Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:33
  • Data zakończenia: 17 grudnia 2025 13:49

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód uziemiający
B. Przewód fazowy
C. Przewód neutralny
D. Przewód ochronny
Symbol <em>PE</em> na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 2

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do zdejmowania izolacji z przewodów dwużyłowych.
B. Do wykonywania połączeń bez zdejmowania izolacji.
C. Do zaciskania końcówek tulejkowych na przewodach.
D. Do łączenia przewodów dowolnego typu.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 3

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony podstawowej.
B. Ochrony uzupełniającej.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony przez zastosowanie bardzo niskiego napięcia.
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 4

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 5

Który element przedstawionego na rysunku układu zasilania i sterowania silnikiem indukcyjnym steruje przełączeniem układu styczników łączących uzwojenia silnika w gwiazdę i w trójkąt?

Ilustracja do pytania
A. Przycisk sterujący zwrotny NC.
B. Wyłącznik silnikowy.
C. Przycisk sterujący zwrotny NO.
D. Przekaźnik czasowy.
Przekaźnik czasowy pełni kluczową rolę w układzie zasilania i sterowania silnikiem indukcyjnym, umożliwiając płynne przełączanie uzwojeń silnika między połączeniem w gwiazdę a w trójkąt. Dzięki zastosowaniu przekaźnika czasowego, możemy zminimalizować prądy rozruchowe silnika, co jest istotne dla jego długowieczności oraz efektywności energetycznej. W praktyce, przy włączaniu silnika w trybie gwiazdy, uzwojenia są połączone w sposób, który ogranicza prąd rozruchowy, a po ustabilizowaniu się obrotów, przekaźnik czasowy automatycznie przełącza układ na połączenie w trójkąt. Standardy dotyczące automatyki przemysłowej, takie jak normy IEC, zalecają stosowanie przekaźników czasowych w takich aplikacjach, aby zapewnić zgodność z wymogami bezpieczeństwa i efektywności operacyjnej. Właściwe zastosowanie przekaźników czasowych nie tylko zwiększa niezawodność układu, ale także pozwala na lepsze zarządzanie obciążeniem, co jest niezbędne w nowoczesnych systemach zasilania.

Pytanie 6

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 7

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. GU10
B. E27
C. G9
D. MR11
Wybierając inne odpowiedzi, można wpaść w pułapki związane z trzonkami żarówek. Na przykład, GU10 to dość inna sprawa – to do oświetlenia punktowego i ma dwa piny. Myślenie, że wszystkie nowoczesne źródła są podobne, to pułapka, bo różnice w mocowaniach są ważne. MR11, który jest mniejszy od MR16, też ma swoją budowę i nie pasuje do E27. A z G9 bywa podobnie – ludzie myślą, że małe źródła światła są lepsze, a tak naprawdę E27 często oferuje większą wydajność. Ignorując różnice w konstrukcji trzonków, można trafić na kłopoty z dopasowaniem, a czasem trzeba dokupić coś dodatkowego. Dlatego warto znać standardy i specyfikacje, żeby dobrze dobrać żarówki i osprzęt, co się przekłada na oszczędność energii i komfort użytkowania.

Pytanie 8

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji w pętli zwarciowej
B. Sprawdzanie wyłącznika różnicowoprądowego
C. Weryfikacja stanu izolacji podłóg
D. Pomiar rezystancji izolacji przewodów
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 9

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. Zastosowano niewłaściwy typ łącznika instalacyjnego.
B. W rury wciągnięto niewłaściwą liczbę przewodów.
C. W instalacji nieprawidłowo połączono przewód ochronny.
D. Błędnie połączono przewody instalacji do zacisków żyrandola.
Zastosowanie niewłaściwego typu łącznika instalacyjnego w przedstawionej instalacji elektrycznej jest istotnym błędem, który może prowadzić do nieprawidłowego działania obwodu. W przypadku, gdy łącznik jest podłączony w sposób, który uniemożliwia jego prawidłowe funkcjonowanie, obwód pozostaje zamknięty, co skutkuje ciągłym świeceniem żarówek. Zgodnie z normami PN-IEC 60364, łączniki powinny być dobierane w zależności od specyfikacji instalacji oraz jej przeznaczenia. W praktyce oznacza to, że przy montażu instalacji elektrycznej musimy upewnić się, że wybrany łącznik jest zgodny z wymaganiami technicznymi oraz typem instalacji. Na przykład, w przypadku obwodów oświetleniowych, należy zastosować łączniki, które umożliwiają włączanie i wyłączanie obwodu w sposób, który nie wprowadza zamkniętego układu. Wybór odpowiednich komponentów ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy instalacji, dlatego warto korzystać z produktów renomowanych producentów, które spełniają odpowiednie normy i standardy branżowe.

