Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 12:57
  • Data zakończenia: 9 grudnia 2025 13:04

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którego aparatu należy użyć w celu zastąpienia bezpieczników topikowych w modernizowanej instalacji w obwodzie zasilającym silnik trójfazowy?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór niewłaściwego aparatu zabezpieczającego do modernizowanej instalacji zasilającej silnik trójfazowy może prowadzić do poważnych problemów, zarówno w kontekście bezpieczeństwa, jak i efektywności działania systemu. Aparaty, które nie są przystosowane do obsługi takiego obwodu, mogą nie posiadać odpowiedniej liczby wejść i wyjść, co skutkuje niewłaściwym zasilaniem silnika. W przypadku podejść, które ignorują normy dotyczące zabezpieczeń obwodowych, jak na przykład stosowanie aparatów jednofazowych, można łatwo doprowadzić do przegrzania lub uszkodzenia silnika na skutek braku odpowiedniego odcięcia zasilania w przypadku awarii. Ponadto, nieodpowiedni dobór prądu znamionowego, który nie będzie odpowiadał wymaganiom silnika, może prowadzić do fałszywego wyzwolenia zabezpieczeń, co w praktyce oznacza nieprawidłowe działanie całego systemu. Istotnym aspektem jest również zrozumienie charakterystyki wyzwalania. Aparaty, które nie posiadają odpowiednich charakterystyk, takich jak "C16", mogą reagować zbyt wolno na nagłe skoki prądu, co w przypadku silników trójfazowych jest szczególnie istotne. W ten sposób, niepoprawne koncepcje w doborze zabezpieczeń mogą wynikać z braku zrozumienia zasady działania instalacji trójfazowych i ich specyficznych wymagań. Dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych, co gwarantuje nie tylko bezpieczeństwo, ale również niezawodność działania zasilania silników trójfazowych.

Pytanie 2

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Krzyżowy
B. Jednobiegunowy
C. Świecznikowy
D. Schodowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 3

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 2,75 Ω
B. 1,50 Ω
C. 1,25 Ω
D. 2,50 Ω
Problemy związane z błędnymi odpowiedziami najczęściej wynikają z nieprawidłowego zrozumienia zasad działania obwodów elektrycznych oraz błędnych obliczeń związanych z prawem Ohma. Użytkownicy mogą mylić jednostki miary lub źle interpretować różnice napięć w obwodzie. Na przykład, jeśli ktoś obliczał impedancję, wykorzystując różne wartości napięcia bez uwzględnienia spadku napięcia, mógłby uzyskać błędne wyniki, takie jak 1,50 Ω czy 1,25 Ω. Takie odpowiedzi mogą wynikać z przeoczenia, że do obliczeń należy używać jedynie różnicy napięcia przy zamkniętym i otwartym wyłączniku, a nie pojedynczych pomiarów. Z kolei wybór 2,75 Ω jako wartości impedancji może oznaczać, że osoba ta nie zrozumiała, jak funkcjonują obwody prądu przemiennego lub nie doceniła wpływu prądu na pomiar. Błędy te mogą również wynikać z braku znajomości praktycznych zastosowań i norm dotyczących instalacji elektrycznych, takich jak PN-IEC 60364. Właściwe obliczenia i zrozumienie wpływu impedancji pętli zwarcia na bezpieczeństwo instalacji elektrycznych są kluczowe dla każdego inżyniera elektryka. Ignorując te zasady, można stworzyć potencjalnie niebezpieczne warunki w obwodach elektrycznych, dlatego dokładność obliczeń i znajomość podstawowej teorii jest niezbędna w tej dziedzinie.

