodzeniu w wyniku wyładowania elektrostatycznego (ESD). Używanie opaski antystatycznej pozwala na odprowadzenie tych ładunków do ziemi, minimalizując ryzyko uszkodzenia komponentów. W praktyce, technicy powinni zawsze zakładać opaskę przed rozpoczęciem pracy z elektroniką, szczególnie w przypadku wymiany lub naprawy podzespołów, takich jak procesory, pamięci RAM czy karty graficzne. Dobre praktyki branżowe zalecają również, aby miejsce pracy było odpowiednio uziemione, co zwiększa efektywność działania opaski. Dodatkowo, stosowanie opasek antystatycznych jest zgodne z normami ochrony przed ESD, takimi jak ANSI/ESD S20.20, które określają wymogi dla stanowisk roboczych zajmujących się elektroniką. Stosowanie ich w codziennej pracy przyczynia się do zwiększenia bezpieczeństwa i niezawodności naprawianego sprzętu.

Pytanie 28

Zjawisko crosstalk, które występuje w sieciach komputerowych, polega na

A. utratach sygnału w drodze transmisyjnej
B. przenikaniu sygnału między sąsiadującymi parami przewodów w kablu
C. opóźnieniach w propagacji sygnału w ścieżce transmisyjnej
D. niedoskonałości toru wywołanej zmianami geometrii par przewodów
Zjawisko przesłuchu w sieciach komputerowych jest często mylone z innymi problemami transmisji, takimi jak straty sygnału czy opóźnienia propagacji. Straty sygnału w torze transmisyjnym odnoszą się do osłabienia sygnału w miarę jego przechodzenia przez medium, co jest konsekwencją takich czynników jak rezystancja przewodów czy tłumienie na skutek zakłóceń zewnętrznych. To zjawisko nie jest bezpośrednio związane z przesłuchami, które mają charakter interakcji sygnałów pomiędzy sąsiadującymi parami przewodów. Opóźnienia propagacji sygnału, z drugiej strony, dotyczą czasu, jaki potrzeba, aby sygnał dotarł do odbiornika, co również różni się od problematyki przesłuchu. Niejednorodność toru spowodowana zmianą geometrii par przewodów może prowadzić do dodatkowych zakłóceń, ale nie wyjaśnia samego fenomenu przenikania sygnałów. Zrozumienie przesłuchu wymaga zatem głębszej analizy interakcji sygnałów w wieloparowych kablach, co pozwala na wdrożenie odpowiednich technik ochrony, takich jak ekranowanie czy stosowanie odpowiednich topologii prowadzenia kabli. W przeciwnym razie, myląc te pojęcia, można wprowadzić zamieszanie w planowaniu i projektowaniu efektywnych sieci komputerowych.

Pytanie 29

Jakie narzędzie w systemie Windows służy do wykonania poleceń, wykorzystując logikę obiektową oraz cmdlety?

A. strumień wejścia standardowego.
B. konsola MMC.
C. konsola systemu Windows.
D. Windows PowerShell.
Wiersz poleceń systemu Windows, znany również jako cmd, to tradycyjne narzędzie linii poleceń, które pozwala na wykonywanie poleceń systemowych, jednak nie ma wsparcia dla logiki obiektowej ani cmdletów. Jego funkcjonalności są ograniczone w porównaniu do PowerShell, co sprawia, że jest mniej elastyczne i mniej wydajne w automatyzacji zadań. Standardowy strumień wejścia to koncepcja dotycząca sposobu, w jaki dane są wprowadzane do programów, a nie narzędzie do interpretacji poleceń. Nie jest to narzędzie do zarządzania systemem, lecz mechanizm, który pozwala na interakcję z aplikacjami. Konsola MMC (Microsoft Management Console) to natomiast interfejs do zarządzania różnymi komponentami systemu Windows, ale nie służy do interpretacji poleceń w sposób, w jaki robi to PowerShell. Umożliwia jedynie tworzenie i zarządzanie różnymi snap-inami, ale nie oferuje tak zaawansowanego podejścia do automatyzacji i zarządzania jak PowerShell. Te nieprawidłowe koncepcje mogą prowadzić do dużych błędów w zrozumieniu narzędzi dostępnych w systemie Windows, co skutkuje nieefektywnym zarządzaniem systemem operacyjnym i brakiem umiejętności w automatyzacji zadań. Użytkownik, opierając się na tych mylnych założeniach, może nie być w stanie w pełni wykorzystać potencjału systemu Windows w kontekście zarządzania i automatyzacji.