Pytanie 10

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęci owo-żarowa.
B. sodowa.
C. rtęciowa.
D. halogenowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 11

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 5 sekund
B. 1 sekundę
C. 0,4 sekundy
D. 0,2 sekundy
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 12

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Wzbudnik indukcyjny.
B. Elektromagnes.
C. Transformator.
D. Dławik magnetyczny.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 13

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Uniwersalnych.
B. Asynchronicznych pierścieniowych.
C. Synchronicznych.
D. Asynchronicznych klatkowych.
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 14

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 200 V i 500 V
B. 200 V i 300 V
C. 300 V i 500 V
D. 500 V i 300 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 15

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek na żyłach przewodów.
B. Formowania oczek z końców żył przewodów.
C. Zdejmowania powłoki przewodów.
D. Zdejmowania izolacji żył przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 16

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 17

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. przekaźnika.
B. stycznika.
C. wyłącznika różnicowoprądowego.
D. łącznika wielofunkcyjnego.
Stycznik to taka część elektryczna, która jest mega ważna w automatyzacji obwodów. Dzięki niemu można zdalnie uruchamiać duże urządzenia, co jest przydatne w różnych sytuacjach, jak na przykład oświetlenie, silniki elektryczne czy inne maszyny w fabrykach. Działa to na zasadzie elektromagnetyzmu, a cewka (A1, A2) uruchamia mechanizm, który zamyka lub otwiera obwód. Przykładowo, można go używać do automatycznego włączania silników w napędach. To wszystko jest zgodne z normami IEC 60947-4-1, które dotyczą rozdziału energii. Fajnie jest też korzystać ze styczników z dodatkowymi zabezpieczeniami, jak wyłączniki termiczne, żeby uniknąć przeciążeń i uszkodzeń. Wiedza o tym, jak działają styczniki, jest naprawdę kluczowa dla ludzi, którzy projektują i naprawiają instalacje elektryczne.

Pytanie 18

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. pomiaru rezystancji żył przewodów.
B. sprawdzania ciągłości żył przewodów.
C. wyznaczania trasy przewodów.
D. szacowania długości przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 19

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 3,83 Ω
B. 1,15 Ω
C. 2,30 Ω
D. 2,00 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 20

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. prefabrykowanej.
B. natynkowej.
C. wiązanej.
D. podtynkowej.
Bruzdownica, znana również jako przecinarka do betonu lub stali, jest narzędziem wykorzystywanym w instalacjach podtynkowych w celu wykonywania rowków w ścianach i stropach. Takie rowki są niezbędne do osadzenia przewodów elektrycznych czy rur hydraulicznych, co pozwala na estetyczne i funkcjonalne wykończenie wnętrz. Wykonywanie instalacji podtynkowej, która jest schowana w ścianach, wymaga precyzyjnego cięcia, a bruzdownica umożliwia to z dużą dokładnością oraz w stosunkowo krótkim czasie. Ponadto, przy użyciu bruzdownicy można dostosować szerokość i głębokość rowków do specyfiki używanych materiałów oraz przewodów, co jest istotne z punktu widzenia bezpieczeństwa i norm budowlanych. W praktyce, aby uzyskać najlepsze rezultaty, operator bruzdownicy powinien przestrzegać zaleceń producenta oraz standardów BHP, co przyczynia się do zwiększenia efektywności pracy oraz zmniejszenia ryzyka wypadków. Prawidłowe stosowanie bruzdownicy ma także wpływ na późniejsze etapy wykończenia, takie jak tynkowanie czy malowanie, które powinny być przeprowadzane na równych i gładkich powierzchniach, stworzonych przez profesjonalnie wykonane rowki.

