Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 7 stycznia 2026 08:44
  • Data zakończenia: 7 stycznia 2026 08:53

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która składowa prawidłowej krzywej EKG odpowiada powolnej repolaryzacji komór mięśnia sercowego?

A. Załamek Q
B. Odcinek TP
C. Załamek P
D. Odcinek ST
Prawidłowo wskazany odcinek ST odpowiada fazie powolnej repolaryzacji komór, czyli tzw. fazie plateau potencjału czynnościowego kardiomiocytów. W klasycznej fizjologii błony komórkowej serca jest to głównie faza 2 potencjału czynnościowego komórek roboczych mięśnia komór. W tym czasie do wnętrza komór napływają wolne kanały wapniowe typu L (Ca2+), a jednocześnie część jonów potasu (K+) wypływa na zewnątrz. Bilans tych prądów powoduje, że napięcie błonowe utrzymuje się przez pewien czas na w miarę stałym poziomie – właśnie to plateau odzwierciedla się na EKG jako odcinek ST, który w warunkach prawidłowych jest izoelektryczny, czyli leży na linii izoelektrycznej. W praktyce technika EKG bardzo mocno opiera się na ocenie odcinka ST. W standardach interpretacji (np. zalecenia ESC/ACC) analiza uniesienia lub obniżenia ST jest kluczowa w rozpoznawaniu ostrego zespołu wieńcowego z uniesieniem odcinka ST (STEMI) albo niedokrwienia podwsierdziowego. Dla technika wykonującego badanie to oznacza, że trzeba bardzo pilnować jakości zapisu: dobra przyczepność elektrod, minimalizacja artefaktów mięśniowych, właściwa filtracja. Z mojego doświadczenia, jeśli odcinek ST „pływa” przez złe uziemienie czy ruch pacjenta, lekarz może mieć realny problem z oceną, czy to prawdziwe uniesienie, czy tylko artefakt. Warto też pamiętać, że odcinek ST analizujemy zawsze w kontekście całej krzywej – końcówki zespołu QRS i początku załamka T. Wzorzec jest taki: QRS odpowiada depolaryzacji komór, potem odcinek ST – faza powolnej repolaryzacji, a załamek T – szybsza, końcowa repolaryzacja komór. Umiejętność świadomego powiązania tych elementów z fizjologią błony komórkowej bardzo pomaga w praktycznej interpretacji zapisu i w szybkim wychwytywaniu patologii, szczególnie w dyżurach SOR czy w pracowniach diagnostyki nieinwazyjnej.

Pytanie 2

Na radiogramie uwidoczniono złamanie nasady

Ilustracja do pytania
A. dalszej kości promieniowej.
B. bliższej kości promieniowej.
C. bliższej kości łokciowej.
D. dalszej kości łokciowej.
Prawidłowo wskazana została nasada dalsza kości promieniowej. Na zdjęciu AP nadgarstka wyraźnie widać, że linia złamania przebiega w obrębie przynasady/nasady dystalnej kości promieniowej, tuż powyżej powierzchni stawowej promieniowo-nadgarstkowej. To typowa lokalizacja urazu w okolicy nadgarstka – w praktyce często nazywana złamaniem dalszej nasady kości promieniowej (np. złamanie Collesa lub Smitha, zależnie od przemieszczenia). Kość promieniowa leży po stronie kciuka, ma szerszą, rozbudowaną nasadę dalszą, która tworzy główną część panewki dla kości nadgarstka. Na standardowych projekcjach RTG (AP i bocznej) ocenia się ciągłość warstwy korowej, zarys beleczkowania, kąt nachylenia powierzchni stawowej oraz ewentualne przemieszczenia odłamów. Z mojego doświadczenia, w diagnostyce takich złamań ważne jest zwrócenie uwagi na linię stawu promieniowo-łokciowego dalszego oraz wysokość kości promieniowej względem łokciowej (tzw. ulnar variance). W codziennej pracy technika i lekarza radiologa trzymamy się zasady: zawsze najpierw identyfikujemy orientację zdjęcia (strona promieniowa/łokciowa), potem porównujemy szeroką, bloczkowatą nasadę dalszą promieniowej z dużo mniejszą nasadą dalszą łokciowej. Dzięki temu łatwiej uniknąć pomyłek. W dobrych praktykach przy podejrzeniu złamania dalszej nasady kości promieniowej wykonuje się co najmniej dwie prostopadłe projekcje, a przy wątpliwościach dokładniejsze badanie (np. TK) – zwłaszcza jeśli złamanie wchodzi do powierzchni stawowej. Warto też pamiętać, że takie złamania są bardzo częste po upadku na wyprostowaną rękę, szczególnie u osób starszych z osteoporozą, więc umiejętność ich szybkiej i pewnej identyfikacji na RTG jest kluczowa w praktyce.

Pytanie 3

W jakiej projekcji i pod jakim kątem padania promienia centralnego został wykonany radiogram obojczyka?

Ilustracja do pytania
A. W projekcji AP i skośnym dołgłowowo kącie padania promienia centralnego.
B. W projekcji PA i prostopadłym kącie padania promienia centralnego.
C. W projekcji AP i skośnym doogonowo kącie padania promienia centralnego.
D. W projekcji AP i prostopadłym kącie padania promienia centralnego.
Prawidłowo wskazana odpowiedź „w projekcji AP i skośnym dołgłowowo kącie padania promienia centralnego” odpowiada klasycznemu obrazowi tzw. projekcji osiowej (skośnej) obojczyka stosowanej w radiografii. W standardach opisanych m.in. w podręcznikach do technik obrazowania przy badaniu obojczyka wykonuje się zazwyczaj dwie projekcje: AP w prostopadłym padaniu oraz AP z ukośnym dołgłowowym nachyleniem promienia centralnego (zwykle 15–30° w stronę głowy). Celem tej skośnej projekcji jest „wyciągnięcie” obojczyka ponad cień żeber i łopatki, tak aby jego zarys był dobrze odseparowany od tła kostnego klatki piersiowej. Dzięki temu łatwiej ocenić drobne złamania, przemieszczenia i zniekształcenia, zwłaszcza w części środkowej i przyśrodkowej kości. Na przedstawionym radiogramie obojczyk jest wyraźnie uniesiony względem żeber, co jest typowe właśnie dla skośnego dołgłowowego ustawienia wiązki przy projekcji AP. Pacjent jest skierowany przodem do detektora (projekcja AP – promień biegnie z przodu do tyłu), a nachylenie w kierunku dołgłowowym powoduje, że struktury leżące głębiej nakładają się mniej na obojczyk. W praktyce technik często dobiera kąt indywidualnie: u osób szczupłych wystarczy ok. 15°, u osób z masywną budową klatki lepiej sprawdza się 25–30°. Moim zdaniem warto zapamiętać, że jeśli na zdjęciu obojczyk „odrywa się” od żeber i jest jakby bardziej horyzontalny, to prawie na pewno patrzymy na projekcję AP z kątem dołgłowowym. To jest standardowa dobra praktyka przy podejrzeniu złamań pourazowych, przy kontroli zrostu oraz przy ocenie zmian w okolicy stawu barkowo‑obojczykowego i mostkowo‑obojczykowego.

Pytanie 4

Kasety do pośredniej radiografii cyfrowej CR są wyposażone

A. w filmy rentgenowskie.
B. w płyty fosforowe.
C. w folie wzmacniające.
D. w płyty ołowiowe.
To pytanie bardzo dobrze pokazuje różnicę między klasyczną radiografią analogową a pośrednią radiografią cyfrową CR. Wiele osób automatycznie kojarzy kasetę RTG z filmem rentgenowskim, bo przez lata tak to wyglądało w pracowniach. W systemach analogowych rzeczywiście w kasecie znajdował się film światłoczuły, zwykle w połączeniu z foliami wzmacniającymi, które zamieniały promieniowanie X na światło, aby zmniejszyć dawkę dla pacjenta i skrócić ekspozycję. W CR filozofia jest inna: zamiast filmu mamy płytę fosforową, która sama pełni rolę nośnika informacji, a jednocześnie nie wymaga chemicznej obróbki w ciemni. Dlatego odpowiedź odwołująca się do filmów rentgenowskich jest typowym myleniem technologii analogowej z cyfrową pośrednią. Podobnie jest z foliami wzmacniającymi. One były kluczowym elementem kaset do filmów: konwersja promieniowania rentgenowskiego na światło błyskowe, które naświetlało film. W kasetach CR taka folia nie jest już potrzebna, bo płyta fosforowa bezpośrednio rejestruje energię promieniowania. W praktyce, jeżeli ktoś myśli, że w kasecie CR są folie wzmacniające, to zwykle wynika to z przyzwyczajenia do dawnych rozwiązań i braku rozróżnienia między konstrukcją kasety analogowej i cyfrowej. Płyty ołowiowe to z kolei zupełnie inny temat – ołów w radiologii kojarzymy z ochroną radiologiczną (fartuchy, parawany, osłony gonad, wkładki ochronne w kasetach od strony lampy lub stołu). Ołów może stanowić element ekranujący lub warstwę przeciwrozproszeniową, ale nie jest nośnikiem obrazu. W kasecie CR rolę „serca” systemu pełni płyta fosforowa, a nie ołów. Typowym błędem myślowym jest założenie, że skoro kaseta z zewnątrz wygląda podobnie w różnych systemach, to jej wnętrze też jest takie samo. W rzeczywistości rozwój radiografii cyfrowej całkowicie zmienił materiał rejestrujący: od filmu, przez fosfor w CR, po detektory półprzewodnikowe w DR. Z punktu widzenia dobrej praktyki zawodowej ważne jest, żeby umieć nazwać te elementy po imieniu i rozumieć, jak wpływają one na jakość obrazu, dawkę oraz sposób obsługi sprzętu.

Pytanie 5

Na obrazie radiologicznym uwidoczniono złamanie kości

Ilustracja do pytania
A. strzałkowej.
B. piszczelowej.
C. skokowej.
D. sześciennej.
Na przedstawionym zdjęciu RTG w projekcji bocznej widoczny jest staw skokowy lewy („L” przy obrazie) oraz dalsze odcinki kości podudzia i kości stępu. Linia złamania przebiega w obrębie kości strzałkowej – dokładniej w części dalszej, w okolicy kostki bocznej. Widać wyraźne przerwanie ciągłości warstwy korowej kości i zarys odłamu kostnego, co jest typowym obrazem złamania strzałki. Kość piszczelowa ma zachowaną, gładką korę, bez szczeliny złamania, a kość skokowa i sześcienna zachowują prawidłowy zarys i strukturę beleczkową. W praktyce technika radiologiczna zawsze ocenia takie zdjęcie pod kątem trzech rzeczy: ciągłości korowej, ustawienia odłamów oraz szerokości szpar stawowych. W złamaniach kostki bocznej (kości strzałkowej) zwraca się też uwagę na ewentualne poszerzenie szpary stawu skokowo-goleniowego i podwichnięcie kości skokowej, bo to ma wpływ na dalsze leczenie ortopedyczne. Moim zdaniem warto od razu wyrabiać sobie nawyk „skanowania” RTG od góry do dołu: najpierw trzon piszczeli, potem strzałka, dalej kości stępu i śródstopia, dzięki czemu dużo trudniej przeoczyć takie złamanie. W standardach opisu badań RTG (również wg zaleceń towarzystw ortopedyczno–radiologicznych) podkreśla się konieczność jednoznacznego nazwania złamanej kości, określenia lokalizacji (np. dalsza metaepifiza strzałki) oraz oceny ewentualnego przemieszczenia. Ten obraz dokładnie spełnia kryteria złamania kości strzałkowej, bez cech typowego uszkodzenia kości skokowej, sześciennej czy piszczelowej, dlatego wskazanie odpowiedzi „strzałkowej” jest zgodne z prawidłową interpretacją radiologiczną i z dobrą praktyką kliniczną.