Pytanie 30

Jak brzmi nazwa portu umieszczonego na tylnym panelu komputera, który znajduje się na przedstawionym rysunku?

Ilustracja do pytania
A. HDMI
B. DVI
C. FIRE WIRE
D. D-SUB
Port DVI (Digital Visual Interface) jest standardem interfejsu cyfrowego używanego głównie do przesyłania sygnałów wideo do monitorów komputerowych i projektorów. DVI oferuje kilka wariantów złącza jak DVI-D (cyfrowe), DVI-A (analogowe) i DVI-I (cyfrowo-analogowe), które różnią się zastosowaniem. W przeciwieństwie do starszych portów VGA, DVI zapewnia lepszą jakość obrazu bez zakłóceń analogowych, dzięki czemu jest preferowany w środowiskach, gdzie jakość obrazu jest kluczowa. Port DVI umożliwia także obsługę wyższych rozdzielczości i częstotliwości odświeżania co jest istotne w profesjonalnych zastosowaniach graficznych i grach komputerowych. Choć nowsze standardy jak HDMI i DisplayPort oferują dodatkowe funkcje, DVI nadal jest popularny ze względu na swoją niezawodność i szeroką kompatybilność. W praktyce, porty DVI często są wykorzystywane w stacjach roboczych i systemach wymagających stabilnego, wysokiej jakości sygnału wideo. Zrozumienie różnic między typami złączy DVI oraz ich zastosowań jest kluczowe dla profesjonalistów IT i techników komputerowych.

Pytanie 31

Po stwierdzeniu przypadkowego usunięcia ważnych danych na dysku twardym, aby odzyskać usunięte pliki, najlepiej

A. przeskanować system programem antywirusowym, a następnie użyć narzędzia chkdsk.
B. zainstalować na tej samej partycji co pliki program do odzyskiwania usuniętych danych np. Recuva.
C. odinstalować oraz ponownie zainstalować sterowniki dysku twardego, zalecane przez producenta.
D. podłączyć dysk do zestawu komputerowego z zainstalowanym programem typu recovery.
W przypadkach przypadkowego usunięcia ważnych danych niezwykle łatwo popełnić błąd, który bezpowrotnie pogrzebie szansę na ich odzyskanie. Jednym z najczęstszych błędów jest próba instalowania nowych programów do odzyskiwania bezpośrednio na tej samej partycji, z której dane zostały skasowane. To niestety bardzo ryzykowne – każda instalacja może nadpisać fragmenty usuniętych plików, nawet jeśli wydaje się, że miejsca na dysku jest sporo. System operacyjny nie ostrzega, gdzie dokładnie wędrują nowe pliki, a nadpisane sektory są praktycznie niemożliwe do przywrócenia nawet dla drogich narzędzi laboratoryjnych. Kolejnym nietrafionym pomysłem jest odinstalowywanie czy reinstalowanie sterowników dysku twardego – takie działania nie mają żadnego realnego wpływu na zawartość danych na dysku. To raczej mity, które często powtarzają się na forach, ale w praktyce niczego nie odzyskują, a mogą tylko przedłużyć czas bez konkretnego działania. Czasem pojawia się przekonanie, że skan antywirusowy albo narzędzie typu chkdsk mogą pomóc w odzyskiwaniu – tak naprawdę żadne z nich nie zostały zaprojektowane do takich celów. Chkdsk naprawia strukturę logiczną systemu plików, ale może nawet pogorszyć sprawę, bo potrafi trwale usunąć informacje o plikach uznanych za uszkodzone. Antywirus natomiast służy do wykrywania złośliwego oprogramowania, nie do odzyskiwania przypadkowo utraconych danych. W takich sytuacjach najważniejsze jest natychmiastowe zaprzestanie pracy na danym dysku i skorzystanie ze sprawdzonych metod – najlepiej podłączyć dysk do innego systemu i działać narzędziami odzysku bez ryzyka nadpisu. Często to właśnie zwykłe, niewinne działania na partycji z utraconymi danymi prowadzą do ich całkowitej nieodwracalności. Warto o tym pamiętać i nie dać się zwieść pozornie prostym rozwiązaniom, które w rzeczywistości nie mają szans zadziałać.