Pytanie 21

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Oprawka oznaczona literą D jest właściwa, ponieważ została wykonana z ceramiki, co czyni ją idealnym materiałem do zastosowania w źródłach światła o dużej mocy. Ceramika charakteryzuje się wysoką odpornością na temperatury, które mogą osiągać nawet 300°C, co jest kluczowe dla zapewnienia bezpieczeństwa i wydajności systemu oświetleniowego. W praktyce, oprawki ceramiczne są szeroko stosowane w lampach halogenowych i LED o dużej mocy, gdzie efektywne odprowadzanie ciepła jest niezbędne. Materiał ten nie tylko dobrze przewodzi ciepło, ale również minimalizuje ryzyko deformacji pod wpływem wysokich temperatur. Zastosowanie ceramiki w takich oprawkach wpisuje się w standardy branżowe, które uwzględniają bezpieczeństwo i efektywność energetyczną. Warto również zauważyć, że w przypadku źródeł światła dużej mocy, niewłaściwie dobrane materiały mogą prowadzić do uszkodzeń zarówno oprawki, jak i samego źródła światła, co może skutkować awarią i zwiększonym ryzykiem pożaru. Dlatego wybór ceramiki jako materiału na oprawki jest zgodny z najlepszymi praktykami inżynieryjnymi.

Pytanie 22

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. gG 16 A
C. gG 20 A
D. aM 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 23

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. zakleić gniazdo taśmą izolacyjną
B. wymienić gniazdo na nowe
C. uszczelnić pęknięcia za pomocą kleju do tworzywa
D. zdemontować gniazdo i zaślepić puszkę
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 24

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
D. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 25

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Redukuje hałas podczas eksploatacji
B. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
C. Generuje moment magnetyczny o stałym kierunku
D. Tworzy nieruchome, stałe pole magnetyczne
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 26

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. N i L3 są zwarte oraz PE jest przerwana.
B. N i PE są zwarte oraz L3 jest przerwana.
C. L1 i L2 są zwarte.
D. L1 i L2 są przerwane.
Wybór nieprawidłowej odpowiedzi może wynikać z błędnego zrozumienia koncepcji pomiarów rezystancji w obwodach elektrycznych. Dla przykładu, wybór opcji, że L1 i L2 są zwarte, ignoruje fakt, że pomiar rezystancji wskazuje 0 Ω tylko dla tych żył, co oznacza, że nie są one zwarte, lecz mają połączenie elektryczne. Podobnie, stwierdzenie, że L1 i L2 są przerwane, jest sprzeczne z wynikami pomiarów, które pokazują, że w tych żyłach nie występuje przerwanie. Zrozumienie funkcji żył w instalacji jest kluczowe; L1, L2, i L3 to żyły fazowe, a ich zwarcie nie jest dopuszczalne w poprawnie działającym obwodzie. Co więcej, żyły N i PE pełnią specjalne funkcje w instalacji, gdzie N odpowiada za powrót prądu, a PE za bezpieczeństwo. Zły dobór odpowiedzi może wynikać także z typowych błędów myślowych, takich jak mylenie przerwania z zwarciem. Osoby, które źle interpretują wyniki pomiarów, mogą nie dostrzegać kluczowych różnic między wartościami rezystancji, co prowadzi do nieprawidłowych wniosków. Dlatego istotne jest, aby wszelkie pomiary były przeprowadzane zgodnie z obowiązującymi normami, co pozwoli na prawidłową diagnozę stanu instalacji elektrycznych.

Pytanie 27

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IN ≤ IZ
B. IB ≤ IZ ≤ IN
C. IZ ≤ IN ≤ IB
D. IN ≤ IB ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 28

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Szczypce boczne
B. Nóż monterski
C. Płaskoszczypce
D. Zagniatarka
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 29

