Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 11 grudnia 2025 21:52
  • Data zakończenia: 11 grudnia 2025 21:55

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do zdejmowania izolacji z przewodów dwużyłowych.
B. Do łączenia przewodów dowolnego typu.
C. Do wykonywania połączeń bez zdejmowania izolacji.
D. Do zaciskania końcówek tulejkowych na przewodach.
Wybór innej odpowiedzi może być spowodowany jakimś nieporozumieniem odnośnie funkcji złączek elektrycznych. Na przykład, mylenie łączenia bez zdejmowania izolacji to błąd, bo złączki WAGO wymagają, żeby izolacja była odpowiednio ścięta, żeby połączenie było pewne. Z kolei mówienie, że łączą przewody dowolnego typu jest trochę na wyrost, bo niektóre złączki są projektowane do konkretnych zastosowań. Poza tym, stosowanie ich do zaciskania końcówek tulejkowych to też nie najlepszy pomysł, bo WAGO do tego się nie nadają – mogą przez to wystąpić błędy w połączeniach i ryzyko awarii. No i sugerowanie, że złączka służy do zdejmowania izolacji z przewodów dwużyłowych, to chyba jakieś nieporozumienie, bo do tego trzeba użyć odpowiednich narzędzi, a nie złączek. Dlatego warto zrozumieć, jak te złączki działają w praktyce i jakie są podstawowe zasady ich stosowania w elektryce.

Pytanie 2

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. złącze
B. instalacje odbiorcze
C. rozdzielnicę główną
D. przyłącze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 3

Schemat którego aparatu elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnika impulsowego.
B. Przekaźnika termicznego.
C. Wyłącznika nadmiarowo-prądowego.
D. Wyłącznika różnicowoprądowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy, który został przedstawiony na schemacie, jest kluczowym elementem systemów elektroinstalacyjnych, mającym na celu ochronę przed porażeniem prądem elektrycznym. Jego działanie opiera się na monitorowaniu różnicy prądów między przewodem fazowym a neutralnym. W przypadku, gdy prąd w przewodach różni się, co może wskazywać na wyciek prądu do ziemi, wyłącznik natychmiast odłącza zasilanie. Taki mechanizm jest niezwykle istotny w miejscach, gdzie występuje wilgoć, jak łazienki czy kuchnie, zgodnie z normami IEC 61008 i IEC 60947-2. Ponadto, wyłączniki różnicowoprądowe są często wyposażone w przycisk testowy, co umożliwia regularne sprawdzanie ich działania i zapewnia dodatkowe bezpieczeństwo. Dzięki takim urządzeniom możemy skutecznie minimalizować ryzyko wypadków związanych z porażeniem prądem, co czyni je niezbędnym elementem nowoczesnych instalacji elektrycznych.

Pytanie 4

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Przepięcie
C. Zwarcie bezimpedancyjne
D. Prąd błądzący

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 5

Którego z przedstawionych na rysunkach przyrządów pomiarowych należy użyć w celu zbadania rozkładu temperatury wewnątrz rozdzielnicy?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyrząd pomiarowy przedstawiony na rysunku B to kamera termowizyjna, który jest niezastąpionym narzędziem w diagnostyce elektronicznej i energetycznej. Umożliwia bezkontaktowe skanowanie obiektów, co pozwala na szybkie i efektywne zlokalizowanie miejsc o podwyższonej temperaturze. W kontekście rozdzielnic elektrycznych, stosowanie kamery termowizyjnej jest praktyką zalecaną według normy IEC 60364, która podkreśla znaczenie monitorowania temperatury w instalacjach elektrycznych, aby zapobiegać przeciążeniom oraz wykrywać wczesne oznaki uszkodzeń połączeń czy komponentów. Przykładem zastosowania może być regularne wykonywanie inspekcji termograficznych w zakładach przemysłowych, co pozwala na identyfikację problemów zanim dojdzie do awarii, co w dłuższej perspektywie skutkuje obniżeniem kosztów eksploatacji oraz poprawą bezpieczeństwa pracy. Dodatkowo, analiza termograficzna wspiera działania związane z utrzymaniem ruchu, a także jest elementem audytów energetycznych, mających na celu optymalizację zużycia energii.