Pytanie 4

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Przekaźnik priorytetowy.
C. Automat zmierzchowy.
D. Regulator temperatury.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 5

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 26 A
B. 20 A
C. 6 A
D. 16 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 6

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 1, N z 3, 2 z 4
B. L z 4, N z 1, 2 z 3
C. L z 1, N z 4, 2 z 3
D. L z 3, N z 2, 1 z 4
Poprawna odpowiedź, czyli połączenie L z 1, N z 4 oraz 2 z 3, jest zgodna z zasadami sztuki monterskiej i zapewnia prawidłowe funkcjonowanie obwodu oświetleniowego. W tej konfiguracji przewód fazowy (L) łączy się z przełącznikiem (1), co pozwala na załączanie i wyłączanie oświetlenia w sposób kontrolowany. Przewód neutralny (N), który jest kluczowy dla pełnego obiegu prądu, łączy się z oświetleniem (4), co zapewnia jego poprawne działanie. Połączenie przewodów w puszce rozgałęźnej (2 z 3) jest również istotne, gdyż umożliwia efektywne zarządzanie obwodem oraz minimalizuje straty energii. Warto zauważyć, że zgodność z normami, takimi jak PN-IEC 60364, które dotyczą instalacji elektrycznych, zapewnia bezpieczeństwo i efektywność energetyczną. Takie połączenie jest również stosowane w praktyce podczas montażu instalacji oświetleniowych w budynkach mieszkalnych i komercyjnych, co potwierdza jego praktyczną użyteczność.

Pytanie 7

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przeciążenie
B. upływ prądu
C. przepięcie
D. uszkodzenie przewodu
Przyciśnięcie przycisku TEST na wyłączniku różnicowoprądowym nie symuluje przeciążenia, ponieważ przeciążenie związane jest z sytuacją, w której obciążenie prądowe przewyższa maksymalne dopuszczalne wartości dla danego obwodu. W takich sytuacjach działają zabezpieczenia nadprądowe, takie jak bezpieczniki lub wyłączniki automatyczne, które mają za zadanie przerwać obwód, aby zapobiec przegrzaniu przewodów i potencjalnym pożarom. Wciśniecie przycisku TEST nie dotyczy również przepięcia, które jest skutkiem nagłych wzrostów napięcia, na przykład podczas wyładowań atmosferycznych. Przepięcia są zazwyczaj niwelowane przez urządzenia ochronne, takie jak ograniczniki przepięć, a nie przez wyłączniki różnicowoprądowe. Wreszcie, wciśnięcie przycisku TEST nie dotyczy przerwy przewodu, co jest sytuacją, w której prąd nie przepływa w obwodzie z powodu uszkodzenia przewodu. Tego rodzaju problem nie jest związany z funkcją różnicowoprądową, ponieważ RCD działa na podstawie różnicy prądów między przewodami fazowymi a neutralnym, a nie na podstawie ich ciągłości. Zrozumienie tych różnic jest kluczowe dla prawidłowego użytkowania i ochrony instalacji elektrycznych.

Pytanie 8

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Rtęciowej
B. Sodowej
C. Halogenowej
D. Żarowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 9

W którym wierszu tabeli prawidłowo określono funkcje i liczby przewodów jednożyłowych, które należy umieścić w rurach instalacyjnych, aby wykonać poszczególne obwody w układzie sieciowym TN-S, zakończone punktami odbioru o przedstawionych symbolach graficznych?

Ilustracja do pytania
A. W wierszu 2.
B. W wierszu 3.
C. W wierszu 4.
D. W wierszu 1.
Wybór innego wiersza niż czwarty może wynikać z niepełnego zrozumienia zasadności liczby przewodów w układzie TN-S. Na przykład, gdyby ktoś wybrał wiersz pierwszy, mógłby sądzić, że dla obwodu oświetleniowego wystarczą dwa przewody, co jest niezgodne z wymaganiami. W rzeczywistości, obwód oświetleniowy wymaga nie tylko przewodu fazowego, ale również neutralnego i ochronnego, aby zapewnić bezpieczne warunki pracy oraz minimalizować ryzyko porażenia prądem. Podobna sytuacja dotyczy gniazd siłowych - konieczność posiadania trzech fazowych przewodów w połączeniu z jednym neutralnym oraz przewodem ochronnym jest absolutnie kluczowa. Wybierając wiersz 2 czy 1, można nie docenić znaczenia przewodu ochronnego, który pełni rolę zabezpieczającą w przypadku zwarcia. Często występującym błędem jest pomijanie regulacji dotyczących liczby przewodów w instalacjach siłowych, co może prowadzić do naruszenia bezpieczeństwa. Właściwe zrozumienie i przestrzeganie norm instalacyjnych, takich jak PN-IEC 60364, jest kluczowe dla prawidłowego projektowania i wykonania instalacji elektrycznych. Dlatego istotne jest, aby zawsze odnosić się do standardów branżowych oraz dobrych praktyk, które są fundamentem bezpiecznego użytkowania instalacji elektrycznych.