Pytanie 6

W medycynie nuklearnej wykorzystuje się:

A. gammakamerę, PET, USG i scyntygraf.
B. scyntygraf, gammakamerę, emisyjną tomografię i PET.
C. emisyjną tomografię, EEG, scyntygraf.
D. ultrasonograf, scyntygraf i EMG.
Prawidłowo wskazałeś zestaw aparatury typowej dla medycyny nuklearnej: scyntygraf, gammakamera, emisyjna tomografia i PET. Wszystkie te urządzenia mają jedną wspólną cechę – rejestrują promieniowanie emitowane z wnętrza ciała pacjenta po podaniu radiofarmaceutyku. To właśnie odróżnia medycynę nuklearną od klasycznej radiologii, gdzie źródło promieniowania jest na zewnątrz (np. lampa rentgenowska). Scyntygraf i gammakamera to w praktyce nazwy bliskoznaczne – gammakamera jest współczesnym urządzeniem rejestrującym promieniowanie gamma i tworzącym obrazy scyntygraficzne. Wykorzystuje się ją np. w scyntygrafii kości, tarczycy, perfuzji mięśnia sercowego. Emisyjna tomografia (SPECT – tomografia emisyjna pojedynczych fotonów) pozwala uzyskać obrazy przekrojowe, podobnie jak tomografia komputerowa, ale pokazuje głównie funkcję narządu, a nie tylko jego budowę. Dzięki temu można ocenić perfuzję mózgu, żywotność mięśnia sercowego czy czynność nerek. PET, czyli pozytonowa tomografia emisyjna, wykorzystuje radioizotopy emitujące pozytony i zjawisko anihilacji. Standardowo stosuje się np. 18F-FDG do oceny metabolizmu glukozy w onkologii, kardiologii czy neurologii. W nowoczesnych pracowniach łączy się PET z CT lub MR (PET/CT, PET/MR), co pozwala na bardzo dokładne połączenie informacji funkcjonalnej z anatomiczną. Z mojego doświadczenia to właśnie zrozumienie, że medycyna nuklearna bada przede wszystkim funkcję i metabolizm, a nie samą anatomię, bardzo pomaga w zapamiętaniu, jakie urządzenia do niej należą. W dobrych praktykach ważne jest też prawidłowe przygotowanie radiofarmaceutyku, kontrola jakości aparatury oraz ścisłe przestrzeganie zasad ochrony radiologicznej, bo pracujemy z promieniowaniem jonizującym podanym do organizmu pacjenta.

Pytanie 7

Którą kość zaznaczono strzałką na radiogramie stopy?

Ilustracja do pytania
A. Kość łódkowatą.
B. Kość sześcienną.
C. Kość klinowatą boczną.
D. Kość skokową.
Na radiogramie stopy w projekcji AP strzałka wskazuje kość sześcienną, czyli jedną z kości stępu położoną po stronie bocznej. Kość sześcienna leży dystalnie w stosunku do kości piętowej, a proksymalnie do IV i V kości śródstopia, częściowo także sąsiaduje z III kością śródstopia. Od strony przyśrodkowej łączy się z kością klinowatą boczną oraz z kością łódkowatą. Na prawidłowo wykonanym RTG łatwo ją zlokalizować właśnie jako boczną kość stępu, tworzącą jakby „kostkę” pomiędzy piętą a bocznymi kośćmi śródstopia. Moim zdaniem kluczowe jest tu świadome „czytanie” obrazu: zaczynamy od kości piętowej, idziemy dystalnie po stronie bocznej i pierwsza wyraźna kość stępu przed piętą to właśnie kość sześcienna. W praktyce technika radiologii często musi ocenić tę kość pod kątem złamań zmęczeniowych, urazów w obrębie stawu Choparta, a także przy deformacjach stopy, np. w stopie końsko‑szpotawej. W dobrych praktykach opisowych zwraca się uwagę na ciągłość zarysów korowych kości, szerokość szpar stawowych z sąsiednimi kośćmi śródstopia oraz ewentualne odłamy awulsyjne przy przyczepach więzadeł. W badaniach kontrolnych po unieruchomieniu gipsowym technik powinien zadbać o identyczne lub bardzo zbliżone pozycjonowanie, żeby lekarz mógł wiarygodnie porównać zrost w obrębie kości sześciennej. To z pozoru mała kość, ale w biomechanice stopy odgrywa dość istotną rolę, stabilizując boczny filar stopy i przenosząc obciążenia przy chodzeniu i bieganiu.

Pytanie 8

W audiometrii badanie polegające na maskowaniu (zagłuszaniu) tonów szumem białym to próba

A. Webera.
B. Fowlera.
C. Rinnego.
D. Langenbecka.
W tym pytaniu haczyk polega na tym, że większość znanych prób słuchowych kojarzy się raczej z kamertonami niż z nowoczesną audiometrią i łatwo wrzucić wszystko do jednego worka. Próba Langenbecka odnosi się do audiometrii z użyciem maskowania szumem białym, natomiast Rinnego, Webera i Fowlera to zupełnie inne koncepcje diagnostyczne, oparte głównie na badaniach kamertonowych lub ocenie lateralizacji dźwięku. W praktyce klinicznej próba Rinnego służy do porównania przewodnictwa powietrznego z kostnym, czyli pomaga odróżnić niedosłuch przewodzeniowy od odbiorczego. Wykorzystuje się kamerton przyłożony do wyrostka sutkowatego, a potem przed małżowinę uszną. Nie ma tam żadnego maskowania szumem białym – to bardzo prosta, przyłóż–zabierz, zapytaj pacjenta metoda, dobra do szybkiego badania przyłóżkowego, ale nie do precyzyjnego różnicowania za pomocą szumu. Próba Webera to z kolei ocena lateralizacji dźwięku kamertonu ustawionego na linii pośrodkowej (np. na czole). Służy do sprawdzenia, do którego ucha dźwięk się „przesuwa” i w ten sposób pomaga wstępnie określić typ ubytku. Znowu – zero maskowania szumem białym, żadnych głośników z szumem, tylko przewodnictwo kostne i subiektywne odczucie pacjenta. Próba Fowlera, chociaż już bliższa nowoczesnej audiometrii, dotyczy wyrównania głośności w obu uszach i jest stosowana głównie w diagnostyce tzw. rekrutacji słuchowej przy niedosłuchu odbiorczym. Tam manipuluje się poziomami tonów, ale nie maskuje się ich szumem białym w klasycznym rozumieniu próby Langenbecka. Typowy błąd polega na tym, że jeśli ktoś kojarzy jakiekolwiek badanie słuchu z nazwiskiem, automatycznie zakłada, że musi chodzić o znaną próbę Rinnego albo Webera, bo o nich najczęściej się mówi w szkole. Tymczasem maskowanie szumem białym to domena audiometrii tonalnej i jest ściśle opisane w zaleceniach dotyczących badań słuchu – określa się poziom szumu, rodzaj (biały, wąskopasmowy), ucho maskowane i dokładne kryteria, kiedy należy je stosować. Dobre praktyki w diagnostyce słuchu wymagają, żeby rozumieć różnicę między prostymi próbami kamertonowymi (Rinne, Weber) a bardziej zaawansowanymi procedurami audiometrycznymi, takimi jak próba Langenbecka czy testy nadprogowe. Bez tego łatwo pomylić narzędzia i wyciągnąć błędne wnioski kliniczne.

Pytanie 9

Które znaczniki są wykorzystywane w scyntygrafii tarczycy?

A. Mikrosfery albuminowe i jod 131
B. Mikrosfery albuminowe i jod 132
C. Jod 131 i technet 99m
D. Mikrosfery albuminowe i technet 99m
Prawidłowo wskazane znaczniki – jod 131 i technet 99m – to klasyczne i w zasadzie podręcznikowe radioizotopy stosowane w scyntygrafii tarczycy. W praktyce medycyny nuklearnej oba wykorzystuje się do oceny funkcji i budowy gruczołu, ale w trochę innych sytuacjach. Technet 99m (a dokładniej nadtechnecjan Tc‑99m) jest pobierany przez komórki tarczycy podobnie jak jod, ale nie jest przez nie wbudowywany w hormony. Dzięki temu daje szybki, czysty obraz rozmieszczenia czynnego miąższu – świetnie nadaje się do rutynowych badań scyntygraficznych, oceny guzków „zimnych” i „gorących”, kontroli po leczeniu zachowawczym nadczynności. W standardach pracowni medycyny nuklearnej Tc‑99m jest izotopem pierwszego wyboru do typowej scyntygrafii, bo ma krótki okres półtrwania i emituje głównie promieniowanie gamma o energii idealnej dla gammakamery. Jod 131 ma inne zastosowanie: służy głównie do badań jodochwytności, planowania terapii jodem promieniotwórczym oraz do terapii nadczynności i raka tarczycy. Emituje promieniowanie beta (terapeutyczne) i gamma (diagnostyczne), ale z racji wyższej dawki i gorszej jakości obrazowania w nowoczesnych standardach rzadziej używa się go do klasycznej scyntygrafii obrazowej, a bardziej do procedur terapeutyczno‑diagnostycznych. Moim zdaniem ważne jest, żeby kojarzyć: tarczyca = izotopy jodu + Tc‑99m, a nie mikrosfery czy inne radiofarmaceutyki narządowo‑nieswoiste. W praktyce technik medycyny nuklearnej musi wiedzieć, że do scyntygrafii tarczycy przygotowuje się właśnie preparaty jodu promieniotwórczego albo nadtechnecjanu, zgodnie z procedurami, kontrolą jakości radiofarmaceutyku i zasadami ochrony radiologicznej.

Pytanie 10

W zapisie EKG linia izoelektryczna obrazuje

A. depolaryzację komór.
B. polaryzację.
C. repolaryzację przedsionków.
D. depolaryzację przedsionków.
Lina izoelektryczna w zapisie EKG to odcinek, w którym nie rejestruje się żadnej aktywności elektrycznej przekraczającej próg czułości aparatu – serce jest wtedy w stanie spoczynkowej polaryzacji błon komórkowych. Mówiąc prościej: wszystkie włókna mięśnia sercowego są mniej więcej w tym samym, „wyjściowym” stanie elektrycznym, więc na papierze widzimy prostą linię. Nie zachodzi ani depolaryzacja, ani repolaryzacja, tylko utrzymywanie potencjału spoczynkowego. To właśnie jest polaryzacja. W praktyce dobrze to widać np. w odcinku TP między zespołami QRS – ten fragment przyjmuje się często jako linię izoelektryczną odniesienia do oceny uniesień lub obniżeń odcinka ST. W diagnostyce klinicznej linia izoelektryczna jest kluczowym punktem odniesienia: porównuje się do niej wysokość załamków, ocenia się obniżenia i uniesienia ST, czy odcinek PQ jest izoelektryczny. Z mojego doświadczenia, przy interpretacji EKG zawsze warto najpierw „złapać” sobie tę linię, np. w odprowadzeniach kończynowych, i dopiero na tym tle analizować resztę. W wytycznych kardiologicznych, w tym ESC, przy ocenie zawału z uniesieniem ST (STEMI) wyraźnie podkreśla się, że uniesienie ST ocenia się względem prawidłowej linii izoelektrycznej. Dlatego zrozumienie, że jest to obraz polaryzacji, a nie jakiegoś ukrytego załamka, jest bardzo praktyczne: pomaga uniknąć nadinterpretacji drobnych odchyleń i lepiej ustawić bazową linię w głowie podczas każdej analizy EKG.