Pytanie 6

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to D, ponieważ przenośny uziemiacz jest kluczowym urządzeniem stosowanym w celu zapewnienia bezpieczeństwa podczas prac konserwacyjnych lub remontowych. Jego głównym zadaniem jest tymczasowe uziemienie żył przewodów, co minimalizuje ryzyko porażenia prądem elektrycznym w przypadku przypadkowego włączenia instalacji. Na rysunku D widać zestaw kabli z zaciskami, które są typowo używane do tego celu. Zgodnie z normami IEC 61140, stosowanie przenośnych uziemiaczy jest zalecane w miejscach, gdzie zachodzi ryzyko wystąpienia niebezpiecznego napięcia. Użycie przenośnego uziemiacza zwiększa bezpieczeństwo pracowników, ponieważ zapewnia, że żyły przewodów są skutecznie uziemione i nie mogą stanowić zagrożenia. Warto zaznaczyć, że urządzenie to powinno być stosowane zgodnie z odpowiednimi procedurami, a jego stan techniczny musi być regularnie kontrolowany.

Pytanie 7

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
B. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
C. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
D. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 8

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Zwarcie międzyfazowe
B. Przeciążenie
C. Upływ prądu
D. Przepięcie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy (RCD) ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami upływu prądu. Upływ prądu to sytuacja, w której część prądu roboczego nie wraca do źródła zasilania, lecz przepływa przez inne drogi, co może prowadzić do niebezpiecznych sytuacji. RCD działa na zasadzie monitorowania różnicy prądów pomiędzy przewodem fazowym a przewodem neutralnym. Gdy ta różnica przekroczy ustalony poziom (zazwyczaj 30 mA w instalacjach domowych), RCD natychmiast odłącza zasilanie. Praktycznym zastosowaniem RCD jest instalacja w łazienkach i kuchniach, gdzie istnieje wysokie ryzyko kontaktu z wodą. Warto również podkreślić, że zgodnie z normami PN-IEC 61008, stosowanie RCD jest obowiązkowe w miejscach narażonych na porażenie prądem, co podkreśla znaczenie ich montażu w nowoczesnych instalacjach elektrycznych.

Pytanie 9

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,79
B. 0,71
C. 0,75
D. 0,95

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Znamionowa sprawność silnika jednofazowego wynosi 0,79, co oznacza, że 79% energii elektrycznej dostarczonej do silnika przekształca się w moc mechaniczną na wale. Obliczenie sprawności silnika można przeprowadzić na podstawie wzoru: η = P_N / (U_N * I_N * cos φ), gdzie P_N to moc mechaniczna na wale, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ to współczynnik mocy. Dla tego silnika mamy: η = 3,7 kW / (230 V * 21,4 A * 0,95) = 0,79. Taka sprawność jest typowa dla silników elektrycznych, które są projektowane z myślą o jak najwyższej efektywności energetycznej. W praktyce, silniki o wysokiej sprawności są szczególnie poszukiwane w przemyśle, ponieważ pozwalają na znaczne oszczędności kosztów energii, a także redukcję emisji CO2. W dobie rosnących cen energii elektrycznej i rosnącej presji na ochronę środowiska, wybór silników o wysokiej sprawności staje się kluczowy.