Pytanie 32

Aby zwiększyć wydajność komputera, można zainstalować procesor obsługujący technologię Hyper-Threading, która pozwala na

A. automatyczne dostosowanie częstotliwości rdzeni procesora w zależności od jego obciążenia
B. przesył danych pomiędzy procesorem a dyskiem twardym z szybkością działania procesora
C. wykonywanie przez jeden rdzeń procesora dwóch niezależnych zadań równocześnie
D. podniesienie częstotliwości pracy zegara
Wiele z niepoprawnych odpowiedzi może wprowadzać w błąd, gdyż opierają się na nieporozumieniach dotyczących podstawowych funkcji procesorów. Na przykład, wymiana danych pomiędzy procesorem a dyskiem twardym z prędkością pracy procesora nie jest bezpośrednio związana z Hyper-Threading. Ta koncepcja odnosi się bardziej do interfejsów komunikacyjnych, takich jak SATA czy NVMe, które mają za zadanie maksymalizować przepustowość danych, a nie do wielowątkowości w procesorze. Z kolei zwiększenie szybkości pracy zegara odnosi się do taktowania procesora, które jest inną cechą wydajności. Zmiana częstotliwości pracy nie jest tożsama z obsługą wielu wątków; w rzeczywistości, podwyższanie taktowania może prowadzić do zwiększonego zużycia energii i generacji ciepła, co wymaga zaawansowanych systemów chłodzenia. Automatyczna regulacja częstotliwości rdzeni procesora, często nazywana technologią Turbo Boost, również nie ma związku z Hyper-Threading. Ta technologia pozwala na dynamiczne zwiększenie wydajności jednego lub więcej rdzeni w odpowiedzi na zapotrzebowanie, ale nie pozwala na równoległe przetwarzanie zadań na jednym rdzeniu. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania zasobami komputerowymi oraz dla podejmowania świadomych decyzji przy wyborze komponentów komputerowych.

Pytanie 33

Jakie są przyczyny wyświetlenia na ekranie komputera komunikatu o wykryciu konfliktu adresów IP?

A. Adres IP komputera znajduje się poza zakresem adresów w sieci lokalnej
B. Inne urządzenie w sieci posiada ten sam adres IP co komputer
C. Usługa DHCP w sieci lokalnej jest nieaktywna
D. W konfiguracji protokołu TCP/IP ustawiony jest nieprawidłowy adres bramy domyślnej
Wybierając inne odpowiedzi, można dojść do niepoprawnych wniosków dotyczących przyczyn konfliktów IP w sieci lokalnej. Na przykład, adres IP komputera mogący być spoza zakresu adresów sieci lokalnej nie jest bezpośrednią przyczyną konfliktu. Urządzenia w sieci lokalnej mogą nie być w stanie komunikować się, ale nie spowoduje to konfliktu, gdyż system nadal rozpozna, że adresy są różne. Podobnie, błędny adres bramy domyślnej w ustawieniach protokołu TCP/IP prowadzi głównie do problemów z łącznością z innymi sieciami, a nie do konfliktu IP, który jest problemem lokalnym. Brak działania usługi DHCP w sieci może skutkować problemami z przydzielaniem adresów, jednak sam w sobie również nie prowadzi do konfliktu, jeśli urządzenia mają przypisane unikalne adresy statycznie. Typowym błędem myślowym jest zakładanie, że konflikty IP są spowodowane przez problemy z konfiguracją sieci, gdy w rzeczywistości mogą wynikać z nieodpowiedniego przypisania adresów IP. Rozumienie tych zależności jest kluczowe dla skutecznego zarządzania siecią i unikania sytuacji konfliktowych, co z kolei wpływa na stabilność oraz wydajność sieci.

