Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 10 lutego 2026 23:18
  • Data zakończenia: 10 lutego 2026 23:33

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przed przystąpieniem do diagnostyki oraz regulacji zbieżności kół osi przedniej pojazdu, nie jest konieczne przeprowadzenie dokładnej oceny stanu technicznego

A. zawieszenia.
B. kierowniczego.
C. napędu.
D. opon.
Wybór układu napędowego jako odpowiedzi prawidłowej wynika z faktu, że przed diagnostyką i regulacją zbieżności kół osi przedniej samochodu, nie ma bezpośredniej potrzeby weryfikacji stanu technicznego układu napędowego. Regulacja zbieżności koncentruje się głównie na elementach zawieszenia i układu kierowniczego, ponieważ to one mają kluczowy wpływ na geometrię kół oraz właściwości jezdne pojazdu. Przykładowo, odpowiednie ustawienie zbieżności kół wpływa na równomierne zużycie ogumienia oraz stabilność jazdy, co jest istotne dla bezpieczeństwa. Normy branżowe, takie jak te ustalane przez organizacje motoryzacyjne, podkreślają znaczenie regularnych kontroli stanu zawieszenia i układu kierowniczego przed przystąpieniem do regulacji zbieżności. Rekomendacje dotyczące okresowych przeglądów technicznych samochodów wskazują na konieczność regularnego sprawdzania elementów, które bezpośrednio wpływają na zbieżność, takich jak końcówki drążków kierowniczych czy amoryzatory. Wiedza na temat tych aspektów jest niezbędna dla każdego mechanika pojazdowego, aby zapewnić bezpieczeństwo i wydajność pojazdu.

Pytanie 2

Na rysunku przedstawiono tabliczkę identyfikacyjną pojazdu, z której można odczytać, że pojazd jest przystosowany do ciągania przyczep o dopuszczalnej masie całkowitej (DMC) równej

Ilustracja do pytania
A. 900 kg
B. 970 kg
C. 1625 kg
D. 860 kg
Wybór niewłaściwej odpowiedzi może wynikać z kilku typowych błędów myślowych, które warto omówić w kontekście obliczeń dotyczących dopuszczalnej masy całkowitej (DMC) przyczepy. Nieprawidłowe odpowiedzi mogą sugerować mylne zrozumienie pojęcia DMC oraz jego zależności od parametrów pojazdu. Na przykład, jeśli ktoś wybiera 900 kg, może myśleć, że jest to związane z typowym obciążeniem, które nie uwzględnia maksymalnej masy całkowitej pojazdu. Natomiast 1625 kg to najwyższa masa pojazdu, co wprowadza do błędu w interpretacji, że może to być maksymalna dopuszczona masa przyczepy. Kluczowym błędem jest nieodróżnienie masy całkowitej pojazdu od masy całkowitej pojazdu z przyczepą, co prowadzi do błędnych wniosków. Niezrozumienie tych zasady może prowadzić do niebezpiecznych sytuacji na drodze, dlatego ważne jest, aby przed wyruszeniem w trasę dokładnie znać specyfikacje pojazdu i wartości DMC. Współczesne standardy bezpieczeństwa wymagają, aby kierowcy byli w pełni świadomi ograniczeń ich pojazdów, co jest kluczowe dla transportu zarówno towarów, jak i pasażerów. Dlatego istotne jest, aby zawsze odnosić się do dokumentacji technicznej oraz tabliczek identyfikacyjnych, aby uniknąć nieporozumień i zapewnić bezpieczeństwo na drodze.

Pytanie 3

Na wykresie przedstawiono charakterystykę prędkościową silnika ZI. Oznaczenie ge dotyczy

Ilustracja do pytania
A. mocy użytecznej.
B. momentu obrotowego.
C. jednostkowego zużycia paliwa.
D. prędkości obrotowej.
Wybór odpowiedzi, która odnosi się do mocy użytecznej, prędkości obrotowej lub momentu obrotowego, wskazuje na pewne nieporozumienia dotyczące podstawowych koncepcji związanych z charakterystyką prędkościową silników ZI. Moc użyteczna jest miarą efektywności silnika w przetwarzaniu energii paliwowej na energię mechaniczną, a jej zrozumienie jest kluczowe dla oceny wydajności pojazdu, ale nie jest to to samo co jednostkowe zużycie paliwa. Prędkość obrotowa odnosi się do liczby obrotów wału silnika w jednostce czasu i choć ma wpływ na moc, nie jest bezpośrednio związana z efektywnością paliwową. Moment obrotowy z kolei to siła obrotowa, którą silnik generuje, i również nie informuje nas o zużyciu paliwa w jednostce energii. Te pojęcia, mimo że istotne, nie opisują efektywności paliwowej, która jest kluczowa w kontekście nowoczesnych norm emisji i oszczędności paliwa. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, to mylenie pojęć związanych z mocą i efektywnością, a także brak zrozumienia, jak jednostkowe zużycie paliwa wpływa na projektowanie silników i ich wydajność. Ostatecznie, kluczowe jest rozróżnienie pomiędzy różnymi parametrami silnika, aby właściwie ocenić jego osiągi oraz wpływ na środowisko.

Pytanie 4

Aby zlikwidować wyciek płynu hamulcowego z cylindra zacisku hamulcowego, należy wykonać

A. wymianę pierścienia uszczelniającego
B. naciśnięcie tłoczka głębiej do cylindra
C. dodanie dodatkowej uszczelki
D. użycie smaru do uszczelnienia
Wymiana pierścienia uszczelniającego jest kluczowym krokiem w usuwaniu wycieków płynu hamulcowego z cylindra zacisku hamulcowego. Pierścienie uszczelniające pełnią istotną funkcję w zapewnieniu szczelności układu hamulcowego, a ich uszkodzenie może prowadzić do niepożądanych wycieków, co z kolei może wpływać na skuteczność hamowania. Gdy pierścień uszczelniający jest zużyty lub uszkodzony, jego wymiana jest jedynym sposobem na przywrócenie prawidłowej funkcji zacisku. W praktyce, aby wymienić pierścień uszczelniający, należy zdjąć zacisk hamulcowy, co może wymagać demontażu kół i zasięgnięcia do odpowiednich narzędzi, takich jak klucze i szczypce. Ważne jest, aby przed rozpoczęciem wymiany upewnić się, że nowy pierścień uszczelniający jest zgodny z zaleceniami producenta. Wymiana pierścienia uszczelniającego jest zgodna z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwację układu hamulcowego w celu zapewnienia bezpieczeństwa pojazdu. W sytuacjach, gdy mamy do czynienia z nieszczelnościami, natychmiastowa reakcja i zastosowanie odpowiednich metod naprawczych mogą zapobiec poważniejszym uszkodzeniom układu hamulcowego oraz zagrożeniu podczas jazdy.

Pytanie 5

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. od zewnętrznej strony do wnętrza
B. po kolei od strony napędu wałka rozrządu
C. po kolei od strony skrzyni biegów
D. od wnętrza do zewnętrznej strony
Właściwa kolejność dokręcania śrub głowicy silnika od środka do zewnątrz jest kluczowa dla zapewnienia równomiernego rozkładu sił i uniknięcia odkształceń w obszarze głowicy. Dzięki tej metodzie, wszystkie śruby działają w zharmonizowany sposób, co pozwala na równomierne dociśnięcie uszczelki oraz stabilizację całej konstrukcji. Działanie to jest szczególnie istotne w silnikach wielocylindrowych, gdzie różnice w rozkładzie ciśnienia mogłyby prowadzić do uszkodzeń, takich jak nieszczelności lub pęknięcia. Przykładem może być silnik typu V, gdzie ścisłe przestrzeganie tej zasady jest niezbędne do zapewnienia optymalnej pracy jednostki napędowej. W branży motoryzacyjnej standardy takie jak ISO 6789 określają metody i narzędzia do precyzyjnego dokręcania, co podkreśla wagę tego procesu. Wykonując dokręcanie zgodnie z tą zasadą, minimalizujemy ryzyko awarii i przedłużamy żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 6

Jakie paliwo generuje najniższe wydobycie gazów cieplarnianych?