Pytanie 10

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Temperaturę barwową światła.
B. Natężenie oświetlenia.
C. Światłość.
D. Luminancję.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 11

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ograniczniki przepięć klasy D są zaprojektowane do montażu w miejscach, gdzie mogą wystąpić nagłe wzrosty napięcia, na przykład w gniazdach wtyczkowych, puszkach instalacyjnych oraz w bezpośrednich aplikacjach w urządzeniach. Ich głównym zadaniem jest ochrona wrażliwych komponentów elektronicznych przed skutkami przepięć, które mogą pojawić się w wyniku wyładowań atmosferycznych, włączania i wyłączania obciążeń czy zakłóceń w sieci elektrycznej. W praktyce oznacza to, że ich instalacja w gniazdach jest kluczowa, gdyż tam najczęściej podłączane są urządzenia wymagające ochrony, takie jak komputery, telewizory czy sprzęt audio. Aby zapewnić skuteczność działania ograniczników, należy je montować jak najbliżej miejsc, w których są używane urządzenia, co minimalizuje długość połączeń i potencjalne straty związane z przewodnictwem. Zgodność z normami PN-IEC 61643-11 oraz PN-EN 60950-1 podkreśla znaczenie ich stosowania w instalacjach niskiego napięcia.

Pytanie 12

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Gasi łuk elektryczny.
B. Reaguje na zwarcia.
C. Reaguje na przeciążenia.
D. Łączy styki.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element wskazany na ilustracji czerwoną strzałką to bimetaliczny wyzwalacz termiczny, którego główną funkcją jest reagowanie na zwarcia w obwodzie. W momencie wystąpienia zwarcia, natężenie prądu gwałtownie wzrasta, co może prowadzić do poważnych uszkodzeń instalacji elektrycznej oraz zwiększa ryzyko pożaru. Bimetaliczny wyzwalacz termiczny działa na zasadzie odkształcania się dwóch różnych metali w odpowiedzi na wzrost temperatury, co powoduje zamknięcie obwodu i odłączenie zasilania. Zgodnie z normami IEC 60947-2 oraz EN 60898-1, wyłączniki nadprądowe są obowiązkowym elementem w nowoczesnych instalacjach elektrycznych, co podkreśla ich kluczowe znaczenie w zapewnieniu bezpieczeństwa. Przykładem zastosowania może być ochrona obwodów w budynkach mieszkalnych, gdzie wyłączniki te są projektowane tak, aby reagowały na wszelkie anomalie w działaniu urządzeń elektrycznych, co chroni zarówno użytkowników, jak i infrastrukturę. Dlatego znajomość funkcji bimetalicznych wyzwalaczy termicznych jest istotna dla każdego specjalisty z branży elektrycznej.

Pytanie 13

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa sodowa
B. Żarówka halogenowa
C. Świetlówka tradycyjna
D. Lampa rtęciowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór świetlówki tradycyjnej jako źródła światła, w którym stosuje się zapłonnik, jest poprawny z kilku powodów. Świetlówki, jako rodzaj lampy fluorescencyjnej, wymagają zapłonnika, aby uruchomić proces świecenia. Zapłonnik działa na zasadzie wytwarzania iskry, która inicjuje przepływ prądu przez gaz wewnątrz lampy, co jest niezbędne do emisji światła. W praktyce, zastosowanie świetlówek tradycyjnych jest szczególnie powszechne w biurach, szkołach oraz przestrzeniach komercyjnych, gdzie efektywność energetyczna jest kluczowa. Świetlówki zużywają znacznie mniej energii niż tradycyjne żarówki, a ich żywotność jest znacznie dłuższa, co czyni je bardziej ekologicznym oraz ekonomicznym rozwiązaniem. W branży oświetleniowej powszechnie uznaje się, że stosowanie odpowiednich zapłonników w świetlówkach jest standardem, co pozwala na optymalne działanie lamp oraz minimalizuje ryzyko awarii. Warto również zauważyć, że zapłonniki mogą być różne – od elektromagnetycznych po elektroniczne, co wpływa na wydajność i czas rozruchu lampy.