Pytanie 34

Czynność pokazana na rysunkach ilustruje mocowanie

Ilustracja do pytania
A. kartridża w drukarce atramentowej.
B. głowicy w drukarce rozetkowej.
C. bębna zintegrowanego z tonerem w drukarce laserowej.
D. taśmy barwiącej w drukarce igłowej.
Często spotykanym błędem jest mylenie mechanizmów mocowania elementów eksploatacyjnych w różnych typach drukarek. Mocowanie taśmy barwiącej w drukarce igłowej wygląda zupełnie inaczej – tam mamy do czynienia z wąską, tekstylną taśmą, którą zakłada się w specjalne prowadnice, a sama czynność odbywa się zazwyczaj przez niewielki otwór serwisowy. Z kolei kartridże w drukarkach atramentowych są znacznie mniejsze, a cała procedura polega na włożeniu niewielkiego pojemnika z tuszem do dedykowanego slotu, najczęściej przesuwanego mechanicznie przez drukarkę. Głowica w drukarce rozetkowej, choć brzmi bardzo technicznie, nie jest elementem wymienianym przez użytkownika w taki sposób, jak na ilustracji – te współczesne urządzenia praktycznie już nie występują w typowych biurach. Mylenie tych elementów najczęściej wynika z utożsamiania każdej większej części w drukarce z „kartridżem” lub „głowicą”. W praktyce jednak, tylko bęben zintegrowany z tonerem w drukarce laserowej ma ten charakterystyczny rozmiar i sposób montażu, jak pokazano na rysunku. Branżowe dobre praktyki podkreślają też, że każda technologia druku ma swoje własne procedury serwisowe i elementy eksploatacyjne. Moim zdaniem, znajomość tych różnic bardzo ułatwia nie tylko prawidłową obsługę drukarek, lecz także skraca czas reakcji w przypadku konieczności wymiany części. Największą pułapką logiczną jest tu założenie, że wszystkie typy drukarek mają podobne rozwiązania mechaniczne – a to po prostu nie jest prawda.

Pytanie 35

Korzystając z podanego urządzenia, możliwe jest przeprowadzenie analizy działania

Ilustracja do pytania
A. zasilacza ATX
B. modułu DAC karty graficznej
C. interfejsu SATA
D. pamięci RAM
Multimetr, jak ten przedstawiony na zdjęciu, jest kluczowym narzędziem w diagnostyce zasilaczy ATX. Zasilacz ATX przekształca napięcie zmienne z gniazdka sieciowego na różne napięcia stałe potrzebne do działania komponentów komputera takich jak 3.3V, 5V i 12V. Multimetr umożliwia pomiar tych napięć bezpośrednio na złączach zasilania, co pozwala na szybkie sprawdzenie poprawności ich wartości. Standardową praktyką jest sprawdzenie napięć wyjściowych na pinie molex czy ATX 24-pin, co pozwala na weryfikację poprawności relacji napięć z normami ATX. Użycie multimetru w diagnostyce zasilacza ATX obejmuje także sprawdzenie ciągłości obwodów oraz testowanie bezpieczników. Profesjonalne podejście do diagnostyki wymaga także pomiaru prądu upływu i sprawdzenia stabilności napięcia pod obciążeniem, co zapewnia, że zasilacz spełnia wymogi efektywności energetycznej i niezawodności. Multimetr cyfrowy zapewnia dokładność i precyzję niezbędną w takich pomiarach, co jest kluczowe w diagnostyce sprzętowej. Dlatego posługiwanie się multimetrem jest niezbędną umiejętnością każdego technika IT.