A. Wodór
B. Olej napędowy
C. Benzyna
D. Propan-butan
Wodór jest uważany za paliwo o najmniejszej emisji gazów cieplarnianych, ponieważ podczas jego spalania powstaje jedynie para wodna, co oznacza, że nie generuje on dwutlenku węgla ani innych szkodliwych substancji. To czyni go bardzo atrakcyjnym rozwiązaniem w kontekście dekarbonizacji transportu i przemysłu. Wodór może być wykorzystywany w ogniwach paliwowych, które przekształcają energię chemiczną bezpośrednio w energię elektryczną, z wysoką efektywnością. Przykłady zastosowania wodoru obejmują transport publiczny w postaci autobusów na ogniwa paliwowe oraz samochody, takie jak Toyota Mirai, które są już dostępne na rynku. W kontekście standardów branżowych, rozwijają się nowe wytyczne dotyczące produkcji i wykorzystania wodoru, takie jak normy ISO 14687 dotyczące czystości wodoru, co jest kluczowe dla zapewnienia jego skutecznego wykorzystania w różnych aplikacjach. W miarę postępu technologii, wodór może odegrać kluczową rolę w przejściu na zrównoważone źródła energii, przyczyniając się do ograniczenia globalnych emisji gazów cieplarnianych.

Pytanie 7

Kontrolka przedstawiona na rysunku, umieszczona na tablicy rozdzielczej samochodu informuje, że pojazd wyposażony jest w system

Ilustracja do pytania
A. ESP
B. ABS
C. ASR
D. EBD
Odpowiedź ESP (Electronic Stability Program) jest prawidłowa, ponieważ kontrolka na tablicy rozdzielczej rzeczywiście odnosi się do tego systemu. ESP jest kluczowym elementem nowoczesnych systemów bezpieczeństwa w pojazdach, z jego główną funkcją polegającą na zapobieganiu poślizgom oraz utracie przyczepności. Działa poprzez monitorowanie ruchu kół i porównywanie ich z kierunkiem, w którym powinien podążać pojazd. Jeśli system wykryje, że pojazd nie podąża zgodnie z tym kierunkiem, automatycznie aktywuje hamulce na poszczególnych kołach, co pomaga przywrócić stabilność. Na przykład, w sytuacji nagłego skrętu w śliskich warunkach, ESP może pomóc w uniknięciu obrotu pojazdu, co jest kluczowe dla bezpieczeństwa kierowcy i pasażerów. Warto zaznaczyć, że ESP jest często wymaganym standardem w wielu krajach, a pojazdy bez tego systemu mogą nie spełniać norm bezpieczeństwa.

Pytanie 8

Kiedy tłok silnika spalinowego znajduje się w górnym martwym punkcie, to przestrzeń nad nim określa objętość

A. komory spalania
B. całkowita cylindra
C. skokowasilnika
D. skokowa cylindra
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z niepełnego zrozumienia podstawowych terminów związanych z konstrukcją silnika spalinowego. Odpowiedź "skokowasilnika" jest błędna, ponieważ termin ten odnosi się do całkowitej długości, jaką tłok przebywa w cylindrze podczas jednego pełnego cyklu pracy, a nie do przestrzeni nad tłokiem w GMP. Podobnie "całkowita cylindra" to termin, który odnosi się do całkowitej objętości cylindra, a nie konkretnej przestrzeni nad tłokiem w danym momencie cyklu. Ostatecznie, "skokowa cylindra" odnosi się do objętości, którą tłok przesuwa, podczas gdy porusza się w górę i w dół, a nie do konkretnej lokalizacji przestrzeni nad tłokiem, gdy ten znajduje się w GMP. Zrozumienie tych terminów jest kluczowe dla prawidłowej analizy pracy silnika. W praktyce, błędne interpretacje mogą prowadzić do nieefektywnych rozwiązań projektowych i problemów podczas eksploatacji silników, co może skutkować zwiększonym zużyciem paliwa, emisją spalin oraz obniżoną wydajnością. W kontekście inżynierii mechanicznej istotne jest zatem, aby studenci i inżynierowie dobrze przyswoili te podstawowe pojęcia, co pozwoli im na lepsze zrozumienie mechanizmów działania silników spalinowych i przyczyni się do ich optymalizacji w codziennej praktyce inżynierskiej.

Pytanie 9

Reperacja tarczy hamulcowej, której bicie osiowe przekracza dozwolone wartości, polega na

A. przetaczaniu
B. wyprostowaniu
C. frezowaniu
D. osiowaniu
Prostowanie tarczy hamulcowej jest często mylone z procesem przetaczania, jednak jest to podejście błędne. Prostowanie może jedynie w niewielkim stopniu zniwelować odkształcenia, ale nie jest w stanie przywrócić tarczy do stanu sprzed wystąpienia bicia osiowego. Tarcze hamulcowe są wykonane z materiałów, które po nagrzaniu mogą tracić swoje właściwości mechaniczne, co sprawia, że prostowanie w praktyce często prowadzi do osłabienia struktury tarczy i jej szybszego zużycia. Frezowanie tarczy, choć technicznie jest możliwe, również nie jest optymalnym rozwiązaniem w przypadku bicia osiowego. Ta metoda wiąże się z dużą ingerencją w materiał, co może skutkować utratą integralności tarczy oraz wpływać na jej żywotność. Osiowanie, jako technika regulacji elementów układów hamulcowych, ma zastosowanie w innych kontekstach, lecz w przypadku tarcz hamulcowych jest nieadekwatne. Istotnym błędem w myśleniu jest zrozumienie, że każda z tych metod może w jakimkolwiek stopniu zastąpić specjalistyczne przetaczanie, które jest uznawane za najbardziej efektywne i zgodne z normami bezpieczeństwa w branży motoryzacyjnej.

Pytanie 10

Kolumna McPhersona stanowi część zawieszenia pojazdu

A. elastyczny
B. tłumiący
C. sztywny
D. skrętny
Kolumna McPhersona to kluczowy element zawieszenia pojazdu, który pełni funkcję tłumiącą. Działa na zasadzie połączenia sprężyny i amortyzatora w jednym module, co pozwala na efektywne zarządzanie siłami działającymi na zawieszenie. Główna rola tłumiąca polega na minimalizowaniu drgań i wstrząsów, które pojazd doświadcza podczas jazdy po nierównych nawierzchniach. Dzięki zastosowaniu kolumny McPhersona, możliwe jest osiągnięcie lepszej stabilności, komfortu jazdy oraz poprawy przyczepności opon do podłoża. W praktyce, kolumny McPhersona są powszechnie stosowane w wielu samochodach osobowych, co obrazuje ich znaczenie w projektowaniu nowoczesnych układów zawieszenia. Wiele europejskich standardów dotyczących konstrukcji pojazdów, takich jak normy ECE, podkreśla znaczenie odpowiedniego tłumienia drgań, co czyni kolumnę McPhersona istotnym elementem w kontekście bezpieczeństwa i komfortu jazdy.