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 50 V
B. 100 V
C. 12 V
D. 230 V
Wartość 230 V jest typowym napięciem używanym w domowych instalacjach elektrycznych, ale nie jest to wartość bezpieczna dla dotyku. To napięcie jest wystarczająco wysokie, aby spowodować poważne obrażenia lub nawet śmierć w przypadku kontaktu fizycznego. Z tego powodu instalacje muszą być odpowiednio zabezpieczone, a użytkownicy świadomi zagrożeń. 100 V to wartość, która również przekracza bezpieczny poziom napięcia dotykowego. Choć niższa niż 230 V, nadal pozostaje niebezpieczna i wymaga podobnych środków ostrożności. Przy takim napięciu może dojść do poważnych obrażeń w przypadku jego kontaktu z ciałem ludzkim. 12 V jest napięciem często używanym w niskonapięciowych systemach zasilania, jak np. w elektronice użytkowej czy oświetleniu LED. Jest to wartość uznawana za bezpieczną do dotyku, ale nie spełnia definicji napięcia dotykowego bezpiecznego, które wynosi 50 V, właśnie z uwagi na jego zastosowanie do określenia pewnych standardów ochrony. Bezpieczeństwo w kontekście elektryki nie ogranicza się jedynie do samego napięcia, ale także do warunków, w jakich jest stosowane, co podkreśla wagę przestrzegania norm i standardów branżowych w celu minimalizacji ryzyka.

Pytanie 30

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. B.
B. C.
C. D.
D. A.
Wybór niewłaściwego rodzaju wyłącznika różnicowoprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa elektrycznego. W przypadku zastosowania wyłącznika o niewłaściwej charakterystyce, takiego jak wyłączniki jednofazowe lub o nieodpowiedniej wartości prądowej, istnieje ryzyko, że nie dostosuje się on do wymagań instalacji trójfazowej. Wyłączniki różnicowoprądowe, które nie mają certyfikacji dla obciążeń trójfazowych, mogą nie zadziałać w przypadku wystąpienia awarii, co naraża użytkowników na niebezpieczeństwo porażenia prądem. Często błędem jest także wybór wyłącznika o wyższej wartości różnicowoprądowej, co nie tylko zmniejsza skuteczność ochrony, ale również jest niezgodne z normami, które zalecają zastosowanie 30mA w instalacjach, gdzie ochrona przed porażeniem jest kluczowa. Przy doborze sprzętu elektrycznego ważne jest również zrozumienie, że każda instalacja ma swoje specyficzne wymagania i jest istotne, aby dostosować parametry wyłącznika do warunków użytkowania. Zastosowanie niewłaściwego typu wyłącznika może nawet prowadzić do niewłaściwej pracy pozostałych urządzeń elektrycznych, co naraża je na uszkodzenia. Dlatego kluczowe jest, aby podejmować decyzje oparte na wiedzy o standardach branżowych i dobrych praktykach w zakresie instalacji elektrycznych.

Pytanie 31

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,69
C. 0,57
D. 0,82
Błędy w obliczeniach mogą wynikać z niepoprawnego stosowania wzorów i braku zrozumienia, jak działa współczynnik mocy. Często, przy liczeniu, zapominamy o poprawnym uwzględnieniu obydwu rodzajów mocy: czynnej i reaktywnej. Niektórzy mogą też pomieszać jednostki, obliczając moc w kW zamiast w VA, co wprowadza zamieszanie. Innym częstym problemem bywa przeliczenie napięcia z fazowego na liniowe lub odwrotnie – to łatwy sposób na zrobienie błędu w końcowym wyniku. Z moim doświadczeniem, kluczem do sukcesu jest pełne zrozumienie, jak obliczać ten współczynnik. To nie tylko pozwala ocenić efektywność urządzeń elektrycznych, ale też jest zgodne z różnymi normami dotyczącymi efektywności energetycznej. Z perspektywy ekonomicznej i ekologicznej, lepszy współczynnik mocy dla silników trójfazowych jest naprawdę ważny, bo zmniejsza obciążenie systemu i emisję zanieczyszczeń.

Pytanie 32

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 173 var
B. 100 var
C. 519 var
D. 300 var
Poprawna odpowiedź to 173 var, ponieważ w symetrycznym układzie trójfazowym moc bierna jest związana z mocą czynną. Wartość mocy biernej Q można obliczyć za pomocą wzoru Q = √3 * P, gdzie P to moc czynna. W przypadku, gdy watomierz wskazuje 100 W, możemy zastosować ten wzór, co prowadzi nas do obliczenia Q = √3 * 100 W, co daje około 173 var. W praktyce, moc bierna jest istotna w kontekście projektowania instalacji elektrycznych, gdzie ważne jest zrozumienie relacji między mocą czynną a mocą bierną, by zapewnić optymalne działanie urządzeń elektrycznych. W kontekście norm PN-EN 50160, które dotyczą jakości energii elektrycznej, światłowodów i systemów zasilania, umiejętność obliczania tych mocy jest niezbędna dla inżynierów zajmujących się systemami zasilania i ochroną przed przepięciami. Wiedza ta pozwala również na lepsze zarządzanie zużyciem energii i minimalizację strat, co jest kluczowe w działalności przemysłowej oraz w kontekście zrównoważonego rozwoju.