Pytanie 36

Koprocesor (Floating Point Unit) w systemie komputerowym jest odpowiedzialny za realizację

A. operacji na liczbach całkowitych
B. operacji na liczbach naturalnych
C. podprogramów
D. operacji zmiennoprzecinkowych
Wybierając odpowiedzi, które nie odnoszą się do operacji zmiennoprzecinkowych, można napotkać kilka nieporozumień dotyczących roli koprocesora. Przykład pierwszej z błędnych odpowiedzi obejmuje podprogramy, które są fragmentami kodu wykonywanymi w ramach programów głównych. W rzeczywistości, koprocesor nie zajmuje się zarządzaniem podprogramami; jego głównym zadaniem jest przyspieszanie obliczeń matematycznych, zwłaszcza związanych z operacjami na liczbach zmiennoprzecinkowych. Kolejna odpowiedź dotycząca operacji na liczbach naturalnych jest również myląca. Liczby naturalne są zwykle reprezentowane jako liczby całkowite i nie wymagają skomplikowanej obliczeniowej logiki, jak ma to miejsce w przypadku operacji zmiennoprzecinkowych. W związku z tym, funkcjonalności koprocesora nie wykorzystuje się do efektywnego przetwarzania tych prostych obliczeń. Ostatni błąd dotyczy operacji na liczbach całkowitych. Choć niektóre procesory również obsługują te operacje, są one realizowane głównie przez jednostkę arytmetyczno-logiczną (ALU), a nie przez FPU. To prowadzi do mylnego przekonania, że koprocesor powinien być wykorzystywany do wszystkich form obliczeń matematycznych, podczas gdy jego właściwe zastosowanie ogranicza się do skomplikowanych operacji wymagających precyzyjnych obliczeń zmiennoprzecinkowych.

Pytanie 37

Na rysunku ukazany jest diagram blokowy zasilacza

Ilustracja do pytania
A. analogowego komputera
B. impulsowego komputera
C. awaryjnego (UPS)
D. impulsowego matrycy RAID
Zasilacz komputerowy analogowy oraz impulsowy różnią się znacząco od zasilacza awaryjnego pod względem konstrukcji i zastosowania. Zasilacz analogowy nie jest typowym rozwiązaniem we współczesnych systemach IT, gdzie dominują zasilacze impulsowe ze względu na wyższą efektywność energetyczną i mniejsze rozmiary. Zasilacz impulsowy komputera, choć popularny, nie oferuje funkcji podtrzymywania zasilania w przypadku przerwy w dostawie energii, co czyni go nieodpowiednim do zastosowania w krytycznych systemach wymagających ciągłości pracy. Natomiast zasilacz impulsowy dla matrycy RAID służy do zapewnienia stabilnego napięcia dla tego typu urządzeń pamięci masowej, ale również nie zapewnia ochrony przed przerwami w zasilaniu. Błędna identyfikacja zasilacza UPS z innymi typami zasilaczy może wynikać z niezrozumienia funkcji akumulatorów i falownika, które są kluczowe dla działania UPS. Warto podkreślić, że UPS ma na celu nie tylko dostarczenie energii podczas awarii, ale również ochronę przed przepięciami, co jest szczególnie ważne w ochronie delikatnych podzespołów elektronicznych przed uszkodzeniem. Dlatego rozumienie różnic w konstrukcji i funkcjach różnych typów zasilaczy jest kluczowe w kontekście zastosowań przemysłowych i informatycznych, gdzie niezawodność zasilania ma kluczowe znaczenie dla bezpieczeństwa danych i ciągłości operacyjnej.

Pytanie 38

Która edycja systemu operacyjnego Windows Server 2008 charakteryzuje się najuboższym interfejsem graficznym?

A. Server Core
B. Standard Edition
C. Datacenter
D. Enterprise
Wybór edycji Standard Edition, Enterprise czy Datacenter wskazuje na nieporozumienie dotyczące podstawowych różnic między tymi wersjami a Server Core. Standard Edition jest pełnoprawną wersją systemu, która zawiera zintegrowany interfejs graficzny, a jego celem jest oferowanie pełnej funkcjonalności dla użytkowników i administratorów. Wersja Enterprise, podobnie jak Datacenter, oferuje dodatkowe funkcje skalowalności oraz wsparcie dla większej liczby procesorów i pamięci. Te wersje są zaprojektowane do obsługi aplikacji wymagających intensywnego wykorzystania zasobów i złożonych środowisk, przez co skutkują większym obciążeniem systemu oraz szerszym interfejsem graficznym. Błędne podejście do wyboru wersji systemu może wynikać z mylnego założenia, że graficzny interfejs użytkownika jest konieczny do efektywnego zarządzania serwerem, co jest nieaktualne w kontekście nowoczesnych praktyk administracyjnych, które coraz częściej wprowadzają automatyzację i zarządzanie zdalne. Ignorowanie korzyści płynących z zastosowania minimalnego interfejsu, jakim jest Server Core, prowadzi do nieefektywności i zwiększenia ryzyka wystąpienia problemów z bezpieczeństwem oraz wydajnością w złożonych środowiskach IT.