Pytanie 11

Po wymianie czujnika prędkości obrotowej koła konieczne jest przeprowadzenie

A. odczytu kodów błędów sterownika ABS
B. pomiaru długości drogi hamowania pojazdu
C. testu na stanowisku rolkowym
D. testu na szarpaku
Wybór testu na szarpaku, pomiaru długości drogi hamowania czy testu na stanowisku rolkowym po wymianie czujnika prędkości obrotowej koła może wydawać się sensowny, jednak w rzeczywistości nie odzwierciedla podstawowych wymagań diagnostycznych w tej sytuacji. Test na szarpaku, który sprawdza dynamikę pojazdu przy różnych prędkościach, nie jest bezpośrednio związany z funkcjonowaniem czujnika prędkości, a jego wykonanie po wymianie czujnika może nie ujawnić potencjalnych problemów z systemem ABS. Pomiar długości drogi hamowania, choć istotny, nie dostarcza informacji o poprawnym funkcjonowaniu czujnika, który jest kluczowy dla prawidłowego działania systemu hamulcowego. Test na stanowisku rolkowym może być użyty do oceny ogólnej wydajności pojazdu, jednak znowu nie daje jasnych wskazówek co do stanu czujnika prędkości. W rzeczywistości, błędne podejście do diagnostyki po wymianie czujnika może prowadzić do zignorowania potencjalnych kodów błędów związanych z ABS, co w efekcie obniża bezpieczeństwo pojazdu. Dlatego kluczowe jest, aby po każdej takiej wymianie przeprowadzać odczyt kodów błędów, co stanowi standardową praktykę w branży motoryzacyjnej, mającą na celu zapewnienie odpowiedniej diagnostyki i konserwacji systemów bezpieczeństwa.

Pytanie 12

Do działań związanych z konserwacją nadwozia samochodu należy

A. wymiana oleju silnikowego
B. czyszczenie aluminiowych felg kół
C. czyszczenie silnika pojazdu
D. pastowanie i polerowanie lakieru
Pastowanie i polerowanie lakieru to kluczowe czynności konserwacyjne, które mają na celu utrzymanie estetyki oraz ochrony nadwozia pojazdu. Proces ten polega na nałożeniu pasty na powierzchnię lakieru, co pozwala usunąć drobne zarysowania i utlenienia, a następnie na wypolerowaniu, co nadaje lakierowi wysoki połysk. Takie działania nie tylko poprawiają wygląd pojazdu, ale również chronią lakier przed wpływem czynników atmosferycznych, takich jak promieniowanie UV, deszcz czy zanieczyszczenia. W branży motoryzacyjnej standardem jest, aby takie zabiegi przeprowadzać co najmniej raz w roku, zwłaszcza przed sezonem letnim, aby zabezpieczyć lakier przed intensywnym działaniem słońca. Przykładem może być stosowanie wosków syntetycznych lub naturalnych, które tworzą na powierzchni lakieru barierę ochronną. Wiedza na temat konserwacji lakieru jest niezbędna nie tylko dla właścicieli pojazdów, ale także dla profesjonalnych detailerów, którzy w swoich usługach oferują kompleksowe podejście do pielęgnacji samochodów.

Pytanie 13

Aby dokręcić nakrętki lub śruby kół w pojeździe z odpowiednim momentem, należy zastosować klucz

A. dynamometryczny.
B. płaski.
C. oczko.
D. do kół.
Klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania nakrętek i śrub z precyzyjnie określonym momentem obrotowym, co jest kluczowe w kontekście kół samochodowych. Właściwy moment obrotowy zapewnia, że elementy mocujące są odpowiednio dokręcone, co zapobiega ich poluzowywaniu się w trakcie jazdy, a także minimalizuje ryzyko uszkodzeń gwintów. Standardy producentów pojazdów, takie jak ISO 6789, określają wymagania dotyczące narzędzi pomiarowych, w tym kluczy dynamometrycznych. Na przykład, dla wielu modeli samochodów moment dokręcania śrub kół wynosi od 90 do 120 Nm, w zależności od specyfikacji producenta. Użycie klucza dynamometrycznego pozwala na dokładne osiągnięcie tych wartości, co jest niezbędne dla bezpieczeństwa jazdy. Przykładem dobrych praktyk jest dokręcanie śrub w sekwencji krzyżowej, co równomiernie rozkłada siły działające na felgę. Dodatkowo, stosowanie klucza dynamometrycznego w regularnych przeglądach technicznych pojazdu zapewnia dłuższą żywotność elementów zawieszenia oraz opon.

Pytanie 14

Przedstawione na rysunku przepalenie denka tłoka w silniku z zapłonem iskrowym jest skutkiem

Ilustracja do pytania
A. zastosowanie paliwa o zbyt wysokiej liczbie cetanowej.
B. zbyt niskiej temperatury pracy silnika.
C. zbyt ciasno spasowanego tłoka w cylindrze.
D. zastosowania świecy zapłonowej o niewłaściwej wartości cieplnej.
Zastosowanie świecy zapłonowej o niewłaściwej wartości cieplnej jest kluczowym czynnikiem wpływającym na prawidłowe funkcjonowanie silnika z zapłonem iskrowym. Świeca zapłonowa jest odpowiedzialna za inicjowanie procesu spalania mieszanki paliwowo-powietrznej w cylindrze, a jej wartość cieplna determinuje, jak łatwo świeca odprowadza ciepło do otoczenia. Zbyt wysoka wartość cieplna może prowadzić do nadmiernego nagrzewania się tłoka, co z kolei prowadzi do jego przepalenia. W praktyce, dobór odpowiednich świec zapłonowych zgodnych z zaleceniami producenta silnika jest niezbędny dla zapewnienia optymalnej pracy oraz wydajności silnika. Przykładowo, silniki wyposażone w systemy zarządzania silnikiem, takie jak ECU, mogą monitorować temperaturę pracy i dostosowywać parametry zapłonu, co podkreśla znaczenie właściwego doboru komponentów. Używanie świec o niewłaściwej wartości cieplnej nie tylko wpływa na trwałość tłoków, ale może również prowadzić do zmniejszenia efektywności spalania i zwiększenia emisji szkodliwych substancji, dlatego przestrzeganie standardów branżowych jest kluczowe.

Pytanie 15

Na rysunku przedstawiono pomiar

Ilustracja do pytania
A. wzajemnego położenia śrub.
B. wysokości śrub mocujących.
C. długości kadłuba.
D. płaskości kadłuba.
Odpowiedź dotycząca płaskości kadłuba jest poprawna, ponieważ w kontekście silników i ich komponentów, płaskość powierzchni montażowych ma kluczowe znaczenie dla zapewnienia prawidłowego działania jednostki. Na zdjęciu przedstawiono kadłub silnika, gdzie precyzyjne pomiary płaskości są niezbędne, aby zagwarantować prawidłowe przyleganie elementów, takich jak głowica cylindrów czy bloki silnika. Niezgodności w płaskości mogą prowadzić do nieszczelności, co w konsekwencji może wpłynąć na wydajność i trwałość silnika. W branży często korzysta się z narzędzi pomiarowych, takich jak poziomice, mikrometry czy zestawy do pomiaru płaskości, aby zapewnić, że wszystkie powierzchnie montażowe są zgodne z normami i specyfikacjami. Praktyczne zastosowanie tych technik umożliwia nie tylko naprawę, ale także optymalizację wydajności silników, co jest kluczowe w inżynierii mechanicznej.