Pytanie 10

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Częstotliwości.
B. Odkształceń przebiegu napięcia.
C. Współczynnika mocy.
D. Spadku napięcia.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 11

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki
Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innej odpowiedzi wynika z nieporozumienia dotyczącego działania przekaźników oraz ich zastosowania w układach oświetleniowych. Kluczowym błędem w rozumieniu tego schematu jest pominięcie sekwencji aktywacji styków przekaźnika. Przykładowo, w przypadku odpowiedzi A, mogło wystąpić przekonanie, że aktywne są inne styki, co prowadziłoby do błędnych wniosków na temat stanu żarówek. W rzeczywistości, w analizowanym układzie, każdy styk odpowiada za inny stan żarówki, co jest istotnym aspektem przy projektowaniu systemów automatyki. Inne odpowiedzi mogą sugerować, że obie żarówki świecą w różnych sekwencjach bez uwzględnienia niezależności ich działania, co jest błędem w zrozumieniu funkcji przekaźnika. Prowadzi to do nieprawidłowego wyobrażenia o możliwości jednoczesnego sterowania wieloma obwodami, co nie jest zgodne z rzeczywistym działaniem układu. Dodatkowo, błędne odpowiedzi mogą wynikać z nieadekwatnego pojmowania cyklicznego charakteru pracy układów sterujących. W praktyce, zrozumienie schematów i działania przekaźników jest kluczowe dla efektywnej automatyzacji, a także dla przestrzegania dobrych praktyk inżynieryjnych. Dlatego ważne jest, aby dokładnie analizować każdy element układu przed podjęciem decyzji, co pozwoli na eliminację pomyłek i lepsze zrozumienie jego funkcji.

Pytanie 12

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 2.
Ilustracja 2 przedstawia symbol graficzny przewodu ochronnego zgodny z normami i przepisami dotyczącymi oznaczeń w instalacjach elektrycznych. Przewód ochronny, zwany również przewodem uziemiającym, ma kluczowe znaczenie w zapewnieniu bezpieczeństwa instalacji oraz ochrony przed porażeniem elektrycznym. Oznaczenie to składa się z linii prostej oraz przylegającej do niej linii ukośnej, co jednoznacznie wskazuje na funkcję ochronną tego przewodu. Zgodnie z normą PN-EN 60446, symbole powinny być tak zaprojektowane, aby były łatwe do rozpoznania i zrozumienia dla wszystkich osób zajmujących się instalacjami elektrycznymi. Użycie poprawnego oznaczenia przewodu ochronnego jest kluczowe, aby upewnić się, że instalacje są realizowane zgodnie z najlepszymi praktykami, co w konsekwencji minimalizuje ryzyko wystąpienia awarii oraz wypadków. W praktyce, właściwe oznaczenie przewodów ochronnych można spotkać na placach budowy, w dokumentacji technicznej oraz w instrukcjach obsługi urządzeń elektrycznych, co potwierdza ich znaczenie w codziennej pracy specjalistów branży elektrycznej.

Pytanie 13

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. metody zabezpieczenia przed porażeniem prądem elektrycznym
B. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
C. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
D. ciągłości przewodów ochronnych i neutralnych
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 14