Pytanie 11

Na obrazie RM nadgarstka lewego strzałką oznaczono kość

Ilustracja do pytania
A. haczykowatą.
B. księżycowatą.
C. łódeczkowatą.
D. główkowatą.
Na obrazie MR w projekcji czołowej strzałka faktycznie wskazuje kość księżycowatą. W typowym ułożeniu anatomicznym kość księżycowata leży w szeregu bliższym nadgarstka, pomiędzy kością łódeczkowatą (bocznie, czyli od strony promieniowej) a trójgraniastą (przyśrodkowo, od strony łokciowej). Na MRI dobrze widać jej charakterystyczny kształt – trochę jak wycinek owalu – oraz położenie centralnie nad panewką stawu promieniowo–nadgarstkowego. To właśnie ta centralna pozycja jest, moim zdaniem, kluczowa przy szybkim rozpoznawaniu jej na przekrojach czołowych i strzałkowych. W praktyce klinicznej prawidłowa identyfikacja kości księżycowatej ma duże znaczenie, bo jest to kość szczególnie narażona na martwicę jałową (choroba Kienböcka) oraz na niestabilności nadgarstka związane z uszkodzeniem więzadła łódeczkowo‑księżycowatego. W standardowej ocenie MR nadgarstka radiolog zawsze opisuje kształt, sygnał szpiku i ciągłość warstwy podchrzęstnej tej kości oraz relacje do kości łódeczkowatej i trójgraniastej. Dobre praktyki w diagnostyce obrazowej mówią, żeby oceniać kości nadgarstka „po kolei w pierścieniu”, a nie skakać wzrokiem po obrazie – wtedy łatwiej uniknąć pomyłek między kością łódeczkowatą a księżycowatą. W sekwencjach T1 kość księżycowata ma jednorodny sygnał szpiku tłuszczowego, natomiast w STIR lub T2 z saturacją tłuszczu jej obrzęk od razu rzuca się w oczy jako jasny obszar w centrum nadgarstka. Na sali zabiegowej, przy planowaniu artroskopii czy zabiegów rekonstrukcyjnych, ortopedzi opierają się właśnie na takim dokładnym, opisowym rozpoznaniu topografii kości księżycowatej w MRI.

Pytanie 12

Na obrazie rentgenowskim strzałką zaznaczono

Ilustracja do pytania
A. rozwarstwienie aorty piersiowej.
B. tętnik aorty piersiowej.
C. tętnik aorty brzusznej.
D. rozwarstwienie aorty brzusznej.
Na przedstawionym obrazie kontrastowej angiografii widoczny jest odcinek aorty przebiegający w jamie brzusznej, czyli aorta brzuszna – i to właśnie ją zaznaczono strzałką. Świadczy o tym kilka elementów: położenie struktur mniej więcej na wysokości trzonów kręgów lędźwiowych, przebieg naczynia w linii pośrodkowej ciała oraz obecność rozdętego workowatego poszerzenia typowego dla tętniaka aorty brzusznej poniżej odejścia tętnic trzewnych. W badaniach obrazowych, zwłaszcza przy klasycznej angiografii czy angio-TK, kluczowe jest zawsze odniesienie się do orientacji anatomicznej: od przepony w dół mówimy o aorcie brzusznej, a powyżej – o piersiowej. W praktyce technika radiologiczna powinna zwracać uwagę na prawidłowe wypełnienie światła naczynia kontrastem, odpowiedni czas ekspozycji i projekcję (najczęściej AP), tak aby wyraźnie uwidocznić aortę i ewentualne patologie, jak tętniaki czy zwężenia. Moim zdaniem warto wyrobić sobie nawyk „czytania” obrazu od góry do dołu: najpierw łuk aorty, potem zstępująca piersiowa, przejście przez rozwór aortowy przepony i dalej aorta brzuszna aż do jej rozdwojenia na tętnice biodrowe wspólne. W codziennej pracy technika i lekarza radiologa poprawne rozpoznanie odcinka aorty ma ogromne znaczenie, bo od tego zależy np. kwalifikacja do zabiegu endowaskularnego (EVAR), dobór długości stent-graftu czy planowanie zakresu skanowania w angio-TK. Dobre praktyki mówią też, żeby zawsze oceniać nie tylko sam tętniak, ale cały przebieg aorty brzusznej – od tętnic nerkowych aż do rozwidlenia – bo zmiany często są wielopoziomowe.

Pytanie 13

W obrazowaniu MR wykorzystuje się moment magnetyczny

A. neutronów.
B. protonów.
C. pozytonów.
D. elektronów.
W obrazowaniu rezonansu magnetycznego kluczową rolę odgrywa moment magnetyczny protonów, głównie protonów wodoru obecnych w cząsteczkach wody i tłuszczu w organizmie. Każdy proton zachowuje się trochę jak miniaturowy magnes – ma swój spin i związany z nim moment magnetyczny. W silnym polu magnetycznym skanera MR te „magnesiki” ustawiają się wzdłuż linii pola, a następnie są wytrącane z równowagi impulsami fal radiowych (RF). Po wyłączeniu impulsu RF protony wracają do stanu równowagi i oddają energię, co rejestruje system odbiorczy. Właśnie ta sygnałowa odpowiedź protonów (sygnał MR) jest przeliczana komputerowo na obraz. Moim zdaniem najważniejsze praktyczne skojarzenie dla technika jest takie: im więcej protonów wodoru w tkance, tym silniejszy sygnał, dlatego np. tkanka tłuszczowa czy mięśniowa wygląda inaczej niż kość korowa, a płyn mózgowo-rdzeniowy inaczej niż istota biała w mózgu. Różnice w czasie relaksacji T1 i T2 protonów w różnych tkankach pozwalają na dobranie odpowiednich sekwencji (T1-zależnych, T2-zależnych, PD, FLAIR, STIR itd.), co jest standardem w protokołach badań MR zgodnie z zaleceniami producentów i wytycznymi towarzystw radiologicznych. W praktyce klinicznej technik, planując badanie, świadomie wykorzystuje fizykę protonów: dobiera parametry takie jak TR, TE, flip angle, żeby podkreślić różnice w zachowaniu momentów magnetycznych protonów w danych strukturach. Bez momentu magnetycznego protonów nie byłoby ani kontrastu tkanek, ani samego sygnału w MR – cała metoda po prostu by nie działała. Dlatego właśnie poprawna odpowiedź to protony, a nie inne cząstki.

Pytanie 14

Jak konwencjonalnie frakcjonuje się dawkę w teleradioterapii?

A. Jeden raz dziennie, przez siedem dni w tygodniu.
B. Dwa razy dziennie, przez siedem dni w tygodniu.
C. Dwa razy dziennie, przez pięć dni w tygodniu.
D. Jeden raz dziennie, przez pięć dni w tygodniu.
Prawidłowo wskazana odpowiedź opisuje tzw. konwencjonalny schemat frakcjonowania w teleradioterapii: jedna frakcja na dobę, pięć dni w tygodniu (zwykle poniedziałek–piątek), z przerwą weekendową. To jest klasyczny standard w większości ośrodków onkologicznych i wynika zarówno z radiobiologii, jak i z organizacji pracy zakładu radioterapii. Komórki nowotworowe i zdrowe tkanki reagują inaczej na napromienianie, a podział dawki całkowitej na wiele małych frakcji (np. 1,8–2,0 Gy dziennie) pozwala zwiększyć szansę zniszczenia guza przy akceptowalnym uszkodzeniu tkanek prawidłowych. Kluczowe są tu zasady tzw. 4R radiobiologii: naprawa, repopulacja, redystrybucja i reoksygenacja. Przerwy między kolejnymi frakcjami, czyli te około 24 godziny, dają czas zdrowym tkankom na naprawę subletalnych uszkodzeń DNA, a jednocześnie nie są na tyle długie, żeby guz zdążył istotnie odrosnąć. Z mojego doświadczenia, w planowaniu leczenia bardzo pilnuje się, żeby pacjent dostawał frakcje regularnie, dzień po dniu, bo przerwy w terapii pogarszają wyniki leczenia. Weekendowa przerwa ma znaczenie praktyczne (organizacja pracy, serwis akceleratora), ale też kliniczne – zmniejsza zmęczenie pacjenta i trochę łagodzi ostre odczyny popromienne, np. rumień skóry czy zapalenie błon śluzowych. Warto pamiętać, że istnieją inne schematy, jak frakcjonowanie przyspieszone, hiperfrakcjonowanie czy hipofrakcjonowanie (np. w radioterapii stereotaktycznej), ale one są modyfikacją standardu i stosuje się je w ściśle określonych wskazaniach. W typowym, „zwykłym” leczeniu radykalnym raka np. głowy i szyi, piersi, prostaty czy płuca, podstawą jest właśnie jedna frakcja dziennie przez pięć dni w tygodniu, aż do osiągnięcia zaplanowanej dawki całkowitej.

Pytanie 15

Podstawowym elementem diagnostycznym aparatury izotopowej wykorzystującej emisyjne metody pomiaru jest

A. kamera scyntylacyjna.
B. komora jonizacyjna.
C. amperomierz.
D. woltomierz.
Prawidłową odpowiedzią jest kamera scyntylacyjna, bo to właśnie ona stanowi podstawowy element diagnostyczny w aparaturze izotopowej wykorzystującej emisyjne metody pomiaru. W emisyjnych technikach medycyny nuklearnej źródłem promieniowania jest radioizotop podany pacjentowi, a zadaniem układu pomiarowego jest rejestracja promieniowania gamma wychodzącego z organizmu. Kamera scyntylacyjna (gammakamera) zamienia te kwanty promieniowania na błyski światła w krysztale scyntylacyjnym (najczęściej NaI(Tl)), a potem na sygnał elektryczny w fotopowielaczach. Na tej podstawie system tworzy obraz rozkładu radiofarmaceutyku w ciele. To właśnie ten element decyduje o jakości diagnostycznej badania: rozdzielczości przestrzennej, czułości detekcji, możliwości wykonywania projekcji planarnych i badań SPECT. W praktyce klinicznej kamera scyntylacyjna jest sercem całego zestawu – reszta aparatury (kolimatory, układy akwizycji, oprogramowanie) tylko wspiera jej działanie. Z mojego doświadczenia to na ustawieniu parametrów pracy kamery, doborze odpowiedniego kolimatora i właściwej energii okna fotopiku opiera się większość dobrej praktyki w scyntygrafii. W nowoczesnych pracowniach standardem jest używanie kamer scyntylacyjnych sprzężonych z TK (SPECT/CT), ale wciąż kluczowy element emisyjny to właśnie detektor scyntylacyjny. Bez niego mamy co najwyżej licznik promieniowania, a nie rzeczywiste narzędzie diagnostyki obrazowej zgodne z wytycznymi medycyny nuklearnej.

