Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 lutego 2026 23:25
  • Data zakończenia: 1 lutego 2026 23:50

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Odpowiedź B jest poprawna, ponieważ łącznik przedstawiony na zdjęciu to łącznik pojedynczy, jednobiegunowy, co jest zgodne z symboliką stosowaną w branży elektrycznej. W praktyce, łączniki te są powszechnie używane do włączania i wyłączania obwodów oświetleniowych w domach i biurach. Zgodnie z normami IEC (Międzynarodowa Komisja Elektrotechniczna), poprawne oznaczenie graficzne elementów instalacji elektrycznych ma kluczowe znaczenie dla ich właściwej identyfikacji i funkcjonowania. Użycie symbolu z opcji B ułatwia instalatorom i technikom szybkie rozpoznanie typu łącznika, co przyspiesza proces montażu oraz ewentualnych prac serwisowych. Przykładem praktycznym może być zastosowanie łącznika jednobiegunowego w domach jednorodzinnych, gdzie jedna para przycisków kontroluje jedno źródło światła, co jest zgodne z powszechnymi standardami instalacyjnymi. Dobrą praktyką jest również stosowanie jednolitych symboli graficznych na schematach elektrycznych, co minimalizuje ryzyko pomyłek podczas realizacji projektów elektrycznych.

Pytanie 2

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na pół roku
B. co najmniej raz na 10 lat
C. raz na rok
D. co najmniej raz na 5 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 3

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. A.
B. B.
C. D.
D. C.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 4

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 30 mA
B. 10 mA
C. 100 mA
D. 300 mA
Jak dobrze wiesz, wybór wyłącznika różnicowoprądowego o prądzie na przykład 100 mA, 300 mA czy nawet 10 mA może mieć spore znaczenie dla bezpieczeństwa elektrycznego w naszych domach. Te wyłączniki na 100 mA i 300 mA są bardziej zaprojektowane do ochrony sprzętu niż do ochrony ludzi przed porażeniem prądem. Ich wysoki próg zadziałania to problem, bo mogą nie zauważyć małych nieszczelności, które mogą być niebezpieczne dla człowieka. Zazwyczaj stosuje się je w obwodach, gdzie nie chodzi głównie o chronienie ludzi. Z drugiej strony, wyłącznik na 10 mA, chociaż świetny w miejscach z wysokim ryzykiem, jak szpitale, może być za czuły w normalnych warunkach domowych i powodować niepotrzebne wyłączenia. Dlatego ważne jest, żeby wybierać wyłączniki zgodne z normami i przepisami, by naprawdę zapewnić bezpieczeństwo w instalacjach elektrycznych.

Pytanie 5

Przewód oznaczony symbolem PEN to przewód

A. wyrównawczy
B. ochronno-neutralny
C. uziemiający
D. ochronny
Symbol PEN (Protective Earth and Neutral) oznacza przewód ochronno-neutralny, który łączy w sobie funkcje przewodu neutralnego (N) oraz przewodu ochronnego (PE). Jest on stosowany w instalacjach elektrycznych, zwłaszcza w systemach TN-C, aby zapewnić zarówno przewodnictwo prądu roboczego, jak i ochronę przed porażeniem elektrycznym. W praktyce, przewód PEN odgrywa kluczową rolę w bezpieczeństwie instalacji, ponieważ umożliwia skuteczne uziemienie i jednocześnie zapewnia powrót prądu do źródła. W przypadku awarii, przewód ochronny automatycznie przejmuje funkcję przewodu neutralnego, co minimalizuje ryzyko porażenia prądem. Zgodnie z normami, takimi jak PN-IEC 60439, instalacje muszą być projektowane i wykonywane z uwzględnieniem zasady, że przewód ochronno-neutralny powinien być odpowiednio oznakowany oraz dobrze izolowany. Praktyczne zastosowanie przewodu PEN można zaobserwować w budynkach mieszkalnych, gdzie często łączy się go z systemami uziemiającymi dla zwiększenia bezpieczeństwa użytkowników.