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 2.
Wybór innej ilustracji niż ta, która przedstawia kabel YAKY, może wynikać z braku zrozumienia specyfikacji tego typu kabla. Kable YAKY są rozpoznawalne dzięki swojej charakterystycznej budowie, która obejmuje trzy przewody izolowane materiałem polwinitowym oraz dodatkowy oplot PVC. Na ilustracjach, które nie przedstawiają kabla YAKY, możemy dostrzec inne typy kabli, które mogą mieć różne zastosowania, lecz nie spełniają kryteriów YAKY. Na przykład, kabel z izolacją gumową lub innym rodzajem tworzywa sztucznego może wyglądać na pierwszy rzut oka podobnie, ale jego właściwości, takie jak odporność na temperaturę czy działanie chemikaliów, mogą się znacznie różnić. Często mylone są również kable o różnych przeznaczeniach, jak kable do instalacji telekomunikacyjnych czy sygnalizacyjnych, które nie nadają się do zasilania urządzeń elektrycznych w sposób bezpieczny. Konsekwencje błędnego doboru kabli mogą być poważne, prowadząc do awarii, a w skrajnych przypadkach do zagrożenia pożarowego. Kluczowe jest, aby przy wyborze kabla kierować się nie tylko jego wyglądem, ale przede wszystkim parametrami technicznymi oraz zaleceniami producentów, które są zgodne z obowiązującymi normami i standardami branżowymi.

Pytanie 15

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę II
B. Klasę 0
C. Klasę I
D. Klasę III
Wybór odpowiedzi dotyczących klas 0, II, czy III wiąże się z błędnym zrozumieniem podstawowych zasad dotyczących ochrony przed porażeniem elektrycznym. Klasa 0 odnosi się do urządzeń, które nie mają uziemienia ani dodatkowej izolacji, co stawia je w niebezpiecznej sytuacji w przypadku wystąpienia awarii. Oprawy oświetleniowe tej klasy są mało zalecane w zastosowaniach, gdzie może dojść do kontaktu z wodą lub wilgocią, co czyni je niewłaściwymi dla większości zastosowań domowych czy przemysłowych. Klasa II natomiast oznacza, że urządzenia te są podwójnie izolowane, co w rzeczywistości nie wymaga uziemienia, ale nie spełnia wymagań dla opraw, które mogą być narażone na kontakt z wodą. Klasa III odnosi się do urządzeń o niskim napięciu, które również nie są odpowiednie dla typowych opraw oświetleniowych. Rozumienie różnic między tymi klasami jest kluczowe dla zapewnienia bezpieczeństwa, a błędne interpretacje mogą prowadzić do niebezpiecznych sytuacji. Dlatego też, podczas doboru opraw oświetleniowych, istotne jest, aby zwracać uwagę na odpowiednią klasę ochronności i dostosowywać ją do specyfiki środowiska, w którym będą eksploatowane.

Pytanie 16

Który element osprzętu łączeniowego przedstawiono na rysunku?

Ilustracja do pytania
A. Listwę elektroinstalacyjną.
B. Szynę łączeniową.
C. Szynę montażową.
D. Listwę zaciskową.
Szyna łączeniowa, którą rozpoznałeś na zdjęciu, pełni istotną rolę w systemach elektroinstalacyjnych. Jest to komponent, który umożliwia efektywne połączenie i dystrybucję energii elektrycznej pomiędzy różnymi urządzeniami w rozdzielnicy. Dzięki zastosowaniu szyny łączeniowej, możliwe jest zminimalizowanie oporów elektrycznych i zredukowanie strat energii, co jest kluczowe w projektowaniu nowoczesnych instalacji elektrycznych. W praktyce, takie szyny są często stosowane w obiektach komercyjnych oraz przemysłowych, gdzie wymagane jest jednoczesne podłączenie wielu urządzeń, takich jak wyłączniki, bezpieczniki czy urządzenia automatyki. Ponadto, zgodnie z normami IEC 61439, szyny łączeniowe muszą spełniać określone wymagania dotyczące przewodności oraz odporności na przeciążenia. Dzięki temu, ich stosowanie podnosi nie tylko efektywność, ale również bezpieczeństwo całej instalacji elektrycznej.

Pytanie 17

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Otokowy.
B. Pionowy.
C. Fundamentowy.
D. Promieniowy.
Uziom otokowy w instalacji piorunochronnej to naprawdę ważny element, który zapewnia ochronę budynków przed wyładowaniami. Widzisz, na rysunku dokładnie widać czerwoną linię, która pokazuje uziom wokół budynku, co jest zupełnie normalne w takiej ochronie. Tworzy się go z przewodów zakopanych wokół, które mają za zadanie odprowadzać energię elektryczną w razie uderzenia pioruna. Dzięki temu szansa na uszkodzenie budynku lub sprzętu elektronicznego jest znacznie mniejsza. Jak wiadomo, normy mówią, że uziomy otokowe są najlepszym rozwiązaniem, zwłaszcza w wysokich obiektach, bo lepiej rozkładają prąd piorunowy. Korzystanie z tego typu uziomu nie tylko jest zgodne z inżynieryjnymi standardami, ale także chroni życie i mienie, co jest przecież najważniejsze.