Pytanie 16

Przed dokonaniem pomiaru geometrii kół przednich w samochodzie osobowym, pojazd powinien być ustawiony tak, aby koła

A. przedniej i tylnej osi znajdowały się na obrotnicach
B. przedniej osi były na płytach odciążających, a tylnej na obrotnicach
C. przedniej i tylnej osi spoczywały na płytach odciążających
D. przedniej osi były na obrotnicach, a tylnej na płytach odciążających
Prawidłowa odpowiedź polega na ustawieniu przedniej osi na obrotnicach, a tylnej na płytach odciążających, co jest kluczowe dla dokładności pomiarów geometrii kół. Tego rodzaju ustawienie zapewnia stabilność pojazdu, eliminując jakiekolwiek ruchy, które mogłyby wpłynąć na wyniki pomiarów. Obrotnice umożliwiają swobodne obracanie kół przednich, co jest niezbędne do oceny i regulacji kątów geometrii, takich jak zbieżność, kąt pochylenia i kąt wyprzedzenia. Płyty odciążające zaś pozwalają na dokładne odwzorowanie warunków, w jakich koła są obciążone podczas normalnej jazdy. Tego rodzaju praktyki są zgodne z zaleceniami producentów i technikami stosowanymi w profesjonalnych warsztatach samochodowych. Dlatego ustawienie pojazdu w opisywany sposób zapewnia nie tylko bezpieczeństwo, ale również precyzyjne wyniki, co jest kluczowe dla utrzymania prawidłowego działania układu kierowniczego oraz ogólnej wydajności pojazdu.

Pytanie 17

W celu pielęgnacji powłok lakierniczych karoserii samochodowej zaleca się użycie środków opartych na

A. woskach
B. olejach pochodzenia naftowego
C. olejach mineralnych
D. alkoholu
Preparaty na bazie wosków są najczęściej stosowane do konserwacji powłok lakierniczych nadwozi samochodowych ze względu na swoje właściwości ochronne i estetyczne. Woski, zarówno naturalne, jak i syntetyczne, tworzą na powierzchni lakieru warstwę ochronną, która zabezpiecza go przed działaniem czynników atmosferycznych, takich jak promieniowanie UV, woda, oraz zanieczyszczenia środowiskowe. Dzięki temu lakier dłużej zachowuje swoje właściwości estetyczne, a pojazd wygląda na zadbany. Przykładem zastosowania wosków mogą być regularne zabiegi pielęgnacyjne, które wykonuje się co kilka miesięcy, aby utrzymać samochód w odpowiednim stanie. Wosk tworzy również efekt hydrofobowy, co oznacza, że woda spływa z powierzchni, co minimalizuje ryzyko powstawania zarysowań i osadzania się brudu. W branży samochodowej preferowane są woski twarde, które zapewniają większą trwałość i odporność na ścieranie. Stosowanie produktów na bazie wosków jest zgodne z dobrymi praktykami w pielęgnacji lakierów.

Pytanie 18

Nie jest parametrem geometrycznym kół

A. zbieżność kół
B. ciśnienie w ogumieniu
C. kąt nachylenia sworznia zwrotnicy
D. kąt wyprzedzenia sworznia zwrotnicy
Kąt pochylenia sworznika zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznika zwrotnicy to wszystkie kluczowe elementy geometrii kół, które wpływają na zachowanie pojazdu na drodze. Kąt pochylenia sworznika zwrotnicy, znany również jako camber, odnosi się do kąta, pod jakim koło jest ustawione w stosunku do pionu. Zbyt duży lub zbyt mały kąt może prowadzić do nierównomiernego zużycia opon oraz negatywnego wpływu na stabilność jazdy. Zbieżność kół, określająca, jak koła są ustawione względem siebie, jest niezwykle istotna dla prawidłowego prowadzenia pojazdu. Niewłaściwa zbieżność może skutkować ściąganiem pojazdu na jedną stronę drogi oraz zwiększonym oporem toczenia. Kąt wyprzedzenia sworznika zwrotnicy, z kolei, wpływa na automatyczne nawracanie kół podczas jazdy, co pomaga w utrzymaniu stabilności pojazdu na zakrętach. Ignorowanie tych parametrów geometrycznych może prowadzić do niebezpiecznych sytuacji na drodze, w tym do trudności w prowadzeniu oraz nieprzewidywalnego zachowania pojazdu. Właściwe ustawienie geometrii kół jest kluczowe dla bezpieczeństwa, dlatego zaleca się regularne kontrole w autoryzowanych serwisach, które przestrzegają standardów takich jak SAE J678 dotyczących geometrii zawieszenia.

Pytanie 19

Retarder to element charakterystyczny dla budowy pojazdów

A. hybrydowych
B. ciężarowych
C. elektrycznych
D. osobowych
Retarder jest urządzeniem, które znacząco wpływa na bezpieczeństwo i efektywność pracy pojazdów ciężarowych. W przeciwieństwie do pojazdów osobowych, w których hamowanie opiera się głównie na tradycyjnych hamulcach tarczowych, pojazdy ciężarowe wymagają dodatkowych systemów hamulcowych, aby skutecznie kontrolować prędkość, zwłaszcza przy dużych obciążeniach i na stromych zjazdach. Retarder, działający na zasadzie oporu hydraulicznego lub elektromagnetycznego, umożliwia zmniejszenie prędkości bez nadmiernego zużycia standardowych hamulców. Dzięki temu, zmniejsza ryzyko przegrzania hamulców i wydłuża ich żywotność. Przykłady zastosowania retarderów można znaleźć w pojazdach transportowych, takich jak tiry, które regularnie poruszają się w trudnych warunkach drogowych. W standardach branżowych, takich jak normy ECE R13, zwraca się uwagę na wymagania dotyczące systemów hamulcowych w pojazdach ciężarowych, co podkreśla istotność retarderów w zapewnieniu bezpieczeństwa transportu.

Pytanie 20

W głowicy silnika spalinowego do elementów układu rozrządu należy zaliczyć zawory

A. kulowe
B. membranowe
C. grzybkowe
D. suwakowe
Zawory grzybkowe w silnikach spalinowych to naprawdę istotna sprawa. Ich rola w układzie rozrządu jest kluczowa, bo to one decydują, kiedy mieszanka paliwa i powietrza wchodzi do cylindrów, a kiedy spaliny są wydalane. Jak się dobrze zastanowić, to ich kształt faktycznie przypomina grzyb, co pomaga w uszczelnieniu gniazda zaworu i zmniejsza straty ciśnienia. W praktyce, są one używane w autach, motocyklach i wielu innych maszynach, co pokazuje, jak ważne są w naszym codziennym życiu. Dzięki ich standaryzacji, można je łatwo stosować w różnych silnikach, co też przyspiesza produkcję. Ważne jest, żeby regularnie dbać o luz zaworowy i konserwację, bo to wpływa na efektywność silnika. Przy wyborze materiałów i technologii produkcji, trzeba mieć na uwadze ich trwałość i niezawodność, co w praktyce naprawdę się przydaje.

Pytanie 21

Urządzenia warsztatowe nie obejmują

A. podnośnika hydraulicznego
B. kanału najazdowego
C. miernika
D. prasy
Urządzenia warsztatowe to kluczowe elementy wyposażenia każdego warsztatu, które umożliwiają przeprowadzanie różnorodnych prac związanych z naprawą i konserwacją pojazdów. Podnośnik hydrauliczny, miernik czy prasa to przykłady narzędzi, które pełnią istotne funkcje w tym kontekście, gdyż umożliwiają wykonywanie pomiarów, podnoszenia pojazdów do łatwiejszych prac oraz formowania komponentów. Często spotykanym błędem jest mylenie kanału najazdowego z urządzeniem warsztatowym, co może wynikać z jego funkcji w kontekście pracy w warsztacie. Kanał najazdowy to struktura, która ma na celu umożliwienie wjazdu pojazdów, ale nie jest urządzeniem, które wykonuje jakiekolwiek operacje mechaniczne ani elektroniczne. W praktyce, za pomocą kanału najazdowego można uzyskać dostęp do dolnych części pojazdu, ale nie można go używać do napraw, konserwacji czy innych działań, które wymagają specjalistycznych narzędzi. Zrozumienie różnicy pomiędzy tymi pojęciami jest kluczowe dla prawidłowego funkcjonowania w branży motoryzacyjnej, gdzie precyzyjne rozróżnienie narzędzi i urządzeń wpływa na efektywność i bezpieczeństwo pracy. Oprócz tego, istotne jest, aby w każdym warsztacie były zastosowane odpowiednie standardy BHP, aby zapewnić bezpieczne korzystanie z urządzeń, co jest niezbędne dla prawidłowego funkcjonowania każdej pracy w tym środowisku.