Pytanie 14

Na rysunku przedstawiono przewód

Ilustracja do pytania
A. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski.
B. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, okrągły.
C. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, płaski.
D. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, okrągły.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to przewód o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski. W analizowanym rysunku widać, że przewód składa się z żył, które mają jednolitą strukturę, co jednoznacznie wskazuje na zastosowanie żył jednodrutowych. Żyły te charakteryzują się większą odpornością na uszkodzenia mechaniczne oraz lepszym przewodnictwem elektrycznym w porównaniu do żył wielodrutowych, które są bardziej elastyczne, ale mniej trwałe. Płaska konstrukcja przewodu sprawia, że jest on odpowiedni do zastosowań, w których wymagana jest oszczędność miejsca, na przykład w instalacjach elektrycznych w budynkach. Warto również wspomnieć, że przewody te często stosowane są w instalacjach, gdzie ważna jest estetyka oraz minimizacja przestrzeni, jak w przypadku zasilania sprzętu audio czy wideo. Zgodnie z normami PN-IEC 60227, które regulują wymagania dla kabli i przewodów, stosowanie przewodów płaskich o żyłach jednodrutowych w instalacjach domowych jest powszechnie uznawane za praktykę zgodną z najwyższymi standardami bezpieczeństwa i efektywności energetycznej.

Pytanie 15

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 2,3 Ω
C. 3,8 Ω
D. 4,0 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość 2,3 Ω jest prawidłowa dla impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu 230/400 V, ponieważ gwarantuje wystarczająco niską impedancję, aby wyłącznik nadprądowy B20 mógł zadziałać w przypadku uszkodzenia izolacji. Zgodnie z zasadami ochrony przeciwporażeniowej, aby zapewnić skuteczną reakcję wyłącznika, impedancja pętli zwarcia powinna być niższa niż wartość krytyczna, ustalona na podstawie prądu zwarciowego, który jest niezbędny do wyzwolenia wyłącznika. W przypadku B20, przy nominalnym prądzie 20 A, minimalny prąd zwarciowy powinien wynosić co najmniej 100 A, co odpowiada maksymalnej impedancji 2,3 Ω. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zareaguje w odpowiednim czasie, minimalizując ryzyko porażenia prądem. Zgodnie z normą PN-IEC 60364-4-41, dobór odpowiedniej impedancji pętli zwarcia jest kluczowym elementem w projektowaniu instalacji elektrycznych.

Pytanie 16

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.

Pytanie 17

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. przeszkolona, co rok
B. posiadająca uprawnienia SEP, co rok
C. mająca uprawnienia SEP, co 6 miesięcy
D. przeszkolona, co 6 miesięcy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że stacjonarne urządzenia różnicowoprądowe powinny być sprawdzane przez osobę przeszkoloną co sześć miesięcy, jest zgodna z obowiązującymi normami i najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony przed skutkami porażenia prądem. Osoby przeszkolone mają odpowiednią wiedzę na temat działania tych urządzeń, potrafią ocenić ich stan techniczny oraz zidentyfikować ewentualne problemy. Przykładowo, w przypadku stacjonarnych urządzeń różnicowoprądowych, takich jak wyłączniki różnicowoprądowe, regularne testowanie przycisku kontrolnego pozwala na upewnienie się, że urządzenie działa prawidłowo i jest w stanie zareagować na zwarcia lub inne niebezpieczne sytuacje. Zgodnie z normami, takimi jak PN-EN 60947-2, zaleca się przeprowadzanie takich kontroli co najmniej dwa razy w roku, co potwierdza konieczność przeszkolenia personelu odpowiedzialnego za te działania.

Pytanie 18

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 450/750 V
B. 300/500 V
C. 300/300 V
D. 600/1000 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 19

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
B. metody zabezpieczenia przed porażeniem prądem elektrycznym
C. ciągłości przewodów ochronnych i neutralnych
D. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 20