Pytanie 33

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. halogenowa.
B. rtęciowa.
C. sodowa.
D. żarowa.
Żarówka halogenowa, którą rozpoznajemy na zdjęciu, charakteryzuje się specyficzną budową i właściwościami, które czynią ją popularnym wyborem w oświetleniu. Jej mała bańka zawiera gaz halogenowy, który zwiększa efektywność energetyczną źródła światła oraz wydłuża jego żywotność w porównaniu do tradycyjnych żarówek żarowych. Warto zauważyć, że halogeny emitują światło o wysokiej jakości, co sprawia, że są często stosowane w zastosowaniach wymagających precyzyjnego oświetlenia, takich jak oświetlenie wystawowe czy architektoniczne. Ponadto, ich zdolność do renderowania kolorów oraz natychmiastowego osiągania pełnej jasności sprawia, że są idealnym rozwiązaniem dla pomieszczeń, które potrzebują szybkiej zmiany oświetlenia. W branży oświetleniowej halogeny rekomendowane są zgodnie z normami EN 60598, które definiują bezpieczne użytkowanie i właściwe zastosowanie tych źródeł światła.

Pytanie 34

Co oznacza przeciążenie instalacji elektrycznej?

A. Przekroczeniu wartości prądu znamionowego danej instalacji
B. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
C. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
D. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 35

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. MR16
B. GU10
C. E27
D. E14
Oprawa oświetleniowa przedstawiona na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem GU10, co można stwierdzić na podstawie analizy wizualnej. Trzonek GU10 charakteryzuje się dwoma bolcami zakończonymi małymi wypustkami, co jest typowe dla tego standardu. W praktyce, żarówki GU10 są powszechnie stosowane w oświetleniu punktowym, halogenowym oraz LED, zapewniając dużą wydajność świetlną oraz możliwość łatwej wymiany. Warto zwrócić uwagę na to, że zastosowanie odpowiednich żarówek w danej oprawie oświetleniowej jest kluczowe dla zapewnienia optymalnego działania systemu oświetleniowego oraz bezpieczeństwa użytkowania. W profesjonalnych instalacjach oświetleniowych, takich jak biura czy przestrzenie komercyjne, standard GU10 jest często preferowany ze względu na różnorodność dostępnych źródeł światła oraz ich łatwość w montażu i demontażu, co sprzyja serwisowaniu. Zastosowanie odpowiednich standardów trzonków pozwala także na lepsze zarządzanie energią i efektywność kosztową, co jest istotne w kontekście nowoczesnych rozwiązań oświetleniowych.

Pytanie 36

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. wewnętrznej linii zasilającej
B. instalacji wewnętrznej
C. przyłącza kablowego
D. przyłącza napowietrznego
Odpowiedzi takie jak "instalacja wnętrzowa", "przyłącze kablowe" oraz "przyłącze napowietrzne" odnoszą się do innych aspektów systemu elektrycznego, które są mylone z wewnętrzną linią zasilającą. Instalacja wnętrzowa dotyczy ogółu elementów zainstalowanych wewnątrz budynku, takich jak gniazdka, włączniki czy oświetlenie, ale nie wskazuje na konkretne połączenie zasilające. Przyłącze kablowe odnosi się do połączenia między siecią dystrybucyjną a budynkiem, które ma na celu dostarczenie energii do budynku, ale nie jest to już linia zasilająca wewnętrzna. Natomiast przyłącze napowietrzne to forma dostarczenia energii elektrycznej, która wykorzystuje przewody zawieszone na słupach, co również nie dotyczy przesyłu energii wewnątrz budynku. Pojęcia te mogą prowadzić do nieporozumień, zwłaszcza u osób, które nie mają doświadczenia w dziedzinie elektryki. Poprawne zrozumienie różnicy między tymi terminami jest kluczowe dla projektowania i realizacji efektywnych oraz bezpiecznych systemów zasilania w obiektach budowlanych.