Pytanie 22

Jedną z przyczyn zbyt dużego zużycia opony z zewnętrznej strony może być

A. niepoprawne wyważenie koła
B. niewłaściwy kąt pochylenia koła
C. zbyt wysokie ciśnienie w oponie
D. niewłaściwy kąt wyprzedzenia sworznia zwrotnicy
Niewłaściwy kąt pochylenia koła (zwany także kątem pochylenia lub kątem camber) ma istotny wpływ na zużycie opon. Kąt pochylenia powinien być dostosowany do specyfikacji producenta, aby zapewnić prawidłowy kontakt opony z nawierzchnią drogi. Jeśli kąt pochylenia jest zbyt duży w kierunku wewnętrznym (negative camber), zewnętrzna krawędź opony będzie się intensywnie ścierać, co prowadzi do jej nadmiernego zużycia. Odpowiednie ustawienie tego kąta ma kluczowe znaczenie dla stabilności pojazdu oraz jego trakcji, szczególnie w zakrętach. Przykładowo, w wyścigach samochodowych, gdzie maksymalna przyczepność jest kluczowa, często stosuje się dodatni kąt pochylenia, aby zminimalizować zużycie i poprawić osiągi. Aby zapewnić prawidłowe ustawienie, można skorzystać z usług specjalistycznych warsztatów, które dysponują odpowiednim sprzętem pomiarowym, co jest zgodne z ogólnymi standardami branżowymi dotyczącymi geometrii zawieszenia.

Pytanie 23

Korzystając z tabeli, określ zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego

Oznaczenie wymiaruNr katalogowy półpanewki (górnej lub dolnej)Grubość ścianki półpanewki (mm)Średnica wewnętrzna panewki po zamontowaniu (mm)
N000Produkcyjny0050/50-312/02.000+0.020-0.03060.00+0.079-0.040
N0251 naprawa0050/50-349/02.125+0.020-0.03059.75+0.079-0.040
N0502 naprawa0050/50-393/02.250+0.020-0.03059.50+0.079-0.040
N0753 naprawa0050/50-392/02.375+0.020-0.03059.25+0.079-0.040
N1004 naprawa0050/50-385/02.500+0.020-0.03059.00+0.079-0.040
N1255 naprawa0050/50-386/02.625+0.020-0.03058.75+0.079-0.040
A. 2,020-2,030 mm
B. 2,105-2,155 mm
C. 2,355-2,405 mm
D. 2,220-2,230 mm
Błędne odpowiedzi wskazują na nieprawidłowe zrozumienie zasad obliczania wymiarów dla półpanewki. W przypadku odpowiedzi, które mieszczą się w zakresie 2,020-2,030 mm oraz 2,105-2,155 mm, można zauważyć, że są one oparte na zbyt dużych odchyłkach od wartości nominalnej, co prowadzi do nieprawidłowego wyznaczenia granic. W inżynierii mechanicznej kluczowe jest, aby wszelkie obliczenia oparte były na solidnych fundamentach teoretycznych oraz aktualnych normach. Przykładowo, nieodpowiednie zrozumienie, jak odchyłki wpływają na finalne wymiary, może prowadzić do produkcji podzespołów o niedostatecznej precyzji. W tym kontekście, błędne odpowiedzi mogą wynikać z typowych pomyłek, takich jak pomijanie odchyłek ujemnych, które odgrywają kluczową rolę w ustalaniu minimalnych granic wymiarów. Ponadto, niewłaściwe interpretowanie norm dotyczących tolerancji może prowadzić do poważnych konsekwencji, takich jak obniżona jakość produktów lub ich niewłaściwe dopasowanie w mechanizmach. W związku z tym, tak ważne jest, aby podczas obliczeń nie tylko stosować się do standardów, ale również dokładnie analizować, jakie wartości odchyłek są dopuszczalne w danym przypadku.

Pytanie 24

Omomierz można zastosować do weryfikacji czujnika

A. Halla
B. zegara
C. manometrycznego
D. położenia przepustnicy
Zegarowy, czujnik Halla oraz manometryczny to różne rodzaje czujników, które pełnią inne funkcje i nie są odpowiednie do pomiaru położenia przepustnicy. Czujnik zegarowy służy do pomiaru czasu lub częstotliwości zdarzeń, co jest zupełnie inną dziedziną niż monitorowanie położenia elementów silnika. Z kolei czujnik Halla jest wykorzystywany do detekcji pól magnetycznych i ma zastosowanie np. w systemach zapłonowych lub do pomiaru prędkości obrotowej, natomiast nie nadaje się do bezpośredniego pomiaru kątów otwarcia przepustnicy. Czujnik manometryczny, z drugiej strony, jest stosowany do pomiaru ciśnienia gazów lub cieczy, a więc również nie jest właściwym narzędziem do oceny położenia przepustnicy. Wybór odpowiedniego czujnika jest kluczowy dla uzyskania rzetelnych danych, a mylenie ich funkcji może prowadzić do błędnych wniosków diagnostycznych. Często występującym błędem jest zakładanie, że każdy czujnik może być użyty zamiennie, co jest niezgodne z zasadami inżynierii i diagnostyki pojazdów. Dlatego ważne jest, aby mieć świadomość specyfiki każdego czujnika oraz jego zastosowania w kontekście układów elektronicznych pojazdu.

Pytanie 25

W jakim celu stosuje się synchronizator w skrzyni biegów pojazdu samochodowego?

A. Aby zredukować hałas w kabinie
B. Aby zmniejszyć zużycie paliwa
C. Aby ułatwić zmianę biegów
D. Aby zwiększyć prędkość maksymalną pojazdu
Synchronizator w skrzyni biegów jest kluczowym elementem, który pełni bardzo istotną rolę w procesie zmiany biegów w pojazdach samochodowych. Jego głównym zadaniem jest ułatwienie zmiany biegów poprzez zsynchronizowanie prędkości obrotowej kół zębatych przed ich zazębieniem. Dzięki temu kierowca nie musi dokładnie dostosowywać prędkości obrotowej silnika i skrzyni biegów, co znacząco wpływa na komfort jazdy i bezpieczeństwo. Synchronizatory eliminują potrzebę stosowania tzw. podwójnego wysprzęglania, co było konieczne w starszych skrzyniach biegów bez synchronizatorów. Współczesne skrzynie biegów są wyposażone w synchronizatory, które automatycznie dostosowują prędkości obrotowe, co pozwala na płynną i cichą zmianę biegów. Jest to szczególnie ważne w warunkach miejskich, gdzie zmiana biegów następuje często. Synchronizatory również redukują zużycie mechaniczne elementów skrzyni biegów, co przekłada się na dłuższą żywotność tego podzespołu. Z mojego doświadczenia, synchronizatory to jedno z tych rozwiązań technicznych, które znacząco poprawiają użytkowanie pojazdu na co dzień.