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
B. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
C. w lokalach mieszkalnych w miejscach o łatwym dostępie
D. w lokalach mieszkalnych tylko w zamkniętych szafkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi, wyłącznie w zamkniętych szafkach, jest prawidłowa z kilku powodów. Przede wszystkim, umiejscowienie liczników w lokalach mieszkalnych może prowadzić do utrudnionego dostępu dla personelu technicznego oraz stwarzać zagrożenie dla bezpieczeństwa mieszkańców. Zgodnie z normami branżowymi, takimi jak PN-EN 62053, liczniki powinny być instalowane w miejscach, które zapewniają ich łatwą eksploatację, ale nie mogą naruszać prywatności użytkowników lokali mieszkalnych. Zastosowanie zamkniętych szafek nie tylko zabezpiecza urządzenia przed zniszczeniem, ale także minimalizuje ryzyko nieautoryzowanego dostępu. Przykładowo, w wielu nowoczesnych budynkach mieszkalnych, liczniki są zlokalizowane w wydzielonych pomieszczeniach technicznych, co pozwala na efektywne zarządzanie energią oraz ułatwia przeprowadzanie niezbędnych pomiarów i konserwacji. Takie podejście jest zgodne z najlepszymi praktykami w zarządzaniu budynkami i zapewnia bezpieczeństwo oraz komfort mieszkańców.

Pytanie 21

Którym z kluczy należy dokręcić nakrętkę kotwy przedstawionej na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Nasadowym.
C. Imbusowym.
D. Oczkowym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "klucz płaski" jest prawidłowa, ponieważ nakrętka kotwy na ilustracji ma kształt, który jest idealnie dopasowany do użycia klucza płaskiego. Klucz płaski, dzięki swojej konstrukcji, jest w stanie skutecznie obejmować łeb nakrętki z dwóch stron, co zapewnia stabilny i pewny chwyt podczas dokręcania. W praktyce, klucze płaskie wykorzystywane są w sytuacjach, gdzie dostęp do nakrętki jest ograniczony, a ich konstrukcja umożliwia łatwe stosowanie w takich warunkach. Ponadto, standardowe klucze płaskie są często używane w serwisach mechanicznych, warsztatach oraz do prac domowych związanych z montażem i serwisowaniem różnych elementów. Zgodnie z najlepszymi praktykami, przed przystąpieniem do dokręcania, warto upewnić się, że rozmiar klucza jest odpowiedni do nakrętki, co zapobiegnie uszkodzeniom zarówno narzędzia, jak i elementu łączącego. Użycie klucza płaskiego w odpowiedni sposób zapewnia również, że dokręcanie jest równomierne, co podnosi trwałość i bezpieczeństwo montażu.

Pytanie 22

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Montażu zacisków zakleszczających.
B. Zaciskania końcówek tulejkowych na żyłach przewodu.
C. Formowania oczek na końcach żył.
D. Zaprasowywania przewodów w połączeniach wsuwanych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 23

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Stojan silnika pierścieniowego.
B. Wirnik silnika komutatorowego.
C. Wirnik silnika pierścieniowego.
D. Stojan silnika komutatorowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to wirnik silnika pierścieniowego, co wynika z analizy przedstawionych ilustracji oraz schematów. Wirnik ten charakteryzuje się pierścieniami ślizgowymi, które są kluczowym elementem jego konstrukcji, umożliwiającym efektywne przechodzenie prądu do uzwojeń wirnika. W silnikach pierścieniowych prąd jest dostarczany do wirnika przez szczotki stykające się z pierścieniami, co pozwala na regulację obrotów silnika, a także na jego rozruch. W praktyce, wirniki silników pierścieniowych są szeroko stosowane w aplikacjach wymagających dużej mocy i momentu obrotowego, takich jak wciągniki, przemysłowe maszyny oraz w pojazdach elektrycznych. Zrozumienie tego elementu jest istotne, ponieważ jego właściwe działanie ma kluczowy wpływ na ogólną wydajność silnika. W branży istnieją standardy dotyczące projektowania i testowania wirników, które zapewniają ich niezawodność i skuteczność w długotrwałej eksploatacji.