Pytanie 18

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,003 A i 30 A
B. 3 A i 0,03 A
C. 30 A i 0,03 A
D. 0,03 A i 30 A
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 19

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. uszkodzenia podłączonego urządzenia elektrycznego
B. zagrożenia porażeniem prądem elektrycznym
C. zwarcia w obwodzie elektrycznym
D. przeciążenia obwodu elektrycznego
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 20

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. odgromowy.
B. neutralny.
C. ochronny.
D. wyrównawczy.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 21

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Grupowy.
B. Jednobiegunowy.
C. Szeregowy.
D. Dwubiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 22

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 5 żył, Y – 4 żyły.
B. X – 4 żyły, Y – 4 żyły.
C. X – 4 żyły, Y – 5 żył.
D. X – 5 żył, Y – 5 żył.
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 23

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 500V
B. 1000 V
C. 750V
D. 250V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 24

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 25

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji pętli zwarciowej
B. Badanie stanu izolacji podłóg
C. Badanie wyłącznika różnicowoprądowego
D. Pomiar rezystancji izolacji przewodów
Pomiar impedancji pętli zwarciowej, pomiar rezystancji izolacji przewodów oraz badanie stanu izolacji podłóg są istotnymi elementami oceny instalacji elektrycznych, jednak nie są bezpośrednimi metodami oceny skuteczności ochrony uzupełniającej przed porażeniem prądem elektrycznym. Pomiar impedancji pętli zwarciowej informuje o zdolności instalacji do ograniczenia prądu zwarciowego, co jest istotne, ale nie odnosi się bezpośrednio do ochrony przed porażeniem. Z kolei pomiar rezystancji izolacji przewodów ocenia stan izolacji, ale nie wskazuje na skuteczność zabezpieczeń przed prądem upływowym, które są kluczowe w sytuacjach zagrożenia. Badanie stanu izolacji podłóg, mimo że może mieć znaczenie w kontekście bezpieczeństwa, nie ocenia funkcjonalności wyłączników różnicowoprądowych i ich zdolności do natychmiastowego reagowania na pojawiające się zagrożenia. Typowym błędem myślowym jest zakładanie, że wszystkie te pomiary są równoważne w kontekście ochrony przed porażeniem. W rzeczywistości, skuteczna ochrona wymaga skoncentrowania się na elementach, które bezpośrednio przeciwdziałają zagrożeniom elektrycznym, takich jak wyłączniki różnicowoprądowe, które są fundamentalnym elementem systemów bezpieczeństwa elektrycznego, a ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 26

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP55
C. IP20
D. IP44
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 27

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 12,0 V
C. 11,0 V
D. 12,4 V
No więc, odpowiedź 12,0 V jest jak najbardziej trafna. Można to zobaczyć, analizując wykres, który pokazuje, jak napięcie akumulatora zmienia się w zależności od prądu i czasu rozładowywania. Jak obciążamy akumulator prądem 60 A przez 30 minut, to napięcie wynosi właśnie 12,0 V, co jest zgodne z tym, co powinno być zgodnie z normami. Wartość ta pokazuje, że akumulator działa tak, jak się tego spodziewaliśmy. Moim zdaniem, zrozumienie tej zależności jest mega ważne, zwłaszcza przy projektowaniu systemów zasilania dla różnych urządzeń. No i w odnawialnej energii, gdzie pojemność akumulatora ma ogromny wpływ na wydajność. Fajnie też wiedzieć, że w praktyce, jak np. w systemach fotowoltaicznych czy zasilaniu awaryjnym, znajomość charakterystyki rozładowania akumulatorów pomaga w ich optymalnym wykorzystaniu oraz w wydłużeniu żywotności przez unikanie nadmiernego rozładowania.