Pytanie 26

Podczas pracy z elektryczną szlifierką ręczną konieczne jest noszenie

A. rękawic ochronnych
B. obuwia roboczego
C. fartucha ochronnego
D. okularów ochronnych
Choć rękawice ochronne, obuwie robocze oraz fartuch ochronny są istotnymi elementami wyposażenia ochronnego w wielu sytuacjach, nie zastępują one jednak okularów ochronnych w kontekście prac ze szlifierką. Rękawice ochronne są ważne, aby zabezpieczyć dłonie przed ostrymi krawędziami oraz ciepłem generowanym w wyniku tarcia, jednak w przypadku szlifierki, ich stosowanie często ogranicza precyzję chwytu oraz manualną kontrolę nad narzędziem. Ponadto, w przypadku pyłów i iskier, rękawice nie zapewnią ochrony dla oczu, co czyni je niewystarczającymi w tej konkretnej sytuacji. Obuwie robocze jest kluczowe dla ochrony stóp przed ciężkimi przedmiotami oraz zapewnienia stabilności, a fartuch ochronny chroni odzież i ciało przed zabrudzeniami i drobnymi uszkodzeniami. Niemniej jednak, żaden z tych elementów nie ma zdolności ochrony oczu, które są najbardziej narażone na bezpośrednie działanie niebezpiecznych czynników podczas szlifowania. W efekcie, brak okularów ochronnych może prowadzić do poważnych urazów oczu, w tym uszkodzeń rogówki, co jest jednym z najczęstszych urazów w miejscu pracy. Ignorowanie tego aspektu ochrony osobistej może prowadzić do niebezpiecznych sytuacji, które mogłyby być łatwo uniknięte przez stosowanie odpowiedniego sprzętu ochronnego, jakim są okulary ochronne.

Pytanie 27

Podczas próby olejowej, kiedy mierzono ciśnienie sprężania w silniku z zapłonem iskrowym, zaobserwowano wzrost ciśnienia w cylindrze o 0,4 MPa w porównaniu do pomiaru bez oleju. Najbardziej prawdopodobnym zakresem uszkodzeń silnika jest nieszczelność

A. uszczelki pod głowicą
B. zaworu dolotowego
C. zaworu wylotowego
D. układu tłok-cylinder
Wzrost ciśnienia sprężania o 0,4 MPa w czasie pomiaru olejowego wskazuje na problemy z nieszczelnością w układzie tłok-cylinder. Olej wprowadzany do cylindra działa jako uszczelniacz, co tymczasowo poprawia ciśnienie, a jego wzrost sugeruje, że uszczelki lub same tłoki mają trudności z właściwym sealowaniem. W praktyce, nieszczelności w układzie tłok-cylinder są częstym problemem w silnikach spalinowych i mogą prowadzić do znacznych strat mocy oraz zwiększonego zużycia paliwa. W standardach diagnostyki silników, takie objawy są często łączone z testami kompresji i próby olejowe są jedną z metod weryfikacji stanu silnika. Warto regularnie monitorować stan układu tłok-cylinder, aby zapobiec poważniejszym uszkodzeniom. Dobre praktyki obejmują również zastosowanie odpowiednich olejów silnikowych oraz regularną kontrolę stanu uszczelek i tłoków, co może znacznie przedłużyć żywotność silnika.

Pytanie 28

W pojazdach z tradycyjnym systemem napędowym właściwa zbieżność kół powinna być

A. zerowa
B. bez znaczenia
C. ujemna
D. dodatnia
Rozumienie zbieżności kół jest mega ważne dla tego, jak działa samochód. Jak zbieżność byłaby obojętna, to koła nie byłyby zwrócone względem siebie, a to by prowadziło do niestabilności i problemów z prowadzeniem. Dlatego pojazd mógłby się dziwnie zachowywać, gdybyśmy ruszyli kierownicą, co zwiększa ryzyko wypadków. Z kolei, ujemna zbieżność, czyli jakby koła były skierowane na zewnątrz na górze, to już nie jest za fajnie, bo powoduje szybsze zużycie opon i kłopoty z kontrolowaniem auta, zwłaszcza w zakrętach. Nawet zerowa zbieżność, pomimo że może się wydawać znośna, też potrafi sprawić kłopoty, bo przyspiesza zużycie bieżnika i psuje stabilność pojazdu. Wiele osób myśli, że zmiany w zbieżności kół są neutralne, ale to nie prawda. Jak koła są źle ustawione, to może się to skończyć większym zużyciem paliwa i dezorientacją podczas jazdy. Regularne przeglądy geometrii kół w warsztatach to konieczność, nie tylko dla mechaników, ale też dla kierowców, bo wiedza o zbieżności ma wpływ na bezpieczeństwo i komfort jazdy.

Pytanie 29

Oznaczenie na alternatorze: 14V, 90A wskazuje

A. najniższe zdolności produkcyjne prądu
B. sprawność alternatora
C. najmniejszy prąd wzbudzenia
D. maksymalne natężenie prądu dla akumulatora
Oznaczenie 14V, 90A na alternatorze wskazuje, że jego maksymalne napięcie wynosi 14V, a maksymalne dopuszczalne natężenie prądu to 90A. Wydajność alternatora odgrywa kluczową rolę w prawidłowym funkcjonowaniu systemu elektrycznego pojazdu. Alternator generuje prąd, który ładował akumulator oraz zasila urządzenia elektryczne w samochodzie. W praktyce, aby zapewnić niezawodność pracy alternatora, jego wydajność powinna być dostosowana do wymagań pojazdu, co oznacza, że powinien on być w stanie dostarczyć odpowiednie natężenie prądu w różnych warunkach eksploatacyjnych. Dobrą praktyką jest również regularne sprawdzanie stanu alternatora i akumulatora, aby uniknąć problemów z rozruchem oraz zapewnić odpowiednią moc dla systemów multimedialnych, oświetlenia i innych urządzeń elektrycznych. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie efektywności i niezawodności komponentów elektronicznych w pojazdach, co znajduje odzwierciedlenie w doborze odpowiednich alternatorów do konkretnych modeli samochodów.

Pytanie 30

Rozpoczynając naprawę samochodu, technik serwisowy powinien najpierw

A. włączyć hamulec ręczny i podłożyć kliny pod koła
B. osłonić wnętrze pojazdu pokrowcami ochronnymi
C. przygotować fakturę za wykonane usługi
D. zajmować miejsce na stanowisku naprawczym
Uruchomienie hamulca postojowego i podłożenie klinów pod koła, mimo że jest to ważny krok w zapewnieniu bezpieczeństwa, nie powinno być pierwszym działaniem przy naprawie pojazdu. Celem zabezpieczenia wnętrza pojazdu jest ochrona przed przypadkowymi uszkodzeniami, co jest kluczowe, zanim zaczniemy jakiekolwiek prace. W przypadku, gdy wnętrze nie jest odpowiednio zabezpieczone, materiały eksploatacyjne mogą wyciekać i powodować trudne do usunięcia plamy, a to może prowadzić do zwiększonych kosztów napraw czy reklamacji. Wystawienie faktury za naprawę również nie jest odpowiednie jako pierwsza czynność, ponieważ przed przystąpieniem do prac mechanicznych niemożliwe jest oszacowanie ich zakresu i kosztów. Wjechanie na stanowisko naprawcze to kolejny krok, który powinien nastąpić po dokonaniu odpowiednich zabezpieczeń, aby zminimalizować ryzyko uszkodzeń i wypadków. Rozważania dotyczące bezpieczeństwa pracy w warsztacie powinny opierać się na regulacjach BHP oraz najlepszych praktykach branżowych, które zalecają najpierw zabezpieczyć pojazd, a dopiero potem przystąpić do jego obsługi. Wynika stąd, że nieodpowiednie podejście do kolejności działań może prowadzić do niebezpiecznych sytuacji i negatywnego wpływu na kondycję samego pojazdu.

Pytanie 31

Na podstawie tabeli oblicz koszt wymiany świec zapłonowych w 4-cylindrowym silniku systemu DOHC 16 V, jeżeli czynność zajmuje 45 minut.