Pytanie 24

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przeciążenie
B. przepięcie
C. uszkodzenie przewodu
D. upływ prądu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 25

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. niemożność załączenia wyłącznika pod obciążeniem
B. brak możliwości zadziałania załączonego wyłącznika
C. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
D. prawidłowe działanie wyłącznika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 26

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 2.
B. Przyrząd 1.
C. Przyrząd 4.
D. Przyrząd 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyrząd 3, czyli termowizor, jest kluczowym narzędziem w diagnostyce systemów elektrycznych, zwłaszcza w kontekście torów wielkoprądowych. Jego zdolność do wykrywania wadliwych połączeń elektrycznych opiera się na analizie rozkładu temperatury, co jest istotne w sytuacjach, gdzie obciążenie jest wysokie. W praktyce, gdy dochodzi do uszkodzenia połączenia, może pojawić się nadmierne nagrzewanie, które termowizor jest w stanie zidentyfikować z bezpiecznej odległości. Zastosowanie termowizji w monitorowaniu infrastruktury elektrycznej stało się standardem w wielu branżach, w tym w energetyce i przemyśle. Dzięki temu można szybko i efektywnie lokalizować problemy, co z kolei przyczynia się do zmniejszenia ryzyka awarii oraz obniżenia kosztów eksploatacji. Ponadto, regularne inspekcje za pomocą termowizora wspierają utrzymanie zgodności z normami bezpieczeństwa i jakości, co jest kluczowe w utrzymaniu infrastruktury elektrycznej w dobrym stanie.

Pytanie 27

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz
A. 18 µF i połączyć równolegle.
B. 4,5 µF i połączyć równolegle.
C. 18 µF i połączyć szeregowo.
D. 4,5 µF i połączyć szeregowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź jest poprawna, ponieważ połączenie równoległe dwóch kondensatorów o pojemności 4,5 µF tworzy łączną pojemność równą 9 µF, co jest dokładnie wymagane do zastąpienia uszkodzonego kondensatora. W praktyce, w przypadku układów elektrycznych, zachowanie odpowiedniej pojemności jest kluczowe dla stabilności działania urządzenia. Połączenie równoległe jest również zgodne z dobrymi praktykami projektowania układów elektronicznych, gdyż pozwala na zwiększenie pojemności, podczas gdy napięcie pracy kondensatorów musi być zgodne z wymaganiami sieci, w tym przypadku 230 VAC. Wybierając kondensatory, zwróć uwagę na ich maksymalne napięcie pracy oraz pojemność. Takie podejście zapewnia nie tylko bezpieczeństwo, ale także długotrwałe i niezawodne działanie zasilanych układów. Upewnij się, że nowo zastosowane kondensatory są odpowiednio zabezpieczone przed przeciążeniem, co może znacząco wpłynąć na ich żywotność.

Pytanie 28

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych pierścieniowych.
B. Asynchronicznych klatkowych.
C. Synchronicznych.
D. Uniwersalnych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 29

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. IT
B. TN-S
C. TT
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 30

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Aparatu zmierzchowego.
B. Czujnika ruchu.
C. Źródła światła.
D. Automatu schodowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 31

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V DC
B. 200 V DC
C. 500 V AC
D. 200 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 32

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
B. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
D. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YDYt 3×2,5 w miejsce ADYt 3×2,5 prowadzi do wzrostu wartości prądu dopuszczalnego długotrwale oraz poprawy rezystancji izolacji. Przewód YDYt charakteryzuje się lepszymi parametrami technicznymi, w tym wyższą dopuszczalną temperaturą pracy oraz lepszą odpornością na czynniki zewnętrzne, co zwiększa jego bezpieczeństwo i trwałość. Standardy PN-IEC 60228 oraz PN-EN 50525 wskazują, że przewody YDYt mają lepszą wydajność w warunkach długotrwałego obciążenia, co pozwala na ich zastosowanie w instalacjach, gdzie przewidywane są większe obciążenia prądowe. Przykładem mogą być instalacje w budynkach mieszkalnych lub przemysłowych, gdzie przewody te mogą być używane do zasilania urządzeń wymagających większych mocy. Dodatkowo, poprawa rezystancji izolacji wpływa na zmniejszenie ryzyka wystąpienia zwarć oraz uszkodzeń instalacji, co jest kluczowe w kontekście bezpieczeństwa użytkowania. Warto również zauważyć, że wyższa jakość przewodów wpływa na ich żywotność oraz zmniejsza koszty eksploatacyjne związane z potrzebą częstych napraw lub wymiany.