Pytanie 28

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje drgania zwory.
B. Zmniejsza siłę docisku zwory.
C. Zmniejsza napięcie podtrzymania cewki.
D. Likwiduje magnetyzm szczątkowy.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 29

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 30

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do rozruchu silnika pierścieniowego.
B. Do pracy zależnej dwóch styczników.
C. Do załączenia silnika z opóźnieniem.
D. Do pracy równoległej dwóch styczników.
Pytania dotyczące układów sterowania często prowadzą do nieporozumień związanych z interpretacją schematów. Odpowiedzi sugerujące rozruch silnika pierścieniowego lub załączenie silnika z opóźnieniem nie uwzględniają specyfiki przedstawionego układu. Pierwsza z tych koncepcji odnosi się do złożonego procesu uruchamiania silników o dużych momentach rozruchowych, który wymaga zastosowania specjalnych układów sterujących, takich jak styczniki z pierścieniami. Takie układy są złożone i nie mają związku z przedstawionym schematem, który dotyczy pracy zależnej dwóch styczników. Druga koncepcja, dotycząca załączenia z opóźnieniem, również jest błędna, ponieważ w przypadku układu pracy zależnej nie ma mowy o opóźnieniu, a jedynie o synchronizacji działania dwóch styczników. Dodatkowo, opcje dotyczące pracy równoległej dwóch styczników nie uwzględniają zasady, że jeden stycznik wpływa na drugi, co jest kluczowym elementem omawianego schematu. Tego typu błędy myślowe mogą wynikać z braku zrozumienia zasad działania układów sterujących oraz z mylenia różnych typów połączeń w automatyce. Aby poprawnie interpretować schematy, ważne jest, aby dobrze znać zasady działania układów oraz ich zastosowanie w praktyce. Warto zapoznać się z literaturą branżową oraz standardami, które precyzują zasady projektowania i stosowania układów sterujących.

Pytanie 31

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Krzyżowego
B. Schodowego
C. Hotelowego
D. Dzwonkowego
Wybór innych łączników do sterowania oświetleniem w klatkach schodowych może prowadzić do nieefektywnych i niewygodnych rozwiązań. Łącznik krzyżowy jest stosowany do sterowania jednym źródłem światła z wielu lokalizacji, co w kontekście klatki schodowej może być w niektórych przypadkach niewłaściwe, jeśli nie ma potrzeby włączania i wyłączania światła w różnych punktach. Użycie łącznika krzyżowego bez odpowiedniego zaplanowania może prowadzić do komplikacji w obwodzie i potencjalnych problemów z działaniem. Łącznik hotelowy, z kolei, jest przeznaczony do specyficznych instalacji w hotelach, gdzie goście mogą korzystać z różnych źródeł światła w pokojach, bez możliwości sterowania ogólnym oświetleniem korytarza. Taki system nie jest dedykowany do standardowego użytku w domach lub budynkach mieszkalnych, co czyni go mniej praktycznym wyborem dla klatki schodowej. Warto również zauważyć, że łącznik dzwonkowy charakteryzuje się inną funkcjonalnością i skutecznością, co jest kluczowe w sytuacjach, gdzie oświetlenie powinno być włączane i wyłączane szybko i efektywnie, np. podczas wchodzenia lub wychodzenia z klatki schodowej. Myląc zastosowanie tych łączników, można łatwo stworzyć nieprzyjazne i niepraktyczne warunki użytkowania, co z pewnością wpłynie na komfort i bezpieczeństwo użytkowników.