Nazwa części / usługiKwota [zł]
szlifowanie głowicy70,00
świeca zapłonowa30,00
wymiana prowadnicy 1 zaworu15,00
prowadnica zaworu10,00
1 roboczogodzina120,00
A. 240,00 zł
B. 120,00 zł
C. 210,00 zł
D. 570,00 zł
W przypadku błędnych odpowiedzi można zauważyć, że występują różne błędy w obliczeniach oraz w podejściu do problemu. Na przykład, odpowiedzi takie jak 570,00 zł oraz 240,00 zł mogą sugerować, że osoby udzielające tych odpowiedzi nie uwzględniły zarówno kosztu zakupu świec, jak i robocizny w sposób właściwy. Warto zauważyć, że koszt robocizny jest kwestią kluczową i nie można go pomijać ani ogólnie pomnażać bez analizy rzeczywistych kosztów. Odpowiedź 570,00 zł mogła powstać przez błędne zsumowanie kosztów lub zastosowanie niewłaściwej stawki robocizny, co nie jest zgodne z rzeczywistością. Natomiast 240,00 zł mogło być wynikiem błędnego pomnożenia liczby wymienianych świec przez ich koszt, bez uwzględnienia robocizny. Tego typu błędy myślowe mogą prowadzić do nieporozumień w zakresie kalkulacji kosztów, co jest istotne w kontekście zarządzania finansami w warsztatach samochodowych. Dlatego zawsze warto zwracać uwagę na wszystkie aspekty związane z kosztami usług i materiałów, aby uniknąć takich nieprawidłowości w przyszłości.

Pytanie 32

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. tarcze i klocki hamulcowe wszystkich kół
B. tarcze oraz klocki hamulcowe osi przedniej
C. wyłącznie tarcze hamulcowe kół osi przedniej
D. jedynie tarczę hamulcową koła lewego przedniego
Ograniczenie się do wymiany tylko tarczy hamulcowej koła przedniego lewego, mimo stwierdzonego pęknięcia, jest podejściem niezgodnym z najlepszymi praktykami w zakresie konserwacji układów hamulcowych. Tarcza hamulcowa i klocki hamulcowe współpracują ze sobą, a ich zużycie jest ściśle ze sobą powiązane. Jeśli tarcza jest pęknięta, istnieje duże prawdopodobieństwo, że klocki hamulcowe nie będą działać efektywnie, co może prowadzić do niebezpiecznej sytuacji na drodze. Istotnym błędem myślowym jest przekonanie, że wymiana jednego elementu układu hamulcowego jest wystarczająca. W rzeczywistości, klocki hamulcowe o grubości 1,4 mm są już bliskie granicy dopuszczalnego zużycia, co oznacza, że ich wymiana jest nieunikniona. Konsekwencją działania tylko na jednym elemencie jest ryzyko nierównomiernego hamowania, co zwiększa ryzyko utraty kontroli nad pojazdem. Ponadto, wymiana tylko tarczy bez klocków może prowadzić do przyspieszonego zużycia nowej tarczy, co generuje dodatkowe koszty. Właściwa praktyka wymaga zawsze wymiany komponentów na jednej osi, co zapewnia lepszą synchronizację działania układu hamulcowego, a także zwiększa bezpieczeństwo użytkownika oraz trwałość części. W przypadku napraw, takich jak ta, kluczowe jest stosowanie się do zaleceń producentów i standardów, które mówią o wymianie tarcz i klocków w zestawie.

Pytanie 33

Lampa służąca do sprawdzania kąta wyprzedzenia zapłonu wykorzystuje

A. efekt stroboskopowy
B. zjawisko interferencji
C. efekt absorpcji światła
D. zjawisko dyfrakcji
Efekt stroboskopowy to naprawdę ważne zjawisko, które wykorzystuje się w lampach do ustawiania kąta wyprzedzania zapłonu. Działa to tak, że lampa emituje błyski światła w regularnych odstępach, co ułatwia obserwację ruchu różnych obiektów. W silnikach spalinowych lampa stroboskopowa pomaga precyzyjnie ustalić, kiedy zapłon powinien się odbyć. To jest kluczowe, żeby silnik działał dobrze i był wydajny. Dzięki temu mechanicy mogą dokładnie ustawić kąt wyprzedzenia zapłonu, co ma wpływ na moc, oszczędność paliwa i emisję spalin. Ważne jest, żeby korzystać z tych lamp zgodnie z instrukcjami producenta, bo to zapewnia bezpieczeństwo i skuteczność regulacji. Warto też przeszkolić personel, żeby umiał używać tego narzędzia, bo to na pewno poprawi jakość usług w warsztatach samochodowych.

Pytanie 34

W serwisie samochodowym klient zgłosił problem związany z nadmiernym zużyciem wewnętrznych elementów bieżnika kół przednich. Jakie działanie powinien podjąć mechanik jako pierwsze?

A. sprawdzić, czy w układzie zawieszenia nie występują luzy
B. zamienić koła przednie stronami
C. zweryfikować sprawność amortyzatorów
D. sprawdzić, czy układ hamulcowy nie jest uszkodzony
Odpowiedź 'sprawdzić, czy nie występują luzy w układzie zawieszenia' jest prawidłowa, ponieważ luzy w zawieszeniu mogą prowadzić do nierównomiernego zużycia opon, co objawia się nadmiernym zużyciem bieżnika. Układ zawieszenia jest kluczowy dla stabilności i komfortu jazdy, a wszelkie luzu mogą wpływać na geometrię kół, co w konsekwencji prowadzi do problemów z ich zużyciem. Mechanik powinien sprawdzić wszystkie elementy zawieszenia, takie jak łożyska, wahacze, tuleje i stabilizatory, aby upewnić się, że działają one poprawnie. W przypadku stwierdzenia luzów, konieczna jest ich naprawa lub wymiana, co może znacząco poprawić trwałość opon oraz bezpieczeństwo jazdy. Regularna kontrola układu zawieszenia jest zgodna z najlepszymi praktykami w branży motoryzacyjnej, gdzie zaleca się coroczne przeglądy, zwłaszcza w przypadku pojazdów intensywnie eksploatowanych.

Pytanie 35

Aby określić stopień zużycia oleju silnikowego, należy przeprowadzić pomiar

A. multimetrem
B. refraktometrem
C. pirometrem
D. wiskozymetrem
Pomiar zużycia oleju silnikowego nie może być skutecznie dokonany przy użyciu pirometru, refraktometru ani multimetru, ponieważ te urządzenia zostały zaprojektowane do zupełnie innych zastosowań. Pirometr, na przykład, jest urządzeniem służącym do pomiaru temperatury obiektów na odległość, co nie ma żadnego związku z określaniem właściwości oleju. Użycie pirometru w tym kontekście prowadzi do błędnych wniosków, jako że temperatura sama w sobie nie jest wskaźnikiem stanu oleju. Refraktometr mierzy współczynnik załamania światła, co jest przydatne w analizie cieczy, ale nie dostarcza informacji o lepkości oleju, która jest kluczowa dla określenia jego przydatności do dalszego użytku. Natomiast multimetr, używany głównie do pomiaru napięcia, natężenia i oporu, także nie ma zastosowania w ocenie stanu oleju. Niezrozumienie specyfiki tych narzędzi oraz ich właściwego zastosowania w kontekście diagnostyki olejów silnikowych może prowadzić do nieefektywnej konserwacji i potencjalnych uszkodzeń silnika. Dlatego kluczowe jest użycie odpowiedniego sprzętu, takiego jak wiskozymetr, aby uzyskać miarodajny wynik i podjąć decyzje dotyczące serwisowania silnika.