Pytanie 6

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TT
B. TN-C
C. IT
D. TN-S
Odpowiedź TN-C jest prawidłowa, ponieważ przedstawiony symbol graficzny oznacza przewód PEN, który pełni zarówno funkcję przewodu ochronnego, jak i neutralnego. W układzie TN-C przewód PEN jest używany do ochrony przed porażeniem elektrycznym oraz zapewnia powrotną drogę prądu w przypadku awarii. Taki układ jest szczególnie popularny w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagane jest zwiększenie poziomu bezpieczeństwa. Dobre praktyki branżowe wskazują, że zastosowanie przewodu PEN w układzie TN-C zapewnia optymalne warunki pracy urządzeń oraz minimalizuje ryzyko uszkodzeń. Warto również dodać, że stosowanie układu TN-C jest zgodne z normami PN-IEC 60364, które określają zasady projektowania instalacji elektrycznych w budynkach. Dlatego zrozumienie roli przewodu PEN w tym układzie jest kluczowe dla każdego specjalisty zajmującego się elektryką.

Pytanie 7

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 450/750 V
C. 300/500 V
D. 600/1000 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 8

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Czujnika ruchu.
B. Automatu schodowego.
C. Aparatu zmierzchowego.
D. Źródła światła.
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 9

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzony przewód pomiędzy W1 a S191B10
B. Uszkodzone przewody pomiędzy W2 a W3
C. Uszkodzone przewody pomiędzy W1 a W2
D. Uszkodzony przewód pomiędzy W3 a E1
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 10

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Każdorazowo podczas badań okresowych instalacji
B. Co najmniej raz na dwa lata
C. Przed każdym uruchomieniem urządzenia
D. Zgodnie z instrukcją obsługi danego odbiornika
Częstość przeprowadzania konserwacji odbiorników elektrycznych w mieszkaniach nie może być uogólniana na podstawie arbitralnych okresów czasu, jak sugerują inne odpowiedzi. Odpowiedź wskazująca na przeprowadzanie konserwacji 'co najmniej raz na dwa lata' może prowadzić do niebezpiecznych sytuacji, ponieważ nie uwzględnia specyfiki danego odbiornika oraz jego warunków pracy. Odbiorniki mogą być narażone na różnorodne czynniki, takie jak temperatura, wilgotność, obecność zanieczyszczeń czy intensywność użytkowania, które wpływają na ich stan techniczny i bezpieczeństwo. Ponadto, odpowiedź sugerująca, że konserwacja powinna się odbywać 'przed każdorazowym uruchomieniem odbiornika' jest niepraktyczna, ponieważ wiele odbiorników, jak np. sprzęt AGD, nie wymaga codziennych kontroli przed użyciem. Wprowadza to błąd myślowy, że wszystkie urządzenia wymagają takiej samej uwagi. Argument zakładający, że konserwacja powinna się odbywać 'każdorazowo w czasie badań okresowych instalacji' ignoruje fakt, że badania okresowe dotyczą całej instalacji, a nie pojedynczych odbiorników. Takie podejście może prowadzić do zaniedbań, gdyż niektóre odbiorniki mogą nie być objęte przeglądami w odpowiednich interwałach. Dlatego kluczowe jest, aby użytkownicy odbiorników kierowali się instrukcjami producentów, co pozwala na odpowiednią i bezpieczną eksploatację urządzeń.

Pytanie 11

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony podstawowej.
D. Ochrony uzupełniającej.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 12

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 13

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 2NO + 1NC
B. 3NC + 2NC + 1NO
C. 3NO + 2NC + 1NO
D. 3NC + 2NO + 1NC
Wybór odpowiedzi 3NO + 2NO + 1NC jest poprawny, gdyż dokładnie odpowiada wymaganiom wynikającym z analizy schematu elektrycznego. Stycznik Q21, aby prawidłowo realizować swoje funkcje, potrzebuje trzech zestyków normalnie otwartych (3NO), które służą do załączania trzech faz silnika, co jest standardowym rozwiązaniem w instalacjach trójfazowych. Dodatkowo, dwa zestyków normalnie otwartych (2NO) są niezbędne do funkcji sterowania, co jest zgodne z powszechnie stosowanymi normami w automatyce, aby zminimalizować ryzyko awarii oraz zapewnić odpowiednie zarządzanie procesem. Zestyk normalnie zamknięty (1NC) jest kluczowy dla funkcji zabezpieczających lub sygnalizacyjnych, co pozwala na zastosowanie dodatkowych zabezpieczeń, takich jak wyłączniki awaryjne lub sygnalizatory stanu. Taki układ zapewnia nie tylko efektywność działania, ale także bezpieczeństwo w eksploatacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 14