Pytanie 16

Na radiogramie uwidoczniono złamanie

Ilustracja do pytania
A. wyrostka kruczego.
B. kości ramiennej.
C. wyrostka barkowego.
D. obojczyka.
Na przedstawionym radiogramie barku w projekcji AP widoczne jest wyraźne przerwanie ciągłości kostnej w obrębie bliższego końca kości ramiennej, tuż poniżej guzka większego. Linia złamania przebiega poprzecznie, z niewielkim przemieszczeniem odłamów, ale z zachowaną ciągłością stawu ramiennego – głowa kości ramiennej nadal pozostaje w panewce łopatki. Obojczyk, wyrostek barkowy i wyrostek kruczy mają gładkie, równe zarysy korowe, bez cech przerwania, nadłamania czy odwarstwienia okostnej, co jednoznacznie przemawia przeciwko ich uszkodzeniu. W praktyce opisując taki obraz zgodnie z dobrymi standardami radiologicznymi (np. według zaleceń towarzystw ortopedycznych i radiologicznych) podajemy lokalizację złamania (koniec bliższy kości ramiennej), ewentualne przemieszczenie, stopień skrócenia, kąt zagięcia oraz ocenę stawu ramiennego i obojczyka. Moim zdaniem warto też zawsze sprawdzić, czy nie ma typowych powikłań, np. wieloodłamowości w okolicy guzka większego lub złamań patologicznych na tle zmian osteolitycznych. W codziennej pracy technika elektroradiologii ważne jest prawidłowe ułożenie pacjenta – projekcja AP barku powinna pokazywać całą głowę kości ramiennej, panewkę, obojczyk i łopatkę, bo dopiero wtedy można rzetelnie ocenić, czy złamanie dotyczy kości ramiennej, czy np. struktur obręczy barkowej. Dodatkowe projekcje (np. Y łopatkowa, osiowa) są często zlecane przy podejrzeniu zwichnięcia, ale przy typowym złamaniu bliższego końca kości ramiennej obraz AP zwykle już daje rozstrzygającą informację diagnostyczną.

Pytanie 17

Lordoza to fizjologiczna krzywizna kręgosłupa występująca

A. tylko w odcinku piersiowym.
B. w odcinku szyjnym i lędźwiowym.
C. w odcinku szyjnym i piersiowym.
D. tylko w odcinku lędźwiowym.
Prawidłowo – lordoza to fizjologiczna, czyli prawidłowa, krzywizna kręgosłupa występująca w odcinku szyjnym i lędźwiowym. Oznacza to, że patrząc z boku na kręgosłup, te dwa odcinki są wygięte do przodu. Taki kształt nie jest wadą, tylko elementem normalnej anatomii człowieka. Dzięki naprzemiennemu ułożeniu lordoz (szyjna, lędźwiowa) i kifoz (piersiowa, krzyżowa) kręgosłup działa jak amortyzator: lepiej rozkłada obciążenia podczas chodzenia, skakania czy dźwigania. W praktyce, przy ocenie zdjęcia RTG bocznego kręgosłupa, technik czy lekarz zawsze analizuje, czy zachowany jest fizjologiczny zarys lordozy szyjnej i lędźwiowej. Z mojego doświadczenia to jest jedna z pierwszych rzeczy, na które patrzy się „na oko”, jeszcze zanim zacznie się dokładniejsze pomiary. W badaniach obrazowych (RTG, TK, MR) nienaturalne spłycenie lub zniesienie tych lordoz może sugerować np. przewlekłe napięcie mięśniowe, ból, skurcz obronny albo zmiany zwyrodnieniowe. Z kolei nadmierna lordoza lędźwiowa bywa związana z otyłością brzuszną, ciążą, słabą stabilizacją mięśniową. Dlatego znajomość prawidłowego rozmieszczenia krzywizn jest kluczowa nie tylko dla zdania testu, ale też dla poprawnego opisywania badań i prawidłowego pozycjonowania pacjenta do zdjęć bocznych – trzeba ustawić go tak, żeby pokazać naturalną krzywiznę, a nie sztucznie ją prostować lub wyolbrzymiać.

Pytanie 18

W leczeniu izotopowym tarczycy podaje się

A. doustnie emiter promieniowania β
B. dożylnie emiter promieniowania β
C. dożylnie emiter promieniowania α
D. doustnie emiter promieniowania α
Prawidłowo: w leczeniu izotopowym nadczynności tarczycy stosuje się doustnie preparaty zawierające jod promieniotwórczy, najczęściej jod-131, który jest emiterem promieniowania β. Tarczyca fizjologicznie wychwytuje jod z krwi, więc po połknięciu kapsułki lub płynu radiojod trafia do gruczołu tak jak zwykły jod, a następnie emituje promieniowanie beta bezpośrednio w tkance. Dzięki temu mamy efekt tzw. terapii celowanej: dawka promieniowania jest skoncentrowana głównie w tarczycy, a narządy sąsiednie dostają relatywnie małą dawkę. To jest bardzo zgodne z zasadą ALARA i ze standardami medycyny nuklearnej. Promieniowanie β (elektrony) ma stosunkowo mały zasięg w tkankach – rzędu kilku milimetrów. To oznacza, że niszczy głównie komórki tarczycy gromadzące jod, bez głębokiego uszkadzania dalszych struktur. W praktyce klinicznej używa się specjalnie przygotowanych radiofarmaceutyków, zwykle w postaci kapsułek, które pacjent połyka jednorazowo pod kontrolą personelu medycyny nuklearnej. Nie ma tutaj żadnej iniekcji dożylnej, bo nie ma takiej potrzeby – fizjologia tarczycy sama „dowiezie” radiojod tam, gdzie trzeba. W procedurach opisanych w wytycznych (np. EANM, Polskie Towarzystwo Medycyny Nuklearnej) podkreśla się, że podanie doustne jest standardem, a dawka jest dobierana indywidualnie w zależności od masy tarczycy, stopnia nadczynności, czasem także wieku pacjenta. Moim zdaniem warto zapamiętać taki prosty schemat: leczenie nadczynności tarczycy = doustny jod-131 = emiter β. W praktyce technika jest dość prosta organizacyjnie, ale wymaga ścisłego przestrzegania zasad ochrony radiologicznej, np. odizolowania pacjenta przez pewien czas, ograniczenia kontaktu z dziećmi i kobietami w ciąży oraz dokładnej dokumentacji podanej aktywności. To jest typowy, klasyczny przykład terapeutycznego zastosowania medycyny nuklearnej, odróżniający ją od radioterapii zewnętrznej.

Pytanie 19

Na wykresie EKG zaznaczono

Ilustracja do pytania
A. odcinek PQ
B. odcinek ST
C. odstęp PQ
D. odstęp QT
Na zaznaczonym fragmencie EKG widoczny jest klasyczny odstęp QT – czyli czas od początku zespołu QRS (pierwsze wychylenie zespołu komorowego, zwykle załamek Q lub R) do końca załamka T. Ten odcinek obejmuje pełny czas depolaryzacji i repolaryzacji komór serca. W praktyce mówi się, że QT to „elektryczne życie komór”, bo opisuje, jak długo komory są pobudzone i jak się potem wyciszają. To właśnie ten zakres jest oznaczony na schemacie: start na początku ostrego, wysokiego wychylenia (zespół QRS) i koniec na opadającym ramieniu załamka T. Moim zdaniem to jeden z kluczowych parametrów w EKG, który technik czy ratownik musi rozpoznawać niemal odruchowo. W codziennej pracy odstęp QT zawsze oceniamy z korekcją do częstości rytmu serca (QTc, np. wg wzoru Bazzetta). Normy QTc to orientacyjnie do ok. 440 ms u mężczyzn i 460 ms u kobiet, ale trzeba też patrzeć na zalecenia aktualnych wytycznych ESC i Polskiego Towarzystwa Kardiologicznego. Wydłużony QT może świadczyć o ryzyku groźnych komorowych zaburzeń rytmu, np. torsade de pointes, i często jest związany z lekami (neuroleptyki, niektóre antyarytmiki, antybiotyki makrolidowe), zaburzeniami elektrolitowymi (hipokaliemia, hipomagnezemia), wrodzonym zespołem długiego QT. Skrócony QT może pojawiać się np. w hiperkalcemii. W pracowni EKG dobrą praktyką jest mierzenie QT w kilku odprowadzeniach (najczęściej II, V5, V6) i wybór najlepiej widocznego końca załamka T, unikając odprowadzeń z wyraźną załamkowością U. Z mojego doświadczenia warto zawsze powiększyć zapis na ekranie aparatu, żeby dokładnie uchwycić koniec T, bo to tam najczęściej popełnia się błędy pomiarowe. Prawidłowe rozpoznanie odstępu QT, tak jak w tym pytaniu, to podstawa bezpiecznej interpretacji EKG.

Pytanie 20

Jednostką indukcji magnetycznej jest

A. om (Ω)
B. kulomb (C)
C. weber (Wb)
D. tesla (T)
Prawidłową jednostką indukcji magnetycznej (nazywanej też gęstością strumienia magnetycznego) w układzie SI jest tesla (T). Indukcja magnetyczna B opisuje „siłę” pola magnetycznego w danym miejscu, czyli jak mocno to pole oddziałuje na ładunki elektryczne w ruchu lub na przewodnik z prądem. Formalnie 1 tesla to taka indukcja magnetyczna, przy której na przewód o długości 1 m, ustawiony prostopadle do linii pola i przewodzący prąd 1 A, działa siła 1 N. Wzór, który to ładnie pokazuje, to F = B · I · l · sinα. W praktyce, w technice medycznej, z indukcją magnetyczną spotykasz się głównie przy rezonansie magnetycznym (MR). Typowe skanery kliniczne mają pola 1,5 T albo 3 T, a w badaniach naukowych używa się nawet 7 T i więcej. Im większa wartość tesli, tym silniejsze pole magnetyczne, lepszy sygnał i potencjalnie wyższa rozdzielczość obrazów, ale też większe wymagania dotyczące ochrony i bezpieczeństwa. W dokumentacji producentów magnesów, cewek gradientowych czy systemów do MR zawsze podaje się natężenie pola właśnie w teslach, zgodnie z normami i standardami (np. IEC dotyczące bezpieczeństwa MR). Dobrą praktyką w pracy z aparaturą jest świadome odróżnianie jednostek: tesla odnosi się do pola magnetycznego, gauss to starsza jednostka spoza SI (1 T = 10 000 G), a weber służy do opisu całkowitego strumienia magnetycznego, a nie jego gęstości. Moim zdaniem warto mieć to w głowie, bo potem łatwiej czytać instrukcje urządzeń, wytyczne BHP i opisy stref bezpieczeństwa w pracowni MR.