Pytanie 36

W silniku czterocylindrowym w układzie rzędowym strzałki na rysunku pokazują ustawienie wałków rozrządu w końcu suwu sprężania (GZP) dla tłoka

Ilustracja do pytania
A. drugiego cylindra.
B. trzeciego cylindra.
C. pierwszego cylindra.
D. czwartego cylindra.
Udzielona odpowiedź może wskazywać na pewne nieporozumienia dotyczące działania silnika czterocylindrowego w układzie rzędowym. W przypadku odpowiedzi odnoszących się do czwartego, trzeciego czy drugiego cylindra, kluczowym błędem jest nieprawidłowe zrozumienie, jak wałki rozrządu synchronizują się z ruchem tłoków. Wałki rozrządu są zaprojektowane tak, aby w końcu suwu sprężania dla danego cylindra zawory były zamknięte, co ma miejsce wyłącznie dla pierwszego cylindra w opisywanej sytuacji. Udzielając błędnej odpowiedzi, można mylić pojęcia związane z cyklem pracy silnika, takie jak górny i dolny martwy punkt, co prowadzi do dezorientacji w kontekście prawidłowego cyklu pracy silnika. To nieporozumienie może wynikać ze zrozumienia momentu sprężania, gdzie niewłaściwe wybory odpowiedzi mogą zasugerować, że inne cylindry są w tym samym czasie w GMP, podczas gdy w rzeczywistości każdy cylinder jest w innym etapie cyklu. Prawidłowe zrozumienie pracy silnika i jego komponentów jest kluczowe dla wszelkich prac związanych z diagnostyką oraz naprawą, a znajomość specyfiki poszczególnych cylindrów i ich roli w cyklu pracy silnika jest podstawą efektywnego i bezpiecznego użytkowania pojazdu.

Pytanie 37

Jakie napięcie uważa się za bezpieczne dla ludzi?

A. 220 V
B. 24 V
C. 110 V
D. 360 V
Napięcie 24 V jest uważane za bezpieczne dla człowieka, ponieważ w przypadku kontaktu z prądem o tej wartości ryzyko poważnych obrażeń jest znacznie mniejsze w porównaniu do wyższych napięć. Zgodnie z normami IEC 61140 oraz EN 60950, napięcia poniżej 50 V są klasyfikowane jako bezpieczne w warunkach normalnych. W praktyce napięcie 24 V jest powszechnie wykorzystywane w systemach zasilania urządzeń elektronicznych, automatyki budynkowej oraz zasilania czujników. Na przykład, w systemach sterowania oświetleniem lub w instalacjach alarmowych, napięcie 24 V pozwala na bezpieczne użytkowanie oraz minimalizuje ryzyko porażenia prądem. Dodatkowo, zasilanie w tym napięciu znacząco redukuje straty energii w systemach, co jest korzystne z perspektywy efektywności energetycznej. Warto podkreślić, że urządzenia działające na 24 V są często wykorzystywane w pojazdach czy instalacjach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 38

Po wymianie dolnego przedniego wahacza zawieszenia w samochodzie osobowym konieczne jest sprawdzenie

A. oporów toczenia
B. geometrii kół
C. sił hamowania
D. sił tłumienia
Choć siły hamowania, opory toczenia oraz siły tłumienia są ważnymi aspektami pracy zawieszenia i układu jezdnego, nie stanowią one kluczowych parametrów, które należy sprawdzić bezpośrednio po wymianie wahacza. Siły hamowania w kontekście regulacji geometrii kół są związane raczej z działaniem układu hamulcowego, który nie ulega zmianie po wymianie wahacza. Po wymianie wahacza nie można stwierdzić, że hamulce będą działały mniej efektywnie, ponieważ nie zmienia to ich konstrukcji ani parametrów. Opory toczenia są natomiast związane z oporem, jaki stawiają opony w czasie jazdy, co jest bardziej związane z właściwościami opon niż z samym zawieszeniem. Siły tłumienia, z kolei, dotyczą pracy amortyzatorów i wpływu na komfort jazdy, a także stabilność pojazdu, ale nie są bezpośrednio związane z geometrią kół. Zrozumienie, że po wymianie wahacza najważniejsze jest sprawdzenie geometrii kół, jest kluczowe dla zapewnienia bezpieczeństwa i prawidłowego zachowania pojazdu na drodze. Ignorowanie tego aspektu może prowadzić do problemów z prowadzeniem pojazdu, co może również skutkować zwiększonym zużyciem opon oraz obniżeniem komfortu jazdy.

Pytanie 39

Aby ocenić skuteczność hamulców w pojeździe na podstawie pomiaru siły hamowania, jakie urządzenie powinno być użyte?

A. manometr o zakresie pomiarowym 0 do 10 MPa
B. opóźnieniomierz
C. czujnik nacisku
D. urządzenie rolkowe
Wybór opóźnieniomierza jako metody oceny skuteczności hamulców jest niewłaściwy, ponieważ to urządzenie służy do mierzenia zmiany prędkości pojazdu w czasie, a nie bezpośrednio do pomiaru siły hamowania. Chociaż opóźnieniomierz może dostarczyć informacji o wydajności hamulców w postaci zmiany prędkości, nie jest w stanie precyzyjnie zmierzyć siły, jaką hamulce generują. To podejście może prowadzić do błędnych wniosków o skuteczności układów hamulcowych, zwłaszcza w sytuacjach, gdy warunki drogowe są zmienne. Z kolei czujnik nacisku, choć może monitorować ciśnienie w układzie hamulcowym, nie dostarcza informacji o rzeczywistej sile hamowania na koła, co jest kluczowe dla oceny skuteczności działania hamulców. Manometr, którego zakres pomiarowy wynosi 0 do 10 MPa, również nie jest odpowiednim narzędziem do oceny siły hamowania, ponieważ nie uwzględnia dynamicznych warunków pracy hamulców. Każde z tych narzędzi ma swoje zastosowanie w diagnostyce, ale nie zastąpią one kompleksowych testów prowadzonych na urządzeniach rolkowych, które są zgodne z aktualnymi standardami bezpieczeństwa. Właściwe podejście do oceny hamulców wymaga zrozumienia ich działania w rzeczywistych warunkach i zastosowania odpowiednich metod badawczych.

Pytanie 40

Gdy samochód wjeżdża na wzniesienie, obroty silnika rosną, podczas gdy prędkość liniowa pojazdu spada, co może być tego przyczyną?

A. za mała moc silnika
B. nieodpowiedni dobór przełożenia
C. niesprawne sprzęgło
D. uszkodzony mechanizm różnicowy
Niewłaściwy dobór przełożenia może prowadzić do suboptymalnych osiągów pojazdu, jednak nie jest to główny powód wzrostu prędkości obrotowej silnika przy malejącej prędkości liniowej. Przełożenia są projektowane w taki sposób, aby umożliwić silnikowi osiąganie odpowiednich obrotów w różnych warunkach. Zbyt niskie przełożenie może powodować, że silnik będzie osiągał wyższe obroty, ale przy dobrze dobranym przełożeniu, zmiana prędkości obrotowej nie powinna aż tak drastycznie odbiegać od zmiany prędkości liniowej. Zbyt mała moc silnika to kolejna koncepcja, która może być myląca. Choć rzeczywiście, silnik o ograniczonej mocy może mieć trudności w pokonywaniu wzniesień, to nie jest bezpośrednią przyczyną wzrostu obrotów przy spadku prędkości. Silniki są projektowane z myślą o różnych warunkach pracy, a ich moc jest często wystarczająca do pokonywania przeszkód, pod warunkiem, że wszystkie systemy, takie jak sprzęgło, działają prawidłowo. Niesprawne sprzęgło jest bardziej bezpośrednią przyczyną problemu, ponieważ jego awaria skutkuje utratą połączenia między silnikiem a układem napędowym. Uszkodzony mechanizm różnicowy również wpłynąłby na wydajność jazdy, ale nie spowodowałby wzrostu obrotów silnika w tej konkretnej sytuacji. Takie nieprawidłowe wnioski często wynikają z braku zrozumienia, jak różne komponenty pojazdu współpracują ze sobą, co podkreśla wagę prawidłowej diagnostyki i konserwacji wszystkich systemów samochodowych.