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. dwa lata
C. rok
D. trzy lata
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 15

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Kuchenkę elektryczną.
B. Pralkę elektryczną.
C. Zmywarkę do naczyń.
D. Grzejnik elektryczny
Kuchenki elektryczne, pralki i grzejniki, wszystkie mają swoje symbole w dokumentach elektrycznych według normy PN-EN 60617. Ale zmywarki do naczyń często są mylone z innymi urządzeniami. Na przykład kuchenki mają inny symbol, bo mówią o gotowaniu, a nie myciu naczyń. Pralki też mają swoje symbole, które odnoszą się do prania, więc to w ogóle nie to samo. Grzejniki za to są związane z ogrzewaniem, co nie ma nic wspólnego z myciem. Chyba to trochę wynika z tego, że nie każdy zna się na różnicach w symbolach lub po prostu nie zwraca na to uwagi. Ważne jest, by umieć rozpoznać te symbole, bo błędy w dokumentacji mogą prowadzić do naprawdę poważnych problemów, a tego nikt nie chce. Dlatego lepiej zrozumieć te symbole i wiedzieć, jak ich używać.

Pytanie 16

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Weryfikacja stanu szczelin komutatora
B. Wyważenie
C. Kontrola braku zwarć międzyzwojowych
D. Pomiar oporu izolacji
Pomiar rezystancji izolacji jest niezbędnym działaniem w utrzymaniu maszyn elektrycznych, jednak nie należy do oględzin wirnika maszyny komutatorowej w ścisłym tego słowa znaczeniu. Izolacja wirników ma na celu zabezpieczenie przed przebiciem i zwarciami, ale nie odnosi się bezpośrednio do stanu mechanicznego wirnika. Również sprawdzenie braku zwarć międzyzwojowych jest istotne, lecz odnosi się do analizy stanu uzwojeń wirnika, a nie do oględzin wycinków komutatora. W przypadku wirników komutatorowych, zwarcia międzyzwojowe mogą przyczynić się do uszkodzeń, jednak podczas oględzin kluczowym jest skupienie się na samym komutatorze, a zwłaszcza na jego wycinkach. Wyważenie wirnika dotyczy jego dynamicznej równowagi podczas pracy, co również nie jest bezpośrednio związane z oględzinami stanu komutatora. W praktyce, nieprawidłowe podejście do oceny stanu wirnika może prowadzić do niewłaściwych wniosków i potencjalnych awarii. Właściwa interpretacja czynności związanych z konserwacją i oględzinami wirnika jest kluczowa dla jego efektywnej pracy oraz długowieczności systemu, a zaniedbania w tym zakresie mogą prowadzić do kosztownych awarii.

Pytanie 17

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Amperomierza cęgowego
B. Mostka prądu zmiennego
C. Megaomomierza induktorowego
D. Omomierza szeregowego
Jak wybierzesz złe urządzenie do mierzenia rezystancji izolacji, to może to prowadzić do błędnych wyników i braku zidentyfikowania problemów. Na przykład mostek prądu przemiennego, mimo że jest używany do pomiarów impedancji, nie nadaje się do oceny izolacji, bo nie daje wystarczającego napięcia, żeby pokazać ewentualne uszkodzenia. Użycie go w takich pomiarach może prowadzić do fałszywych pozytywnych wyników, co z kolei jest niebezpieczne dla ludzi. Amperomierz cęgowy też jest do pomiaru prądu, a nie rezystancji, więc to kompletnie się nie sprawdzi w tym kontekście. W tym przypadku omomierz szeregowy również odpada, bo bada rezystancję przy niskim napięciu, co nie pozwala dobrze ocenić jakości izolacji. Korzystanie z takich urządzeń może sprawić, że nie dostrzegasz ryzyka związanego z niewłaściwą izolacją, a to może prowadzić do poważnych zagrożeń dla zdrowia i życia. Dlatego lepiej używać odpowiednich narzędzi, jak megaomomierz induktorowy, żeby zapewnić bezpieczeństwo i trzymać się norm w branży.