Pytanie 21

Osłony na gonady dla osób dorosłych powinny posiadać równoważnik osłabienia promieniowania nie mniejszy niż

A. 1,00 mm Pb
B. 0,35 mm Pb
C. 0,75 mm Pb
D. 0,50 mm Pb
Prawidłowo – dla osób dorosłych osłony na gonady powinny mieć równoważnik osłabienia co najmniej 1,00 mm Pb. Wynika to z zasad ochrony radiologicznej, gdzie gonady traktuje się jako narząd szczególnie wrażliwy, kluczowy dla płodności i ryzyka dziedzicznych skutków promieniowania. Grubość 1,00 mm ołowiu zapewnia bardzo wysoki stopień osłabienia wiązki promieniowania w typowych warunkach badań RTG, np. w radiografii miednicy, bioder, kręgosłupa lędźwiowego. Przy takiej grubości osłony dawka pochłonięta przez jądra lub jajniki jest istotnie zredukowana, a jednocześnie osłona jest jeszcze na tyle ergonomiczna, że da się ją wygodnie stosować w praktyce. Moim zdaniem ważne jest, żeby nie traktować tej wartości jako „opcji”, tylko jako minimum – jeśli w pracowni są osłony cieńsze, to dla dorosłych nie spełniają one standardów ochrony. W dobrych pracowniach radiologicznych rutynowo stosuje się osłony gonadowe właśnie o grubości około 1 mm Pb, dopasowane kształtem: fartuchy typu „figi”, ochraniacze moszny, osłony na okolice miednicy. Warto pamiętać, że zgodnie z zasadą ALARA (As Low As Reasonably Achievable) redukujemy dawkę wszędzie tam, gdzie to możliwe, bez utraty jakości diagnostycznej obrazu. Dobrze dobrana osłona 1 mm Pb nie powinna wchodzić w pole obrazowania i nie może zasłaniać interesujących nas struktur, dlatego tak ważne jest poprawne pozycjonowanie pacjenta i prawidłowe ułożenie samej osłony. Z mojego doświadczenia wiele błędów w pracowni polega właśnie na tym, że ktoś ma dobrą osłonę, ale źle ją zakłada i albo wchodzi w projekcję, albo w ogóle nie przykrywa gonad. Sama grubość 1,00 mm Pb to jedno, a prawidłowa technika i nawyk jej stosowania – drugie, równie ważne.

Pytanie 22

Podczas badania gammakamerą źródłem promieniowania jest

A. detektor.
B. pacjent.
C. kolimator.
D. fotopowielacz.
Poprawnie – w klasycznym badaniu gammakamerą to pacjent jest faktycznym źródłem promieniowania. Do organizmu podaje się radiofarmaceutyk, czyli związek chemiczny połączony z radioizotopem (np. technet-99m). Ten izotop emituje promieniowanie gamma z wnętrza ciała. Gammakamera nic sama nie „wysyła” w stronę pacjenta, ona tylko rejestruje to, co wychodzi z organizmu. To jest podstawowa różnica między medycyną nuklearną a np. RTG – w RTG źródłem promieniowania jest lampa rentgenowska, a w scyntygrafii źródłem staje się sam pacjent po podaniu radiofarmaceutyku. W praktyce klinicznej pozwala to ocenić funkcję narządów, a nie tylko ich anatomię. Przykład: w scyntygrafii kości radiofarmaceutyk gromadzi się tam, gdzie jest zwiększony metabolizm kostny, więc na obrazie widzimy „gorące ogniska” np. przerzutów. W scyntygrafii perfuzyjnej płuc oceniamy przepływ krwi przez miąższ płucny na podstawie rozmieszczenia znacznika. Wszystko to jest możliwe właśnie dlatego, że promieniowanie wychodzi z wnętrza ciała, a nie z zewnątrz. Z mojego doświadczenia wielu uczniów myli to z RTG i myśli, że gammakamera świeci jak lampa, a pacjent tylko „pochłania”. A jest dokładnie odwrotnie: pacjent świeci (w sensie emituje kwanty gamma), a kamera je łapie. Z punktu widzenia ochrony radiologicznej też się tak go traktuje – po podaniu radioizotopu pacjent jest traktowany jak źródło promieniowania i obowiązują określone zasady postępowania, ograniczanie czasu przebywania personelu blisko pacjenta, zalecenia wypisowe dla chorego itp. To jest standard w medycynie nuklearnej, opisany w wytycznych IAEA, EANM i krajowych rekomendacjach.

Pytanie 23

Testy podstawowe z zakresu geometrii pola rentgenowskiego, przeznaczone do sprawdzenia zgodności pola wiązki promieniowania rentgenowskiego z symulacją świetlną, są wykonywane raz

A. w roku.
B. w miesiącu.
C. w tygodniu.
D. w kwartale.
Prawidłowa odpowiedź „w miesiącu” wynika z przyjętych w radiologii standardów kontroli jakości dla aparatów rentgenowskich. Testy podstawowe z zakresu geometrii pola rentgenowskiego mają za zadanie sprawdzić, czy pole wiązki promieniowania rzeczywiście pokrywa się z tym, co pokazuje lampa z kolimatorem i symulacja świetlna. Innymi słowy, czy to, co widzisz w polu świetlnym na stole, faktycznie jest naświetlane promieniowaniem X. Moim zdaniem to jest absolutny fundament bezpiecznej pracy w pracowni RTG, bo każdy błąd w geometrii pola od razu odbija się na jakości obrazu i na narażeniu pacjenta. Zgodnie z dobrymi praktykami (różne wytyczne krajowe i europejskie dotyczące kontroli jakości w diagnostyce obrazowej) testy geometrii pola zalicza się do tzw. testów podstawowych, wykonywanych cyklicznie, zwykle właśnie raz w miesiącu. Chodzi o sprawdzenie zgodności wielkości pola, jego centrowania względem kasety/detektora, zbieżności osi wiązki z osią stołu i lampy, oraz zgodności wskaźników odległości ognisko–detektor. W praktyce taki test może polegać na ułożeniu specjalnego fantomu do testów geometrii pola, z naniesionymi znacznikami, i wykonaniu ekspozycji przy różnych ustawieniach pola świetlnego. Potem ocenia się, czy krawędzie obszaru naświetlonego zgadzają się z zaznaczonym obszarem w polu świetlnym, zwykle dopuszczalne odchylenia są rzędu kilku procent wymiaru pola (np. 2% SID). Regularność comiesięcznego testu ma sens, bo geometria pola może się stopniowo rozjeżdżać: poluzowane mechanizmy kolimatora, uszkodzenie lustra, zmiana położenia żarówki, drobne uderzenia lampą o stół – to wszystko w praktyce się zdarza. Miesięczny interwał jest takim rozsądnym kompromisem: na tyle często, żeby szybko wychwycić nieprawidłowości, a jednocześnie nie paraliżować pracy pracowni nadmiarem testów. W wielu pracowniach, z mojego doświadczenia, łączy się ten test z innymi prostymi kontrolami okresowymi, np. sprawdzeniem działania wskaźników odległości, poprawności blokad mechanicznych czy stabilności nastaw ekspozycji. To wszystko wpisuje się w system zapewnienia jakości i ochrony radiologicznej, gdzie jednym z kluczowych celów jest unikanie zbędnych powtórzeń badań i ograniczanie dawek dla pacjenta i personelu.

Pytanie 24

W obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas

A. relaksacji podłużnej.
B. echa.
C. relaksacji poprzecznej.
D. inwersji.
Prawidłowo: w obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas relaksacji podłużnej (spin–sieć). Chodzi o to, jak szybko namagnesowanie podłużne protonów (w osi głównego pola magnesu) wraca do stanu równowagi po pobudzeniu impulsami RF. W praktyce im krótszy T1, tym dany rodzaj tkanek szybciej „odzyskuje” swoje namagnesowanie podłużne i tym jaśniej świeci na obrazach T1‑zależnych. Dlatego na typowych sekwencjach T1‑zależnych tłuszcz ma krótki T1 i jest jasny, a płyny (np. płyn mózgowo‑rdzeniowy) mają długi T1 i wypadają ciemno. To jest bardzo użyteczne np. w rezonansie głowy: kontrast między istotą białą i szarą mózgu wynika w dużej mierze z różnic w T1. Po podaniu środka kontrastowego gadolinowego też patrzymy głównie na obrazy T1‑zależne, bo skrócenie T1 powoduje wzmocnienie sygnału w miejscach gromadzenia się kontrastu (np. guz, obszar zapalny, zaburzona bariera krew–mózg). Moim zdaniem dobrze jest kojarzyć, że T1 to nie jest żaden „czas echa” ani „czas inwersji”, tylko fizyczny parametr tkanki, który decyduje o kontraście przy odpowiednio dobranych parametrach sekwencji (TR, TE, ewentualnie TI). W codziennej pracy technika czy elektroradiologa rozumienie T1 pomaga świadomie dobierać protokoły, wiedzieć czemu zmiana TR zmienia kontrast i dlaczego w jednych badaniach lekarz chce mocno T1‑zależne obrazy, a w innych bardziej T2‑zależne. To jest taka podstawa fizyki MR, do której ciągle się wraca.

Pytanie 25

Przy ułożeniu do zdjęcia kręgów szyjnych CIII-CVII w projekcji przednio-tylnej lampa może być odchylona o kąt

A. 10-15° doogonowo.
B. 10-15° dogłowowo.
C. 40-45° doogonowo.
D. 40-45° dogłowowo.
Prawidłowe jest ustawienie lampy na kąt około 10–15° dogłowowo, bo właśnie takie ukierunkowanie promieniowania pozwala „wyjść” wiązką spod żuchwy i potylicy oraz lepiej uwidocznić trzony kręgów szyjnych CIII–CVII w projekcji przednio‑tylnej. W praktyce chodzi o to, żeby promień centralny padł możliwie prostopadle do przestrzeni międzykręgowych, a nie „wcinał się” w nie pod ostrym kątem. Jeśli kąt dogłowowy jest niewielki, rzędu 10–15°, to dochodzi do kompensacji naturalnej lordozy szyjnej i zgrywamy się z geometrią odcinka szyjnego. Dzięki temu na zdjęciu lepiej widać wysokość trzonów, zarysy blaszek granicznych i szerokość szpar międzykręgowych, co ma znaczenie np. przy ocenie zmian zwyrodnieniowych czy pourazowych. W wielu podręcznikach do techniki RTG i w zaleceniach szkoleniowych dla techników elektroradiologii właśnie taki zakres kąta (około 10–15° cranial) jest podawany jako standard dla AP C‑spine C3–C7 u dorosłych. W praktyce klinicznej często dodatkowo dostosowuje się go minimalnie do budowy pacjenta (np. bardziej zaznaczona lordoza, masywna obręcz barkowa), ale punkt wyjścia to właśnie ok. 10–15° dogłowowo. Moim zdaniem warto to sobie skojarzyć: odcinek szyjny – projekcja AP – lekki kąt dogłowowy, a nie doogonowy, bo chcemy „podejść” wiązką spod barków i żuchwy, a nie z góry przez potylicę. Dobra praktyka to też kontrola ustawienia głowy (brak rotacji) i barków (opuszczone), bo nawet idealny kąt lampy nie pomoże, jeśli pacjent jest źle ułożony.