Pytanie 37

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 mA oraz napięcie znamionowe 63 V
B. 0,03 A oraz napięcie znamionowe 63 V
C. 0,03 mA oraz znamionowy prąd ciągły 63 mA
D. 0,03 A i znamionowy prąd ciągły 63 A
Zrozumienie parametrów technicznych wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Odpowiedzi zawierające błędne wartości prądu różnicowego, jak 0,03 mA czy 0,03 mA, są mylące, ponieważ prąd różnicowy powinien być podawany w amperach, a nie miliamperach czy mikroamperach. Prąd różnicowy na poziomie 0,03 A odpowiada wartości 30 mA, co jest standardową wartością dla wyłączników stosowanych w budynkach mieszkalnych, a nie 0,03 mA, co wskazywałoby na minimalne zdolności detekcji. Również błędna jest informacja, że wyłącznik ma znamionowe napięcie 63 V. Znamionowe napięcie dla tego typu urządzenia wynosi znacznie więcej, w typowych zastosowaniach wynosi 230 V lub 400 V w instalacjach trójfazowych. Odpowiedzi sugerujące niewłaściwe wartości znamionowego prądu ciągłego, takie jak 63 mA, są kolejnym typowym błędem. Prąd ciągły 63 A jest standardem w przemyśle i instalacjach domowych, zapewniającym wystarczającą moc do zasilania różnych urządzeń elektrycznych. Dlatego ważne jest, aby przy analizie parametrów wyłączników różnicowoprądowych posługiwać się zgodnymi z normami wartościami, aby zapewnić ich prawidłowe działanie oraz maksymalne bezpieczeństwo użytkowników.

Pytanie 38

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
B. Kontrola zabezpieczeń i stanu osłon części wirujących
C. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
D. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 39

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
C. Prąd różnicowy wyłącznika różnicowoprądowego.
D. Rezystancję izolacji przewodów.
Rezystancja izolacji przewodów jest kluczowym parametrem w ocenie stanu technicznego instalacji elektrycznych. Miernik izolacji, przedstawiony na zdjęciu, jest specjalnie zaprojektowany do pomiaru rezystancji izolacji, co pozwala zidentyfikować potencjalne usterki i zapewnić bezpieczeństwo użytkowników. Wysokie wartości rezystancji wskazują na dobrą izolację, co jest zgodne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które stawiają wymagania dotyczące izolacji w instalacjach elektrycznych. Pomiar rezystancji izolacji jest szczególnie istotny przed oddaniem do użytku nowej instalacji lub po przeprowadzeniu prac serwisowych. Regularne kontrole stanu izolacji mogą zapobiegać awariom, w tym porażeniom prądem elektrycznym oraz pożarom spowodowanym uszkodzeniami izolacji. Przykładowo, w obiektach przemysłowych, gdzie występuje duże ryzyko uszkodzeń mechanicznych, zaleca się coroczne wykonywanie pomiarów rezystancji izolacji, aby zapewnić zgodność z przepisami BHP i normami branżowymi.

Pytanie 40

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Adapter oznaczony literą A jest prawidłową odpowiedzią, ponieważ łączy gniazdo E27 z gniazdem GU10, co czyni go niezwykle praktycznym elementem w zastosowaniach oświetleniowych. Gniazdo E27, szerokie i standardowe, jest powszechnie stosowane w oprawach żarówkowych, co pozwala na łatwe wkręcanie tradycyjnych żarówek. Z kolei gniazdo GU10, charakteryzujące się dwoma bolcami, jest szeroko używane w nowoczesnych żarówkach halogenowych oraz LED, dając możliwość uzyskania pożądanego efektu świetlnego i oszczędności energii. W praktyce adaptery tego typu ułatwiają modernizację oświetlenia, umożliwiając użytkownikom wykorzystanie różnych typów żarówek, nawet w istniejących instalacjach. Zastosowanie adapterów E27-GU10 jest zgodne z dobrymi praktykami branżowymi, które zalecają elastyczność i dostosowanie systemów oświetleniowych do potrzeb użytkowników.