Pytanie 18

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, wkrętak, obcinaczki
B. Wiertarka z zestawem wierteł, młotek, piła
C. Osadzak gazowy, młotek, obcinaczki
D. Wiertarka z zestawem wierteł, szczypce płaskie, piła
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 19

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. LY 2,5 mm2
B. YLY 7×2,5 mm2
C. DY 2,5 mm2
D. YDY 5×2,5 mm2
Odpowiedzi 'DY 2,5 mm2', 'YDY 5×2,5 mm2' oraz 'YLY 7×2,5 mm2' są błędne z różnych powodów. Oznaczenie 'DY' odnosi się do przewodów dwużyłowych z izolacją polwinitową, co nie jest zgodne z treścią pytania, które dotyczy przewodu jednożyłowego. Używanie oznaczeń dwużyłowych w kontekście jednożyłowym prowadzi do nieporozumień, zwłaszcza gdy mowa o zastosowaniach wymagających konkretnego przekroju i liczby żył. Z kolei oznaczenia 'YDY' oraz 'YLY' sugerują przewody wielożyłowe, co jest sprzeczne z wymaganiami zadania. Oznaczenia te wskazują na przewody z wieloma żyłami, co w kontekście jednożyłowego kabla jest niewłaściwe. Typowe błędy myślowe prowadzące do tych odpowiedzi mogą wynikać z nieścisłego zrozumienia klasyfikacji przewodów. Warto pamiętać, że dobór odpowiedniego przewodu elektrycznego powinien zawsze opierać się na specyfikacji technicznej oraz normach branżowych, jak PN-EN 60228. Nieprzestrzeganie tych zasad może prowadzić do poważnych problemów w instalacjach elektrycznych, takich jak przegrzewanie przewodów, co z kolei może prowadzić do pożarów lub awarii sprzętu.

Pytanie 20

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. wprowadzenia przewodu zasilającego
B. czopu
C. tabliczki znamionowej
D. przewietrznika
Określenie kierunku obrotów wirnika silnika elektrycznego poprzez inne punkty odniesienia, takie jak przewietrznik, wprowadzenie przewodu zasilającego czy tabliczka znamionowa, prowadzi do wielu nieporozumień i pomyłek. Przewietrznik, który zazwyczaj znajduje się w obudowie silnika, ma na celu zapewnienie odpowiedniego chłodzenia, ale nie stanowi wiarygodnego punktu do oceny kierunku obrotów. Podobnie, wprowadzenie przewodu zasilającego nie dostarcza żadnych informacji o kierunku obrotów wirnika, ponieważ jest to jedynie punkt, w którym zasilanie wchodzi do silnika. Tabliczka znamionowa zawiera istotne dane techniczne silnika, takie jak moc, napięcie i prąd, ale nie wskazuje kierunku obrotów. Takie podejście może prowadzić do błędnych instalacji, które mogą być niebezpieczne, a także do uszkodzenia maszyn, jeśli zostaną uruchomione w niewłaściwym kierunku. Niezrozumienie tego zagadnienia może skutkować poważnymi konsekwencjami, w tym utratą wydajności, uszkodzeniem sprzętu, a nawet zagrożeniem dla bezpieczeństwa pracy. W praktyce inżynieryjnej kluczowe jest, aby personel znał standardowe metody określania kierunku obrotów silników, co jest zgodne z ogólnymi zasadami projektowania i bezpieczeństwa w systemach elektrycznych.