Pytanie 26

W zapisie EKG zespół QRS odzwierciedla

A. wyłącznie repolaryzację mięśnia komór.
B. wyłącznie depolaryzację mięśnia komór.
C. repolaryzację mięśnia przedsionków i mięśnia komór.
D. depolaryzację mięśnia przedsionków i mięśnia komór.
Zespół QRS w zapisie EKG odzwierciedla wyłącznie depolaryzację mięśnia komór – i to jest dokładnie to, co trzeba tutaj zapamiętać. W praktyce klinicznej przyjmuje się, że załamek P to depolaryzacja przedsionków, zespół QRS – depolaryzacja komór, a odcinek ST i załamek T – procesy repolaryzacji komór. Repolaryzacja przedsionków co prawda też istnieje, ale nakłada się czasowo na zespół QRS i przez to jest „schowana”, niewidoczna w typowym zapisie EKG. Z mojego doświadczenia to jedno z częstszych miejsc, gdzie ludzie mylą pojęcia: widzą duże wychylenie QRS i myślą, że tam „musi” być wszystko naraz – i depolaryzacja, i repolaryzacja. A jednak nie. Depolaryzacja komór to bardzo szybkie przewodzenie impulsu przez układ bodźcoprzewodzący: pęczek Hisa, jego odnogi i włókna Purkinjego. Ponieważ masa mięśnia komór jest duża, sygnał elektryczny ma dużą amplitudę, dlatego QRS jest wysoki i stosunkowo wąski czasowo (prawidłowo < 120 ms). W diagnostyce elektromedycznej, szczególnie w interpretacji EKG, ocena szerokości, kształtu i osi zespołu QRS jest podstawowym elementem rozpoznawania zaburzeń przewodzenia, bloków odnóg pęczka Hisa, przerostów komór czy rytmów komorowych. Na przykład szeroki QRS sugeruje pobudzenia wychodzące z komór lub blok przewodzenia w drogach komorowych. W badaniach wysiłkowych zwraca się uwagę, czy pod wpływem obciążenia nie pojawia się patologiczne poszerzenie QRS lub zmiana jego morfologii, co może świadczyć o niedokrwieniu. W dobrych praktykach technika EKG zawsze kładzie się nacisk na prawidłowe ułożenie elektrod, bo błędne rozmieszczenie może sztucznie zmieniać wygląd QRS (np. odwrócenie, pseudo-zawałowe załamki Q). Moim zdaniem warto też kojarzyć, że QRS jest kluczowy do oceny rytmu: liczymy częstość na podstawie odstępów R–R, analizujemy regularność, sprawdzamy czy każdy zespół QRS jest poprzedzony załamkiem P. To są elementarne zasady interpretacji według standardów kardiologicznych. Im lepiej rozumiesz, że QRS to czysta depolaryzacja komór, tym łatwiej będzie Ci potem ogarniać bloki, częstoskurcze komorowe, migotanie komór czy zmiany w przebiegu zawału.

Pytanie 27

W badaniu EKG różnice potencjałów pomiędzy lewym podudziem a lewym przedramieniem rejestruje odprowadzenie

A. aVR
B. III
C. aVL
D. I
Prawidłowo wskazane odprowadzenie III rejestruje różnicę potencjałów między lewym podudziem (elektroda na nodze lewej – LL) a lewym przedramieniem (elektroda na ręce lewej – LA). W klasycznym 12‑odprowadzeniowym EKG mamy trzy odprowadzenia kończynowe dwubiegunowe: I, II i III. Zgodnie ze standardem Einthovena: odprowadzenie I zapisuje różnicę potencjałów między prawym przedramieniem (RA) a lewym przedramieniem (LA), odprowadzenie II – między RA a lewym podudziem (LL), a właśnie odprowadzenie III – między LA a LL. Czyli w uproszczeniu: III = LL – LA. To dokładnie odpowiada treści pytania. W praktyce klinicznej znajomość tej konfiguracji jest bardzo ważna, bo ułatwia rozumienie tzw. trójkąta Einthovena i zależności między odprowadzeniami. Można np. korzystać z zależności I + III = II do kontroli jakości zapisu – jeśli suma wektorowa się „nie zgadza”, to często oznacza źle założone elektrody albo artefakty. Moim zdaniem technik, który automatycznie kojarzy, z których elektrod składa się każde odprowadzenie, ma dużo łatwiej przy rozwiązywaniu problemów typu: „dziwnie odwrócone załamki P” czy „nagle ujemny QRS w I”. Wtedy można podejrzewać zamianę elektrod RA/LA albo LA/LL. W codziennej pracy, gdy zakładasz elektrody, warto sobie w głowie odtwarzać, że LL zawsze „wchodzi” w II i III, LA w I i III, a RA w I i II. To naprawdę pomaga w świadomym wykonywaniu badania, a nie tylko „podpinaniu kabelków”.

Pytanie 28

Parametr spirometryczny czynnościowa pojemność zalegająca oznaczany jest skrótem

A. RV
B. TLC
C. FRC
D. TV
Prawidłowy skrót dla czynnościowej pojemności zalegającej to FRC, czyli z angielskiego Functional Residual Capacity. Ta wartość opisuje objętość powietrza, która pozostaje w płucach po zakończeniu spokojnego wydechu, kiedy mięśnie oddechowe są w zasadzie rozluźnione. Moim zdaniem to jeden z ważniejszych parametrów, bo pokazuje „ustawienie” układu oddechowego w stanie spoczynku, bez forsowania wdechu czy wydechu. FRC jest sumą objętości zalegającej (RV) i objętości zapasowej wydechowej (ERV). W praktyce, przy interpretacji spirometrii i badań pojemności płuc, FRC pomaga ocenić, czy płuca są nadmiernie rozdęte, jak np. w POChP, czy raczej zapadają się, jak w niektórych restrykcjach. W nowoczesnej diagnostyce używa się różnych metod wyznaczania FRC: bodypletyzmografii, techniki helowej, azotowej. Z mojego doświadczenia, w opisach badań bardzo często wnioskujemy o pułapkowaniu powietrza właśnie na podstawie podwyższonego FRC względem normy. Standardy spirometryczne (np. ERS/ATS) podkreślają, że sama spirometria przepływowo-objętościowa nie wystarcza do oceny FRC, trzeba badania pojemności płuc. Warto też pamiętać, że FRC jest mocno zależne od pozycji ciała: w leżeniu spada, w pozycji stojącej rośnie, co ma znaczenie np. przy kwalifikacji pacjentów do zabiegów czy wentylacji mechanicznej. W praktyce technika badań powinna minimalizować błędy: pacjent spokojnie oddycha, nie może być po forsownym wysiłku, a sprzęt musi być regularnie kalibrowany, żeby FRC było wiarygodne i porównywalne między badaniami.

Pytanie 29

Na którym obrazie TK uwidoczniony jest artefakt spowodowany ruchami oddechowymi pacjenta?

A. Obraz 4
Ilustracja do odpowiedzi A
B. Obraz 1
Ilustracja do odpowiedzi B
C. Obraz 3
Ilustracja do odpowiedzi C
D. Obraz 2
Ilustracja do odpowiedzi D
Prawidłowo wskazany jest obraz 1. Na tym przekroju TK widać bardzo charakterystyczne, „pofalowane”, zygzakowate zniekształcenie konturów tkanek miękkich i ścian jamy brzusznej, jakby ktoś przesunął fragment obrazu w bok. Struktury anatomiczne nie są ostro odcięte, tylko rozciągnięte i nieregularne w kierunku osi Z i częściowo w płaszczyźnie obrazu. To typowy artefakt ruchowy wynikający z oddychania pacjenta w trakcie akwizycji danych. W TK brzucha i klatki piersiowej ruch oddechowy przepony oraz przesuwanie się narządów (wątroba, śledziona, jelita) powoduje, że kolejne projekcje są zbierane z narządami w nieco innym położeniu. Rekonstrukcja takiego „mieszanego” zestawu danych skutkuje właśnie takim falowaniem, rozmyciem, czasem podwójnymi konturami. W praktyce, zgodnie z dobrymi standardami (ESR, wytyczne producentów skanerów), badając jamę brzuszną prosimy pacjenta o wstrzymanie oddechu na czas skanu, stosujemy krótkie czasy rotacji lampy, odpowiednio dobraną kolimację i pitch, żeby skrócić czas zbierania danych. U pacjentów, którzy mają problem ze współpracą (np. dzieci, osoby z dusznością), często warto rozważyć techniki niskodawkowe z bardzo szybkim skanem, a czasem nawet sedację. Moim zdaniem kluczowe jest też dokładne wytłumaczenie pacjentowi przed badaniem, jak ma oddychać i kiedy przestać, bo to w prosty sposób zmniejsza ryzyko takich artefaktów i poprawia jakość diagnostyczną obrazów.

Pytanie 30

Na zamieszczonej rycinie przedstawiono

Ilustracja do pytania
A. zjawisko anihilacji.
B. zjawisko fotoelektryczne.
C. zjawisko tworzenia par.
D. efekt Comptona.
Na rycinie widać klasyczny schemat zjawiska fotoelektrycznego: kwant promieniowania γ (lub X) pada na elektron związany w atomie, przekazuje mu energię i wybija go poza atom jako elektron swobodny. Opis matematyczny Ee = hν − Ew pokazuje, że energia kinetyczna elektronu wybitego (Ee) jest równa energii fotonu (hν) pomniejszonej o energię wiązania elektronu w atomie (Ew). To jest dokładnie definicja efektu fotoelektrycznego, tak jak uczą w fizyce medycznej i w podstawach radiologii. W diagnostyce obrazowej to zjawisko ma ogromne znaczenie przy niższych energiach promieniowania, typowych np. dla mammografii czy zdjęć kostnych – tam dominująca absorpcja w tkankach to właśnie fotoefekt. Moim zdaniem warto zapamiętać, że fotoefekt jest mocno zależny od liczby atomowej Z materiału (z grubsza rośnie jak Z³) – dlatego kości, zawierające dużo wapnia, pochłaniają więcej promieniowania niż tkanki miękkie i wychodzą na zdjęciu jaśniej. W praktyce technika radiologiczna wykorzystuje to przy doborze napięcia kV: niższe kV wzmacnia udział zjawiska fotoelektrycznego, poprawia kontrast tkankowy, ale zwiększa dawkę pochłoniętą. Standardy ochrony radiologicznej i dobre praktyki (np. zasada ALARA) wymagają takiego doboru parametrów, żeby uzyskać wystarczającą jakość obrazu przy jak najmniejszej dawce, czyli rozsądnego kompromisu między udziałem fotoefektu a rozpraszaniem Comptona. Warto też pamiętać, że po wybiciu elektronu w atomie powstaje luka w powłoce, co prowadzi do emisji promieniowania charakterystycznego lub elektronów Augera – to z kolei leży u podstaw działania kontrastów zawierających jod czy gadolin w niektórych technikach obrazowania.