Pytanie 39

Jaki jest główny cel stosowania maski podsieci?

A. Ochrona danych przed nieautoryzowanym dostępem
B. Zwiększenie przepustowości sieci
C. Rozdzielenie sieci na mniejsze segmenty
D. Szyfrowanie transmisji danych w sieci
Maska podsieci jest kluczowym elementem w zarządzaniu sieciami komputerowymi, zwłaszcza gdy mówimy o sieciach opartych na protokole IP. Jej główną funkcją jest umożliwienie podziału większych sieci na mniejsze, bardziej zarządzalne segmenty, zwane podsieciami. Dzięki temu administrator może lepiej kontrolować ruch sieciowy, zarządzać adresami IP oraz zwiększać efektywność wykorzystania dostępnych zasobów adresowych. Maska podsieci pozwala na określenie, która część adresu IP odpowiada za identyfikację sieci, a która za identyfikację urządzeń w tej sieci. Z mojego doświadczenia, dobrze zaplanowane podsieci mogą znacząco poprawić wydajność i bezpieczeństwo sieci, minimalizując ryzyko kolizji adresów IP oraz niepotrzebnego ruchu między segmentami sieci. W praktyce, stosowanie masek podsieci jest nie tylko standardem, ale i koniecznością w dużych organizacjach, które muszą zarządzać setkami, a nawet tysiącami urządzeń. Optymalizacja przydziału adresów IP w ten sposób jest zgodna z najlepszymi praktykami branżowymi, promowanymi przez organizacje takie jak IETF.

Pytanie 40

Do realizacji iloczynu logicznego z negacją należy użyć funktora

A. NAND
B. NOT
C. AND
D. EX-OR
Mylenie funktorów logicznych to częsty problem na początku przygody z elektroniką cyfrową. Warto dobrze zrozumieć, co dokładnie wykonuje każda bramka i w jakich sytuacjach warto ją stosować. Bramka NOT, choć ważna, sama w sobie realizuje jedynie negację pojedynczego sygnału, a nie żadnej operacji złożonej jak iloczyn logiczny z negacją. To takie „odwrócenie” wartości logicznej, nic więcej. Jeśli chodzi o AND, ona z kolei daje czysty iloczyn logiczny (czyli operację „i”), ale nie wprowadza automatycznie negacji wyniku, więc żeby osiągnąć iloczyn logiczny z negacją, musiałbyś najpierw zbudować AND, a potem dodać osobną bramkę NOT — robi się z tego trochę niepotrzebna komplikacja. Bramki EX-OR, czyli Exclusive OR (XOR), to już zupełnie inna bajka — służą do wykrywania różnic pomiędzy sygnałami, bo zwracają „1” tylko wtedy, gdy na wejściach są różne wartości. To bardzo użyteczne przy sumatorach czy układach wykrywania błędów, ale z logicznym iloczynem z negacją nie mają nic wspólnego. Typowy błąd to myślenie, że każda bardziej egzotyczna bramka nada się do wszystkiego, a tu trzeba jednak uważnie patrzeć, co się dzieje z wejściami i wyjściami danej funkcji logicznej. W przemyśle stawia się często na bramki uniwersalne — a właśnie NAND jest typowym przykładem, bo pozwala zrealizować zarówno iloczyn, jak i negację za jednym zamachem i to w jednym układzie scalonym. Takie podejście optymalizuje koszty produkcji i upraszcza serwisowanie urządzeń, więc to nie tylko teoria, a żywa praktyka inżynierska. Dobrze jest wrócić do tablic prawdy i zobaczyć, które bramki naprawdę realizują daną funkcję — to zawsze dużo rozjaśnia i pozwala uniknąć takich pułapek myślowych.