Pytanie 21

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. wyznaczania trasy przewodów.
B. pomiaru rezystancji żył przewodów.
C. szacowania długości przewodów.
D. sprawdzania ciągłości żył przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 22

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Z wyłącznikiem.
B. Z transformatorem separacyjnym.
C. Telekomunikacyjne.
D. Ze stykiem ochronnym.
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 23

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. wyłącznika różnicowoprądowego
B. rozłącznika
C. wyłącznika nadprądowego
D. odłącznika
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 24

Którą wstawkę kalibrową należy zastosować w bezpieczniku o wkładce topikowej pokazanej na rysunku?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór niewłaściwej wstawki kalibrowej może prowadzić do poważnych problemów w systemie elektrycznym. Odpowiedzi A, B i D nie są zgodne z wymaganiami, jakie stawia wkładka topikowa widoczna na rysunku. W przypadku bezpieczników, zrozumienie oznaczeń nominalnych prądu i napięcia jest kluczowe. Odpowiedzi te mogą zawierać wstawki kalibrowe o różnych wartościach prądowych, co stwarza ryzyko ich przegrzania lub przepalenia w warunkach normalnej pracy obwodu. Przykładowo, wstawka o zbyt niskim prądzie nominalnym może przepalić się w wyniku przeciążenia, co skutkuje brakiem ochrony dla podłączonych urządzeń. Z kolei wstawka o zbyt wysokiej wartości prądowej nie zadziała w sytuacji awaryjnej, co może prowadzić do uszkodzenia sprzętu lub nawet pożaru. Takie błędy mogą wynikać z nieznajomości podstawowych zasad doboru bezpieczników oraz ich właściwego oznaczenia. Dlatego tak ważne jest, aby każdy technik elektryk miał pełną wiedzę na temat standardów i norm dotyczących bezpieczeństwa elektrycznego i był w stanie właściwie dobrać wstawki kalibrowe do danego obwodu. Należy także zawsze kierować się zasadą, że stosowana wstawka musi być zgodna z wartościami znamionowymi bezpiecznika, by zapewnić skuteczną ochronę.

Pytanie 25

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 90 ÷ 100%
B. 0 ÷ 10%
C. 60 ÷ 90%
D. 40 ÷ 60%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 26

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Zatrzymuje łuk elektryczny
B. Rozpoznaje przeciążenia
C. Napina sprężynę napędu
D. Rozpoznaje zwarcia
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 27

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. wymiany gniazd zasilających
B. czyszczenia lamp oświetleniowych
C. czyszczenia urządzeń w rozdzielniach
D. montażu nowych punktów świetlnych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 28

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Zmiana rodzaju użytych przewodów
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Instalacja dodatkowego gniazda elektrycznego
Te odpowiedzi są nietrafione, bo dotyczą rzeczy, które nie są do końca pracami konserwacyjnymi w instalacji elektrycznej. Zmiana przewodów czy modyfikacja rozdzielnicy to zmiany systemowe, które mogą być potrzebne, gdy trzeba rozbudować instalację lub dostosować do nowych wymagań. Ale to już nie jest konserwacja. Właściwie konserwacja to utrzymywanie tego, co już mamy w dobrym stanie i nie powinno się to wiązać z fundamentalnymi zmianami. Dodatkowo, zakładanie nowego gniazda elektrycznego też wykracza poza działania konserwacyjne, bo zmienia układ instalacji. Takie nieporozumienia wynikają często z tego, że nie rozumiemy do końca, co oznaczają terminy związane z konserwacją i modernizacją. W praktyce powinniśmy skupić się na zachowaniu i poprawie funkcji tych komponentów, które już mamy. To naprawdę ważne dla bezpieczeństwa i efektywności energetycznej systemu. Mylenie konserwacji z modernizacją może prowadzić do problemów i niepotrzebnych wydatków.

Pytanie 29

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 1.
B. Schemat 2.
C. Schemat 3.
D. Schemat 4.
Błędy w doborze schematu oświetleniowego często wynikają z braku zrozumienia zasad działania układów sterujących. Wiele osób może błędnie założyć, że zastosowanie jednego przełącznika do włączania i wyłączania oświetlenia w każdym z miejsc jest wystarczające. Takie podejście pomija kluczowy aspekt, jakim jest możliwość sterowania oświetleniem z dwóch niezależnych lokalizacji, co jest istotne w kontekście komfortu i funkcjonalności. Użytkownik może mylnie sądzić, że dowolny schemat, który umożliwia włączenie światła, będzie odpowiedni, podczas gdy niektóre z nich mogą nie umożliwiać wyłączenia go z drugiego miejsca. Ponadto, stosowanie przełączników w układach, które nie są dostosowane do pracy w trybie schodowym, może prowadzić do sytuacji, w której jedno naciśnięcie przycisku skutkuje nieprzewidzianym efektem, np. włączeniem świateł w jednym pomieszczeniu, podczas gdy w innym pozostają one wyłączone. Tego typu błędy wynikają często z niedostatecznej wiedzy na temat schematów elektrycznych oraz ich praktycznych zastosowań w różnych warunkach. Ważne jest, aby przed wykonaniem jakiejkolwiek instalacji nie tylko znać teorię, ale także rozumieć praktyczne implikacje i zastosowanie norm oraz standardów branżowych, co pozwoli uniknąć nieefektywnych rozwiązań.