Pytanie 32

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 1,5 mm2
B. 2,5 mm2
C. 4 mm2
D. 6 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 33

Gniazdo trójfazowe pokazane na rysunku może zasilić odbiornik z sieci

Ilustracja do pytania
A. TT i TN-C
B. IT i TN-S
C. TT i TN-S
D. TN-S i TN-C
Zgadza się, chodzi o TN-S i TN-C! To gniazdo trójfazowe, które widzimy na rysunku, działa w tych systemach. W TN-S przewód neutralny (N) i przewód ochronny (PE) są oddzielone, co jest fajne, bo zmniejsza ryzyko problemów z pętlą masy i ogólnie poprawia bezpieczeństwo. Współczesne instalacje elektryczne często korzystają z tego rozwiązania, bo daje dobre zasilanie. Z kolei TN-C łączy oba przewody w jeden, czyli PEN, i jest też stosowane, szczególnie w starszych budynkach. Ważne, żeby znać oba systemy, bo wybór zależy od konkretnego miejsca i wymagań przepisów. W praktyce, inżynierowie muszą mieć to na uwadze, żeby wszystko było bezpieczne i działało jak należy.

Pytanie 34

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
Nieprawidłowe odpowiedzi opierają się na błędnych zasadach bezpieczeństwa i procedurach wykonywania prac elektrycznych. Przykładowo, propozycja rozpoczynająca się od załączenia napięcia jest fundamentalnie wadliwa. Włączenie zasilania przed jakąkolwiek weryfikacją stanu instalacji elektrycznej stwarza poważne ryzyko dla zdrowia i życia wykonawcy. Ponadto, sprawdzenie ciągłości połączeń przed upewnieniem się, że nie ma napięcia, jest niewłaściwe, ponieważ pomiar ciągłości w obwodzie z napięciem może prowadzić do uszkodzeń miernika lub, co gorsza, do porażenia prądem. Następnie, co do wymontowania uszkodzonego łącznika, nie powinno się go demontować bez wcześniejszego potwierdzenia, że cały obwód jest bezpieczny. Typowym błędem myślowym w tych podejściach jest zaufanie do założeń, że obwód jest wyłączony lub bezpieczny bez wcześniejszego sprawdzenia. Ignorowanie podstawowych procedur bezpieczeństwa może prowadzić do tragicznych konsekwencji, dlatego tak ważne jest przestrzeganie kolejności działań w zgodzie z ogólnie przyjętymi normami i przepisami, które mają na celu ochronę osób wykonujących takie prace. W każdej sytuacji związanej z pracą w instalacjach elektrycznych kluczowe jest stosowanie się do procedur, które zapewniają zarówno bezpieczeństwo, jak i prawidłowe działanie systemu. W tym kontekście, doświadczenie i świadomość potencjalnych zagrożeń są niezwykle istotne.

Pytanie 35

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Świetlówka kompaktowa, znana również jako lampa energooszczędna, jest nowoczesnym rozwiązaniem w dziedzinie oświetlenia, które łączy w sobie efektywność energetyczną oraz długowieczność. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe emitują znacznie więcej światła przy tej samej mocy, co sprawia, że są bardziej ekonomiczne i ekologiczne. Odpowiedź D przedstawia lampę o charakterystycznym kształcie składającym się z kilku zwiniętych rurek, co jest typowe dla świetlówek kompaktowych. W praktyce, zastosowanie takich lamp w domach i biurach pozwala na znaczące obniżenie kosztów energii elektrycznej, co jest zgodne z aktualnymi trendami w zakresie zrównoważonego rozwoju oraz normami dotyczącymi ochrony środowiska. Dodatkowo, świetlówki kompaktowe charakteryzują się dłuższą żywotnością, co ogranicza liczbę odpadów, a wiele modeli jest kompatybilnych z oprawami standardowymi, co ułatwia ich wymianę. W kontekście dobrych praktyk, warto zwrócić uwagę na certyfikaty energetyczne, które świadczą o wysokiej efektywności tych lamp.