Pytanie 31

Podczas wykonywania zdjęć wewnątrzustnych zębów górnych linia Campera powinna przebiegać w stosunku do płaszczyzny podłogi

A. równolegle.
B. pod kątem 50°.
C. pod kątem 30°.
D. prostopadle.
Prawidłowo – przy wykonywaniu zdjęć wewnątrzustnych zębów górnych linia Campera powinna przebiegać równolegle do płaszczyzny podłogi. Linia Campera to odcinek łączący skrzydełko nosa z górnym brzegiem małżowiny usznej (tragusem). W stomatologii i technice zdjęć wewnątrzustnych traktuje się ją jako orientacyjną płaszczyznę poziomą twarzy. Ustawienie jej równolegle do podłogi stabilizuje pozycję głowy pacjenta i zapewnia powtarzalne warunki ekspozycji. Z mojego doświadczenia, jeśli głowa jest dobrze ustawiona względem linii Campera, łatwiej uniknąć zniekształceń geometrycznych, skróceń czy wydłużeń zębów na obrazie. W praktyce wygląda to tak, że prosisz pacjenta, żeby usiadł prosto, patrzył mniej więcej na wprost, a potem delikatnie korygujesz pochylenie głowy tak, aby linia od skrzydełka nosa do tragusa była możliwie pozioma. To jest szczególnie istotne przy zdjęciach zębów górnych, gdzie łatwo o nachylenie głowy do tyłu lub do przodu, co od razu psuje projekcję. W dobrych praktykach radiologii stomatologicznej zawsze podkreśla się, że pozycjonowanie pacjenta jest tak samo ważne jak dobór parametrów ekspozycji. Właściwe ustawienie głowy względem linii Campera pomaga też zachować prawidłową relację łuku zębowego do wiązki promieniowania, co poprawia czytelność przestrzeni międzykorzeniowych, wierzchołków korzeni i okolicy przywierzchołkowej. W nowoczesnych pracowniach robi się to często „na oko”, ale mimo wszystko opierając się właśnie na tej prostej zasadzie – linia Campera równoległa do podłogi.

Pytanie 32

Wskaż osłonę radiologiczną, która jest stosowana w pracowniach radiodiagnostyki stomatologicznej.

A. Osłona 3
Ilustracja do odpowiedzi A
B. Osłona 1
Ilustracja do odpowiedzi B
C. Osłona 4
Ilustracja do odpowiedzi C
D. Osłona 2
Ilustracja do odpowiedzi D
Prawidłowo wskazana „Osłona 2” odpowiada typowemu fartuchowi ochronnemu stosowanemu rutynowo w pracowniach radiodiagnostyki stomatologicznej. Jest to fartuch z materiału ołowiowego (lub równoważnego, np. kompozyty bez ołowiu) o określonym współczynniku równoważnika ołowiu, najczęściej 0,25–0,35 mm Pb dla badań stomatologicznych. Tego typu osłony są projektowane tak, żeby zabezpieczać tułów, narządy szczególnie wrażliwe (szpik kostny, gonady, część jamy brzusznej) oraz tarczycę, przy jednoczesnym zachowaniu wygody i swobody ruchów pacjenta. W gabinecie stomatologicznym, zgodnie z zasadami ochrony radiologicznej i wymaganiami wynikającymi z prawa atomowego oraz zaleceń Państwowej Agencji Atomistyki, pacjent podczas wykonywania zdjęć wewnątrzustnych, pantomograficznych czy cefalometrycznych powinien być osłonięty właśnie takim fartuchem lub jego odmianą (czasem połączoną z kołnierzem na tarczycę). Moim zdaniem kluczowe jest tutaj połączenie dwóch rzeczy: odpowiedniej grubości równoważnika ołowiu i właściwego dopasowania do sylwetki. Jeżeli fartuch jest za krótki, źle zapięty albo zsuwa się z barków, realna skuteczność ochrony spada, nawet jeśli teoretycznie spełnia normy. W praktyce technik elektroradiologii zawsze powinien sprawdzić, czy fartuch dobrze przylega, czy nie ma ubytków w materiale osłonowym i czy nie jest mechanicznie uszkodzony (pęknięcia, załamania). Dobrą praktyką jest też regularna kontrola fartuchów w badaniu rentgenowskim serwisowym, żeby wykryć ewentualne nieszczelności. W radiologii stomatologicznej stosuje się jeszcze dodatkowe osłony lokalne – np. kołnierze na tarczycę u dzieci – ale podstawowym elementem, który większość osób kojarzy z gabinetem RTG u dentysty, jest właśnie taki fartuch jak na ilustracji oznaczonej jako Osłona 2.

Pytanie 33

Gruboziarnista folia wzmacniająca wpływa na zwiększenie na obrazie rentgenowskim nieostrości

A. geometrycznej.
B. ruchowej.
C. rozproszeniowej.
D. fotograficznej.
Prawidłowo – chodzi właśnie o nieostrość fotograficzną. Gruboziarnista folia wzmacniająca ma większe kryształki luminoforu, które po pochłonięciu promieniowania X emitują więcej światła, ale robią to mniej precyzyjnie. Światło rozchodzi się na większy obszar emulsji, przez co obraz ziarnuje i traci szczegółowość. Ta utrata szczegółu, związana z właściwościami materiału obrazującego (folia + film), to klasyczny przykład nieostrości fotograficznej. W praktyce radiologicznej zawsze jest kompromis: im grubsza i bardziej czuła folia, tym mniejsza dawka dla pacjenta, ale jednocześnie gorsza rozdzielczość przestrzenna. W standardach jakości obrazu przy zdjęciach kości dłoni, stawu skokowego czy drobnych struktur czaszki zaleca się stosowanie folii drobnoziarnistych, właśnie po to, żeby ograniczyć nieostrość fotograficzną i lepiej widzieć drobne złamania, linie szwów czy zmiany lityczne. Moim zdaniem warto to sobie kojarzyć tak: wszystko, co wynika z właściwości materiału rejestrującego (folia, film, system cyfrowy), to nieostrość fotograficzna, a wszystko, co wynika z ustawienia lampy, odległości, wielkości ogniska – to już inny typ nieostrości. W nowoczesnych systemach cyfrowych (CR, DR) pojęcie „gruboziarnistej folii” trochę się zmienia, ale zasada zostaje podobna: im większe elementy detekcyjne i im większe rozproszenie sygnału w detektorze, tym większa nieostrość wynikająca z samego systemu obrazowania. Dlatego w dobrych praktykach opisuje się wymaganą rozdzielczość systemu w lp/mm i dobiera się ją do badanej okolicy, żeby świadomie panować nad nieostrością fotograficzną i nie robić zdjęć „na ślepo”.

Pytanie 34

Jaki rozmiar kasety należy zastosować, wykonując standardowe zdjęcie stawu kolanowego w projekcji bocznej?

A. 35×35 cm
B. 18×24 cm
C. 9×13 cm
D. 35×43 cm
Prawidłowo – do standardowego zdjęcia stawu kolanowego w projekcji bocznej stosuje się kasetę o rozmiarze 18×24 cm. Ten format jest uznawany za klasyczny dla badań pojedynczych stawów kończyn u dorosłych, zwłaszcza kolana, skokowego czy łokcia. Rozmiar 18×24 cm pozwala objąć cały staw kolanowy w projekcji bocznej: nasadę dalszą kości udowej, bliższą kości piszczelowej, rzepkę oraz okoliczne tkanki miękkie, a jednocześnie nie jest zbyt duży, więc ogranicza niepotrzebne naświetlanie tkanek poza obszarem zainteresowania. Z mojego doświadczenia to jest taki „złoty standard” – łatwo się pozycjonuje pacjenta, kolano dobrze wypełnia pole kasety, a kolimator można ustawić bardzo precyzyjnie. Przy prawidłowym ułożeniu w projekcji bocznej, z lekkim zgięciem stawu (zwykle ok. 20–30°), na obrazie w formacie 18×24 cm mamy czytelne odwzorowanie przestrzeni stawowej, powierzchni stawowych oraz ewentualnych wysięków, zwapnień czy zmian pourazowych. W praktyce technik dobiera kasetę tak, żeby: po pierwsze – nie obcinać struktur anatomicznych istotnych diagnostycznie, po drugie – nie naświetlać pół stołu. Dlatego do kończyn stosuje się mniejsze formaty, a duże kasety zostawia się na klatkę piersiową czy miednicę. W nowoczesnych pracowniach DR czy CR wciąż zachowuje się te same zasady – nawet jeśli fizycznej kasety już nie ma, to pole ekspozycji i kolimację planuje się w odniesieniu do tradycyjnych formatów, właśnie takich jak 18×24 cm dla kolana. To ułatwia trzymanie się standardów opisanych w podręcznikach z techniki radiologicznej i w protokołach pracownianych.

Pytanie 35

Którą metodą zostało wykonane badanie kręgosłupa zobrazowane na zdjęciu?

Ilustracja do pytania
A. Radiologii klasycznej.
B. Scyntygrafii statycznej.
C. Rezonansu magnetycznego.
D. Tomografii komputerowej.
Na przedstawionym obrazie widzisz typowy przekrój strzałkowy kręgosłupa wykonany w tomografii komputerowej (TK). Świadczy o tym kilka charakterystycznych cech: obraz jest warstwowy, o wysokiej rozdzielczości przestrzennej, z bardzo wyraźnym odwzorowaniem beleczkowej struktury kostnej trzonów kręgów, łuków i wyrostków. W TK kość ma bardzo wysoką gęstość w skali Hounsfielda, dlatego widoczna jest jako intensywnie jasna, a tkanki miękkie i tłuszcz są odróżnialne po odcieniach szarości. Moim zdaniem to taki „podręcznikowy” przykład obrazu z tomografu, gdzie granice między strukturami są ostre, a deformacje, złamania czy zmiany zwyrodnieniowe można ocenić bardzo precyzyjnie. W praktyce klinicznej TK kręgosłupa wykonuje się m.in. przy urazach (podejrzenie złamań kompresyjnych, uszkodzeń łuków, zwichnięć), w diagnostyce zmian nowotworowych, przy podejrzeniu zwężeń kanału kręgowego czy przed zabiegami neurochirurgicznymi. Standardem jest rekonstrukcja wielopłaszczyznowa (MPR) – właśnie dzięki niej powstaje taki obraz w płaszczyźnie strzałkowej, mimo że dane źródłowo zbierane są w płaszczyźnie poprzecznej. W dobrych pracowniach zwraca się uwagę na optymalizację dawki promieniowania zgodnie z zasadą ALARA, dobór odpowiednich parametrów (kV, mAs, grubość warstwy) oraz właściwe pozycjonowanie pacjenta, żeby uniknąć artefaktów i konieczności powtarzania badania. Dodatkowo w TK kręgosłupa zwykle nie stosuje się kontrastu dożylnego, chyba że celem jest ocena naciekania nowotworowego, zmian zapalnych czy struktur naczyniowych. W odróżnieniu od rezonansu magnetycznego, w TK lepiej widać szczegóły kostne, natomiast gorzej struktury wewnątrzkanałowe, jak rdzeń kręgowy czy korzenie nerwowe. Dlatego w praktyce często łączy się TK i MR, ale jeśli chodzi o precyzyjną ocenę kości – tomografia komputerowa jest złotym standardem.

Pytanie 36

Jakie wiązki promieniowania emituje medyczny akcelerator liniowy?