Pytanie 30

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Symbol C. reprezentuje łącznik schodowy, który jest kluczowym elementem w instalacjach elektrycznych, szczególnie w kontekście zarządzania oświetleniem w obiektach mieszkalnych i komercyjnych. Łącznik schodowy pozwala na włączanie i wyłączanie światła z dwóch różnych miejsc, co jest niezwykle praktyczne w przypadku długich korytarzy czy klatek schodowych. W standardowej instalacji, łącznik schodowy jest umieszczany w miejscach, gdzie użytkownik może potrzebować dostępu do włączania światła zarówno z dołu, jak i z góry schodów. Stosowanie tego symbolu jest zgodne z normami IEC 60617 oraz polskimi normami PN-EN 60617, które regulują oznaczanie symboli elektrycznych. W praktyce, stosowanie łączników schodowych poprawia komfort użytkowania oraz zwiększa bezpieczeństwo, eliminując konieczność poruszania się w ciemności. Warto również zauważyć, że łącznik schodowy można łączyć z innymi elementami instalacji, takimi jak łączniki krzyżowe, co pozwala na jeszcze większą elastyczność w projektowaniu systemów oświetleniowych.

Pytanie 31

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TN-C
B. TN-S
C. IT
D. TT
Odpowiedź "TT" jest poprawna, ponieważ schemat przedstawia charakterystyczne cechy układu TT. W pierwszej kolejności należy zwrócić uwagę na bezpośrednie uziemienie punktu neutralnego źródła zasilania, co jest kluczowe dla funkcjonowania tego układu. Uziemienie to zapewnia, że wszelkie potencjalne różnice napięcia są szybko i skutecznie wyładowywane do ziemi, co minimalizuje ryzyko porażenia prądem. Ponadto, w układzie TT każdy odbiornik ma swoje własne uziemienie, co zapewnia dodatkowe bezpieczeństwo – w przypadku uszkodzenia izolacji, prąd nie przemieszcza się przez konstrukcję budynku. Ważnym aspektem jest również brak połączenia między przewodem neutralnym (N) a przewodem ochronnym (PE) w instalacji odbiorczej, co jest zgodne z normami, takimi jak PN-IEC 60364, które podkreślają konieczność niezależnych uziemień dla poprawy bezpieczeństwa elektrycznego. Dzięki tym cechom, układ TT jest często stosowany w instalacjach budowlanych, zwłaszcza w budynkach mieszkalnych, gdzie zapewnienie bezpieczeństwa użytkowników jest absolutnym priorytetem.

Pytanie 32

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Przewód z literą B super nadaje się do oświetlenia klatki schodowej, bo jest wielożyłowy. Dzięki temu można go podłączyć do różnych rzeczy, jak łączniki schodowe albo krzyżowe. W klatkach schodowych często trzeba sterować światłem z różnych miejsc, więc musimy mieć odpowiednie przewody. Ten wielożyłowy to fajna opcja, bo można podpiąć dodatkowe żyły, co daje nam większą elastyczność. I pamiętaj, że zgodnie z normą PN-IEC 60364, dobrze jest zaprojektować te instalacje tak, żeby zmniejszyć ryzyko zwarcia i mieć odpowiednie zabezpieczenia. Moim zdaniem, wybierając ten przewód B, ułatwiasz sobie życie, bo można łatwo dostosować oświetlenie w przyszłości, zmienić coś bez konieczności całkowitej wymiany systemu. Pamiętaj też, żeby zawsze sprawdzić specyfikacje techniczne oraz wymagania dotyczące zabezpieczeń elektrycznych w Twoim kraju.