Pytanie 33

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. oznaczenie i zabezpieczenie obszaru roboczego
B. wyłączenie zasilania z instalacji
C. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
D. pisemne polecenie do wykonania prac

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 34

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie linki
B. Z aluminium w formie drutu
C. Z miedzi w formie linki
D. Z miedzi w formie drutu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 35

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przepięciem
B. porażeniem
C. zwarciem
D. przeciążeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 36

Na zdjęciu przedstawiono puszkę elektroinstalacyjną

Ilustracja do pytania
A. PK-3x60/43 MS
B. PU.PP-F3X60GŁ-N
C. PK-2x60/43 MS
D. PU.PP-F2X60PŁ-N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "PK-3x60/43 MS" jest prawidłowa, ponieważ odpowiada wizualnej analizie puszki elektroinstalacyjnej, na której widoczne są trzy przegródki. Oznaczenie "PK" zazwyczaj wskazuje na rodzaj puszki, a liczba "3x60" sugeruje, że jest to puszka z trzema komorami o głębokości 60 mm, co jest standardem w branży elektroinstalacyjnej. Tego typu puszki są wykorzystywane w instalacjach elektrycznych do łączenia przewodów i zapewnienia bezpieczeństwa w obwodach. W praktyce, puszki kablowe muszą spełniać odpowiednie normy, takie jak PN-EN 60670-1, które określają wymagania dotyczące bezpieczeństwa oraz materiałów, z których powinny być wykonane. Wybór odpowiedniej puszki jest kluczowy dla trwałości instalacji oraz łatwości w późniejszej konserwacji. Użycie puszki z trzema przegródkami umożliwia staranne uporządkowanie przewodów, co redukuje ryzyko zwarcia i zwiększa estetykę pracy elektryka.

Pytanie 37

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S193B10
B. S193B16
C. S192B16
D. S194B10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik S193B16 jest właściwym wyborem do zastąpienia bezpieczników typu gG w obwodzie zasilającym trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7 kW. Aby przeanalizować tę decyzję, należy wziąć pod uwagę kilka kluczowych aspektów. Po pierwsze, moc 7 kW przy napięciu 400 V wymaga prądu znamionowego wynoszącego około 10 A (I = P/U, czyli 7 kW / 400 V = 17,5 A). W związku z tym wyłącznik S193B16, który ma wartość 16 A, jest odpowiedni, ponieważ jego wartość znamionowa jest wyższa od obliczonego prądu, co zapewnia odpowiednią ochronę przed przeciążeniem. Po drugie, wyłączniki nadprądowe typu S193 są projektowane z myślą o zastosowaniach w instalacjach trójfazowych, co czyni je bardziej odpowiednimi niż inne opcje, które są mniej uniwersalne. W praktyce, stosując S193B16, zapewniamy nie tylko skuteczną ochronę obwodu przed przeciążeniem, ale także zgodność z normami PN-EN 60898-1, które regulują zasady stosowania takich urządzeń w instalacjach elektrycznych. W przypadku awarii, wyłącznik ten zareaguje szybko, co zwiększy bezpieczeństwo użytkowania grzejnika elektrycznego.

Pytanie 38

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
C. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
D. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 39

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 mA oraz znamionowy prąd ciągły 63 mA
B. 0,03 A oraz napięcie znamionowe 63 V
C. 0,03 A i znamionowy prąd ciągły 63 A
D. 0,03 mA oraz napięcie znamionowe 63 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 40

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 mA oraz napięcie znamionowe 40 V
B. 0,03 mA oraz znamionowy prąd ciągły 40 mA
C. 0,03 A oraz znamionowy prąd ciągły 40 A
D. 0,03 A oraz napięcie znamionowe 40 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.