A. Protonowe i neutronowe.
B. Fotonowe i elektronowe.
C. Fotonowe i protonowe.
D. Elektronowe i neutronowe.
Poprawnie – medyczny akcelerator liniowy stosowany w radioterapii emituje przede wszystkim wiązki fotonowe (promieniowanie X o wysokiej energii) oraz wiązki elektronowe. W praktyce klinicznej wygląda to tak, że w głowicy akceleratora powstaje wiązka elektronów przyspieszonych do energii rzędu kilku–kilkunastu MeV. Jeśli ten strumień elektronów uderza w tzw. tarczę hamującą (zwykle z wolframu), to w wyniku hamowania powstaje promieniowanie hamowania, czyli fotony o wysokiej energii. To jest właśnie typowa wiązka fotonowa używana w teleterapii do napromieniania guzów położonych głęboko w ciele, np. raka płuca, raka prostaty czy guzów w obrębie miednicy. Natomiast gdy tarcza jest odsunięta, a w torze wiązki wstawia się odpowiednie kolimatory rozpraszające, akcelerator może dostarczyć terapeutyczną wiązkę elektronową. Takie elektrony wykorzystuje się głównie do leczenia zmian powierzchownych lub leżących płytko, np. skóry, węzłów chłonnych nadobojczykowych czy blizn pooperacyjnych. Z mojego doświadczenia w planowaniu radioterapii, wybór między fotonami a elektronami zależy głównie od głębokości celu i ochrony tkanek zdrowych. W nowoczesnych ośrodkach onkologicznych jest to standard postępowania, zgodny z wytycznymi ESTRO i IAEA: dla głębokich guzów – fotony megawoltowe z akceleratora, dla zmian powierzchownych – elektrony o dobranej energii. Warto też pamiętać, że klasyczny medyczny akcelerator liniowy nie generuje wiązek protonowych ani neutronowych – do protonów służą osobne, znacznie bardziej rozbudowane systemy (protonoterapie).

Pytanie 37

Która sekwencja obrazowania MR wykorzystuje impulsy RF o częstotliwości rezonansowej tłuszczu do tłumienia sygnału pochodzącego z tkanki tłuszczowej?

A. MTC
B. TOF
C. FAT SAT
D. PCA
Prawidłowa odpowiedź to FAT SAT, czyli tzw. fat saturation albo fat suppression. W tej technice wykorzystuje się impulsy RF o częstotliwości dokładnie dopasowanej do rezonansu protonów w tłuszczu. Najpierw aparat MR podaje selektywny impuls nasycający dla tłuszczu, a dopiero potem właściwą sekwencję obrazowania. Protony tłuszczu zostają „wybite” ze stanu równowagi i nie zdążą się zrelaksować przed pomiarem, więc ich sygnał jest mocno osłabiony albo praktycznie znika. W efekcie na obrazach tkanka tłuszczowa staje się ciemna, a struktury o wysokiej zawartości wody (np. obrzęk, zapalenie, guzy) są lepiej widoczne. Moim zdaniem to jedna z najbardziej praktycznych sztuczek w MR, bo bardzo poprawia kontrast obrazu. W praktyce klinicznej FAT SAT jest standardem przy badaniach stawów (kolano, bark, skokowy), kręgosłupa, tkanek miękkich oraz w onkologii. Klasyczny przykład: sekwencja T2-zależna z saturacją tłuszczu – idealna do uwidaczniania płynu, obrzęku szpiku, zmian zapalnych. Podobnie w badaniach po kontraście gadolinowym używa się T1 FAT SAT, żeby wzmocnienie kontrastowe na tle wyciszonego tłuszczu było wyraźne i czytelne. Dobre praktyki mówią, żeby zawsze sprawdzać jednorodność pola B0, bo FAT SAT jest wrażliwy na niejednorodności – szczególnie w okolicach metalowych implantów czy przy dużym polu widzenia. Dlatego technicy często korygują shim, dobierają odpowiednie parametry i pilnują pozycji pacjenta. W nowoczesnych protokołach MR często łączy się FAT SAT z innymi modyfikacjami sekwencji (np. FSE, 3D, Dixon), ale zasada pozostaje ta sama: selektywne nasycenie sygnału tłuszczu przy użyciu impulsów RF o jego częstotliwości rezonansowej, żeby uzyskać lepszą diagnostykę i czytelniejszy obraz patologii.

Pytanie 38

Zwiększenie napięcia na lampie rentgenowskiej powoduje

A. skrócenie fali i zmniejszenie przenikliwości promieniowania X.
B. skrócenie fali i zwiększenie przenikliwości promieniowania X.
C. wydłużenie fali i zwiększenie przenikliwości promieniowania X.
D. wydłużenie fali i zmniejszenie przenikliwości promieniowania X.
Prawidłowe rozumowanie opiera się na bardzo podstawowej zależności fizycznej: im wyższe napięcie na lampie rentgenowskiej (kV), tym elektrony są silniej przyspieszane, a więc zderzając się z anodą oddają więcej energii. Ta większa energia kinetyczna elektronów przekłada się na wyższą energię fotonów promieniowania X. A ponieważ długość fali jest odwrotnie proporcjonalna do energii (λ ~ 1/E), wyższa energia oznacza krótszą długość fali. Czyli: wyższe kV → krótsza fala. Krótsza fala i wyższa energia fotonów powodują większą przenikliwość promieniowania X. W praktyce oznacza to, że promieniowanie o wyższym kV łatwiej przechodzi przez grubsze lub gęstsze struktury, np. miednicę, kręgosłup lędźwiowy czy klatkę piersiową u pacjentów o większej masie ciała. W pracowni RTG dobór napięcia jest jednym z kluczowych parametrów ekspozycji. Standardy i dobre praktyki mówią jasno: dla struktur kostnych grubych i gęstych stosuje się wyższe kV, właśnie po to, żeby promieniowanie było bardziej przenikliwe i nie zatrzymywało się w tkankach powierzchownych. Z mojego doświadczenia, przy badaniu klatki piersiowej typowo używa się wysokich napięć (np. 110–125 kV), żeby wiązka przeszła przez cały przekrój klatki i dobrze uwidoczniła serce, płuca i kręgosłup, przy rozsądnej dawce. Przy niższym kV obraz byłby zbyt kontrastowy, mocno „twardy” dla kości, ale tkanki miękkie mogłyby być niedostatecznie uwidocznione. Warto też pamiętać, że zwiększenie kV zmienia charakter wiązki: rośnie udział efektu Comptona, co wpływa na kontrast obrazu (kontrast spada), ale poprawia się przenikliwość. Dlatego w praktyce technik zawsze musi balansować między kV a mAs, żeby uzyskać właściwą jakość obrazu przy jak najniższej dawce, zgodnie z zasadą ALARA. Zwiększenie napięcia to więc nie tylko „mocniejszy” promień, ale konkretnie: krótsza długość fali i większa przenikliwość promieniowania X, co jest dokładnie opisane w poprawnej odpowiedzi.

Pytanie 39

Do czego służy do symulator rentgenowski wykorzystywany w procesie radioterapii?

A. Do weryfikacji dawki podanej pacjentowi w obszarze PTV.
B. Do generowania trójwymiarowych informacji o lokalizacji obszaru guza.
C. Do określania odległości od wirtualnego źródła promieniowania do skóry pacjenta.
D. Do weryfikacji i odwzorowania geometrii pól poszczególnych wiązek terapeutycznych.
Prawidłowo – symulator rentgenowski w radioterapii służy przede wszystkim do weryfikacji i odwzorowania geometrii pól poszczególnych wiązek terapeutycznych. W praktyce oznacza to, że na symulatorze „na sucho” sprawdza się, czy zaplanowane pola napromieniania, kąty obrotu głowicy, kolimatora, ustawienie stołu i pozycja pacjenta rzeczywiście pokrywają się z obszarem, który ma być napromieniony. Moim zdaniem to jest taki etap próbny przed właściwym leczeniem – bez ryzyka podania dawki terapeutycznej. Symulator ma podobną geometrię jak akcelerator (odległość źródło–skóra, zakres ruchów ramienia, kolimatory), ale zamiast wiązki megawoltowej używa promieniowania diagnostycznego, więc można uzyskać obraz rentgenowski i sprawdzić ułożenie pól względem anatomii pacjenta. W standardach radioterapii podkreśla się, że prawidłowe odwzorowanie geometrii pól jest kluczowe dla bezpieczeństwa: dzięki symulacji można wykryć błędy w pozycjonowaniu, złe kąty projekcji, niewłaściwy margines wokół PTV czy niepotrzebne obciążenie narządów krytycznych (OAR). W codziennej pracy używa się symulatora do zaznaczenia na skórze pacjenta linii referencyjnych, punktów laserowych, czasem znaczników tuszem lub tatuaży, które później są używane przy każdym seansie na akceleratorze. Dobre praktyki mówią, że przed pierwszym napromienianiem plan powinien być zweryfikowany geometrycznie – kiedyś głównie na klasycznym symulatorze RTG, dziś coraz częściej na wirtualnym symulatorze opartym na TK, ale zasada jest ta sama: chodzi o kontrolę geometrii pól, a nie o dokładne mierzenie dawki czy tworzenie nowego obrazu 3D. Dzięki temu cały zespół ma większą pewność, że wiązka trafia dokładnie tam, gdzie zaplanował fizyk i lekarz.

Pytanie 40

DSA to cyfrowa

A. angiografia subtrakcyjna.
B. flebografia subtrakcyjna.
C. limfografia subtrakcyjna.
D. arteriografia subtrakcyjna.
Prawidłowa odpowiedź to cyfrowa angiografia subtrakcyjna, czyli Digital Subtraction Angiography (DSA). Rozszyfrowanie skrótu jest tu kluczowe: „A” pochodzi od angiography, czyli obrazowania naczyń krwionośnych. W DSA chodzi dokładnie o to, żeby jak najczyściej uwidocznić tętnice i żyły po podaniu kontrastu jodowego, a jednocześnie „odjąć” (subtrakcyjnie) obraz kości i tkanek miękkich. Technicznie wygląda to tak, że najpierw rejestruje się obraz „maskę” bez kontrastu, a potem serię obrazów po jego podaniu. Komputer piksel po pikselu odejmuje maskę od kolejnych klatek, dzięki czemu zostaje głównie to, co się zmieniło, czyli kontrast w naczyniach. W praktyce klinicznej DSA jest standardem w diagnostyce zwężeń tętnic szyjnych, tętniaków mózgowych, malformacji naczyniowych, zmian w tętnicach wieńcowych, kończyn dolnych czy tętnic nerkowych. Często wykorzystuje się ją także jako badanie łączone z zabiegiem – tzw. procedury endowaskularne: angioplastyka balonowa, implantacja stentów, embolizacja. Z mojego doświadczenia, w pracowniach hemodynamiki i angiografii pacjent z istotnym zwężeniem tętnicy zwykle w tym samym „wejściu” ma robioną i diagnostykę (DSA), i leczenie. DSA wymaga dobrej jakości aparatu angiograficznego, stabilnego ułożenia pacjenta, odpowiedniej dawki kontrastu oraz synchronizacji ekspozycji z podaniem kontrastu. Z punktu widzenia dobrych praktyk ważne jest ograniczanie dawki promieniowania (ALARA), monitorowanie ilości kontrastu i kontrola ryzyka nefropatii pokontrastowej. Cyfrowa arteriografia, flebografia czy limfografia mogą być wykonywane, ale jako techniki szczegółowe – DSA dotyczy ogólnie angiografii, a nie tylko jednego typu naczynia.