Pytanie 33

W którym przedziale można regulować napięcie wyjściowe UWY w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. UWY = (5 ÷ 10) V
B. UWY = (10 ÷ 15) V
C. UWY = (5 ÷ 15) V
D. UWY = (15 ÷ 25) V
W tym układzie mamy klasyczny dzielnik napięcia złożony z trzech rezystorów połączonych szeregowo: 15 kΩ, 10 kΩ i 5 kΩ. Całość jest zasilana napięciem UWE = 30 V. Suma rezystancji wynosi 15 kΩ + 10 kΩ + 5 kΩ = 30 kΩ. Ponieważ prąd w obwodzie szeregowym jest wszędzie taki sam, na każdym odcinku rezystora odkłada się napięcie proporcjonalne do jego oporu. Czyli 30 V „dzieli się” dokładnie w stosunku 15 : 10 : 5. To razem 30 części, więc na 1 kΩ przypada 1 V. Stąd: na 5 kΩ mamy spadek 5 V, na odcinku 5 kΩ + 10 kΩ – łącznie 15 kΩ – mamy 15 V, a na całym dzielniku 30 kΩ – 30 V. Wyjście UWY jest wyprowadzone z suwaka umieszczonego na rezystorze 10 kΩ, między węzłem 5 kΩ a 15 kΩ. Oznacza to, że w najniższym położeniu (przy dolnym końcu rezystora 10 kΩ) otrzymujemy napięcie równe spadkowi na samym rezystorze 5 kΩ, czyli 5 V względem masy. W najwyższym położeniu (przy górnym końcu rezystora 10 kΩ) dostajemy sumę spadków na 5 kΩ i 10 kΩ, czyli 15 V. Dlatego prawidłowy przedział regulacji to (5 ÷ 15) V. W praktyce taki dzielnik może pracować jako prosty, pasywny regulator napięcia odniesienia, np. do nastawy progów w układach z komparatorem, do regulacji poziomu sygnału sterującego wejście analogowe sterownika PLC albo jako wstępne ustawienie napięcia dla wzmacniacza operacyjnego. W dobrych praktykach projektowych pamięta się, że odbiornik podłączony do UWY powinien mieć rezystancję wejściową wielokrotnie większą od rezystancji dzielnika (co najmniej 10 razy), żeby nie obciążać dzielnika i nie zaniżać napięcia. W normach dotyczących elektroniki i automatyki (np. PN‑EN z rodzin 61010, 61131) też pojawia się wymóg, aby układy pomiarowe nie wprowadzały istotnego obciążenia badanego obwodu – i dokładnie o to tutaj chodzi.

Pytanie 34

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru impedancji pętli zwarciowej.
B. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
C. pomiaru rezystancji uziemienia.
D. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
Miernik rezystancji, podłączony w opisany sposób, rzeczywiście służy do sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego. Jest to kluczowy element w zapewnieniu bezpieczeństwa instalacji elektrycznych. Zgodnie z polskimi normami oraz przepisami dotyczącymi instalacji, ciągłość przewodów ochronnych jest niezbędna dla prawidłowego funkcjonowania systemów ochrony przed porażeniem prądem elektrycznym. Mierzenie ciągłości polega na sprawdzeniu, czy nie ma przerw w obwodzie ochronnym, co mogłoby prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem. Przykładowo, w przypadku awarii instalacji, jeżeli przewód ochronny jest przerwany, prąd może nie mieć innej drogi powrotnej do ziemi, co zwiększa ryzyko porażenia prądem. W praktyce, przed rozpoczęciem jakichkolwiek prac elektrycznych, technicy powinni zawsze wykonywać takie pomiary, aby upewnić się, że instalacja jest w dobrym stanie. Właściwe przeprowadzenie takich testów jest zgodne z zasadami BHP oraz normami PN-IEC 60364, które regulują zasady projektowania i eksploatacji instalacji elektrycznych.