Pytanie 36

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyłącznik różnicowoprądowy z członem nadprądowym.
B. Wyłącznik nadprądowy dwubiegunowy.
C. Czujnik zaniku i kolejności faz.
D. Ogranicznik przepięć.
Wyłącznik różnicowoprądowy z członem nadprądowym to urządzenie o kluczowym znaczeniu w systemach elektroenergetycznych, które zapewnia zarówno ochronę przed przeciążeniem, jak i przed porażeniem prądem elektrycznym. Jego charakterystyczne oznaczenia i symbole na obudowie pozwalają na łatwe zidentyfikowanie go wśród innych urządzeń elektrycznych. W praktyce, wyłączniki różnicowoprądowe z członem nadprądowym są często stosowane w instalacjach domowych oraz przemysłowych, gdzie zabezpieczają przed skutkami zwarć i przeciążeń. Zgodnie z normami PN-EN 61008 oraz PN-EN 60947, urządzenia te powinny być stosowane w obwodach, gdzie istnieje ryzyko porażenia prądem, zwłaszcza w pomieszczeniach wilgotnych, jak łazienki czy kuchnie. Regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich skuteczności. Dobrą praktyką jest również ich instalacja w obwodach, gdzie zasilane są urządzenia o dużym poborze mocy, co minimalizuje ryzyko uszkodzenia sprzętu i zapewnia bezpieczeństwo użytkowników.

Pytanie 37

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,25 MΩ
B. ≥ 0,5 MΩ
C. ≥ 0,25 MΩ
D. < 0,5 MΩ
Odpowiedzi, które podają wartości rezystancji izolacji poniżej 0,5 MΩ, nie są odpowiednie. Nie spełniają one podstawowych wymagań, co może być niebezpieczne. Wartości < 0,25 MΩ czy < 0,5 MΩ nie dają dobrego poziomu izolacji, co prowadzi do ryzyka porażenia prądem lub uszkodzenia sprzętu. W zasadzie, jeżeli rezystancja jest poniżej 0,5 MΩ, to może to oznaczać problemy z izolacją przewodów. To z kolei może prowadzić do naprawdę poważnych konsekwencji, jak pożary. Często myli się wartości rezystancji, chcąc uprościć pomiary, ale to jest naprawdę ryzykowne w kontekście bezpieczeństwa elektrycznego. Należy pamiętać, że dobra izolacja chroni nie tylko osoby pracujące w pobliżu, ale również sprzęt i systemy. Gdy wartości rezystancji są niższe niż wymagane 0,5 MΩ, może to wynikać z niewłaściwego stanu instalacji lub zużycia materiałów izolacyjnych. To jeszcze bardziej podkreśla, jak ważne są regularne kontrole i pomiary, żeby wszystko było zgodne z normami bezpieczeństwa instalacji elektrycznych.

Pytanie 38

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik indukcyjny uziemień
B. miernik obwodu zwarcia
C. omomierz
D. megaomomierz
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 39

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±2,35 mA
B. ±0,35 mA
C. ±0,37 mA
D. ±0,02 mA
W analizie błędów pomiarowych kluczowe jest zrozumienie, jak oblicza się wartość błędu na podstawie specyfikacji urządzenia. Błędne odpowiedzi wynikają często z nieprawidłowego zastosowania wzorów lub zrozumienia zasad dotyczących dokładności. Na przykład, niektóre osoby mogą pomylić 1% z wartością całkowitą pomiaru, co prowadzi do oszacowania błędu jako ±0,35 mA. Jednakże w takim przypadku nie uwzględnia się dodatkowego błędu stałego, który w tym przypadku wynosi 0,02 mA. Z kolei wybranie wartości ±2,35 mA jest zupełnie nieadekwatne, ponieważ w praktyce nie ma podstaw do przyjęcia tak dużego błędu w odniesieniu do wskazania 35 mA, co wskazuje na fundamentalne nieporozumienie w zakresie norm dotyczących dokładności pomiarów. Umożliwia to zrozumienie, że błędy systematyczne i przypadkowe muszą być brane pod uwagę w kontekście całkowitych wartości określonych przez producentów. Dlatego w pomiarach elektrycznych rekomenduje się korzystanie z dokładnych procedur obliczeniowych, które uwzględniają zarówno błędy procentowe, jak i stałe, co pozwala na uzyskanie rzetelnych wyników pomiarów. Ponadto, brak wiedzy na temat tego, jak poprawnie interpretować specyfikacje techniczne urządzeń pomiarowych, może prowadzić do poważnych błędów w ocenie wyników pomiarów, co w praktyce przekłada się na nieefektywność lub błędne decyzje w kontekście zastosowań inżynieryjnych.

Pytanie 40

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Bezpiecznik aparatowy.
C. Izolator wsporczy.
D. Wkładkę topikową bezpiecznika mocy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.