Pytanie 35

Którego z przedstawionych na rysunkach przyrządów pomiarowych należy użyć w celu zbadania rozkładu temperatury wewnątrz rozdzielnicy?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór innego przyrządu pomiarowego niż kamera termowizyjna, w kontekście badania rozkładu temperatury w rozdzielnicy, wynika z nieporozumienia dotyczącego zastosowania poszczególnych narzędzi. Przyrządy takie jak termometry kontaktowe czy czujniki temperatury mogą dostarczać lokalnych pomiarów, jednak ich skuteczność w analizowaniu większego obszaru, jakim jest rozdzielnica, jest znacznie ograniczona. Termometry kontaktowe wymagają fizycznego kontaktu z badaną powierzchnią, co może prowadzić do zafałszowania wyników w przypadku zmian temperatury w czasie rzeczywistym. Dodatkowo, na chwilę obecną nie są one w stanie zidentyfikować potencjalnych problemów z bezpieczeństwem, które mogą wystąpić w wyniku przegrzewania się elementów elektrycznych. Wybierając niewłaściwe narzędzie, można przeoczyć kluczowe sygnały ostrzegawcze. Dlatego kluczowe jest zrozumienie funkcji i ograniczeń poszczególnych narzędzi pomiarowych. Użycie kamer termograficznych jest zgodne z najlepszymi praktykami w dziedzinie diagnostyki elektroenergetycznej, co podkreślają standardy takie jak IEC 60601, które zalecają regularne monitorowanie i analizę temperatury w celu zapewnienia nieprzerwanego i bezpiecznego działania instalacji elektrycznych.

Pytanie 36

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Watomierza
B. Omomierza
C. Megawoltomierza
D. Megaomomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 37

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, MR 16, GU 10, AR 111
B. E 14, AR 111, MR 16, GU 10
C. E 14, GU 10, AR 111, MR 16
D. E 14, AR 111, GU 10, MR 16
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 38

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. L1 i L3
B. N i PE
C. L1 i PE
D. N i L3
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 39

Na przedstawionej ilustracji wirnika silnika elektrycznego czarną strzałką wskazano

Ilustracja do pytania
A. uzwojenie wirnika.
B. przewietrznik.
C. pierścienie ślizgowe.
D. komutator.
Na ilustracji faktycznie widać pierścienie ślizgowe wirnika silnika elektrycznego. To elementy, które są osadzone na wale i mają postać współosiowych, gładkich pierścieni z metalu przewodzącego. Do tych pierścieni dociskają się szczotki, zwykle z grafitu lub miedzi z domieszkami, i w ten sposób doprowadza się prąd do uzwojeń wirnika w silnikach pierścieniowych lub synchronicznych. W odróżnieniu od komutatora, pierścienie są ciągłe, niepocięte na lamele, a prąd zmienia się w uzwojeniu dzięki zewnętrznemu układowi zasilania, a nie mechanicznej komutacji. W praktyce, przy pracy z silnikami pierścieniowymi np. w suwnicach, przenośnikach taśmowych czy dużych wentylatorach przemysłowych, technik bardzo często ma do czynienia właśnie z pierścieniami ślizgowymi: sprawdza stan powierzchni ślizgowej, dobór i zużycie szczotek, jakość połączeń z uzwojeniem wirnika. Z mojego doświadczenia wielu uczniów myli je z komutatorem, bo w obu przypadkach występują szczotki, ale różnica jest zasadnicza: komutator ma wiele wąskich segmentów izolowanych mikanitem, a pierścienie to zwykle 2–3 szerokie, gładkie powierzchnie. Z punktu widzenia dobrych praktyk eksploatacyjnych ważne jest, żeby pierścienie były czyste, nieprzepalone i miały równomierną, lekko matową powierzchnię – tak zalecają choćby instrukcje producentów silników i normowe wytyczne dotyczące eksploatacji maszyn elektrycznych. Wszelkie rowki, przypalenia czy nadmierne iskrzenie na szczotkach to sygnał do przeglądu. Znajomość budowy wirnika i rozróżnianie pierścieni ślizgowych od innych części bardzo ułatwia diagnozowanie usterek w praktyce serwisowej.

Pytanie 40

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. miedzianymi umieszczonymi na tynku
B. miedzianymi umieszczonymi pod tynkiem
C. aluminiowymi umieszczonymi pod tynkiem
D. aluminiowymi umieszczonymi na tynku
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.