Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 01:41
  • Data zakończenia: 19 grudnia 2025 01:44

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie powinno być użyte do połączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Regeneratora
B. Rutera
C. Koncentratora
D. Mostu
Podłączenie komputerów do mostu, regeneratora lub koncentratora w celu pracy w różnych domenach rozgłoszeniowych jest podejściem, które nie uwzględnia podstawowych różnic w funkcjonowaniu tych urządzeń. Most, operujący na warstwie łącza danych, ma za zadanie łączenie dwóch segmentów tej samej sieci, co oznacza, że nie jest w stanie oddzielić ruchu danych pomiędzy różnymi domenami rozgłoszeniowymi. Działa on na zasadzie analizy adresów MAC i nie oferuje funkcjonalności potrzebnej do zarządzania ruchem między różnymi podsieciami. Regenerator z kolei, jest urządzeniem, które służy do wzmocnienia sygnału w sieciach, ale nie ma zdolności do kierowania ruchu na podstawie adresów IP, co jest kluczowe dla rozdzielania ruchu w różnych domenach. Koncentrator natomiast, operując na tej samej warstwie co most, po prostu przekazuje dane do wszystkich portów, co prowadzi do zatorów sieciowych i nieefektywnego przesyłania danych. Typowe błędy myślowe związane z tymi odpowiedziami wynikają z nieodróżniania funkcji poszczególnych urządzeń sieciowych oraz braku zrozumienia, jak różne warstwy modelu OSI wpływają na sposób, w jaki urządzenia komunikują się ze sobą. Aby skutecznie zarządzać różnymi domenami rozgłoszeniowymi, kluczowe jest stosowanie ruterów, które oferują nie tylko routing, ale również zaawansowane funkcje zarządzania ruchem, często zgodne z normami i najlepszymi praktykami branżowymi.

Pytanie 2

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. ściągacz izolacji.
B. narzędzie uderzeniowe.
C. zaciskarka.
D. nóż monterski.
Odpowiedź "ściągacz izolacji" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu ma oznaczenia "CABLE STRIPPER/CUTTER", co w tłumaczeniu na język polski oznacza "ściągacz izolacji/przecinak". Narzędzia te są kluczowe w pracy z instalacjami elektrycznymi, gdyż umożliwiają sprawne usuwanie izolacji z przewodów. W praktyce, ściągacz izolacji jest niezbędny przy przygotowywaniu przewodów do połączeń, co jest istotne w kontekście zgodności z normami bezpieczeństwa. Poprawne zdjęcie izolacji zapobiega zwarciom oraz innym problemom związanym z niewłaściwym połączeniem. Użycie ściągacza izolacji minimalizuje ryzyko uszkodzenia żył przewodu, co jest kluczowe dla zapewnienia trwałości połączeń elektrycznych. W wielu krajach, w tym w Polsce, stosowanie odpowiednich narzędzi do obróbki przewodów jest regulowane standardami, które nakładają obowiązek stosowania narzędzi przystosowanych do danej aplikacji, co podkreśla znaczenie tego narzędzia w branży elektrycznej.

Pytanie 3

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. firewall
B. strefę o ograniczonym dostępie
C. bardziej zaawansowane szyfrowanie
D. filtrację adresów MAC
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.

Pytanie 4

W specyfikacji sieci Ethernet 1000Base-T maksymalna długość segmentu dla skrętki kategorii 5 wynosi

A. 250 m
B. 100 m
C. 1000 m
D. 500 m
Wybór długości segmentu 500 m, 250 m lub 1000 m opiera się na nieporozumieniu dotyczącym standardów Ethernet. W przypadku 1000Base-T maksymalna długość dla kabla skrętki kategorii 5 wynosi 100 m, a nie 250 m czy 500 m. Przekroczenie tego limitu może prowadzić do znacznych strat sygnału i zakłóceń, co w konsekwencji wpływa na jakość transmisji danych. Warto zaznaczyć, że skrętki Cat 5 oraz Cat 5e są zaprojektowane do efektywnego przesyłania sygnałów na krótszych dystansach, a ich wydajność maleje w miarę zwiększania długości kabla. Na przykład, długości 500 m lub 1000 m są zbyt odległe dla standardu 1000Base-T; takie długości są bardziej odpowiednie dla technologii światłowodowej, która może obsługiwać znacznie większe odległości bez utraty jakości sygnału. Typowym błędem w myśleniu jest założenie, że im dłuższy kabel, tym lepsze połączenie, co jest dalekie od prawdy w kontekście Ethernetu. Dla efektywności i niezawodności sieci lokalnych ważne jest stosowanie się do ściśle określonych standardów i dobrych praktyk branżowych, co obejmuje ograniczenie długości segmentów kablowych do maksymalnie 100 m w przypadku 1000Base-T.

Pytanie 5

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. ruter z WiFi.
B. most.
C. przełącznik.
D. media konwerter.
Urządzenie przedstawione na zdjęciu to ruter z WiFi, co można rozpoznać po charakterystycznych antenach, które są kluczowym elementem umożliwiającym bezprzewodową transmisję danych. Routery z WiFi są fundamentem współczesnych sieci domowych i biurowych, służąc do udostępniania połączenia internetowego dla różnych urządzeń, takich jak laptopy, smartfony czy tablety. W standardzie 802.11 (WiFi) funkcjonują w różnych pasmach, najczęściej 2.4 GHz i 5 GHz, co pozwala na optymalizację prędkości oraz zasięgu sygnału. Porty LAN oraz WAN/Internet, które również można zauważyć w tym urządzeniu, potwierdzają, że pełni rolę centralnego punktu komunikacji w sieci lokalnej. W praktyce, dobra konfiguracja rutera z WiFi, w tym zabezpieczenia takie jak WPA3, jest niezbędna dla ochrony danych użytkowników oraz zapewnienia stabilności połączenia. Warto również zaznaczyć, że nowoczesne routery często obsługują technologie takie jak MU-MIMO czy beamforming, co znacząco wpływa na jakość i wydajność transmisji.

Pytanie 6

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Punkt dostępu
B. Ruter z WiFi
C. Przełącznik zarządzalny
D. Konwerter mediów
Punkt dostępu to urządzenie, które umożliwia bezprzewodowy dostęp do sieci LAN, ale nie posiada funkcji segmentacji ruchu w taki sposób, aby ograniczać komunikację pomiędzy urządzeniami do konkretnej grupy. Punkt dostępu działa jako most, łącząc urządzenia bezprzewodowe z siecią przewodową, ale nie jest w stanie kontrolować ruchu danych w obrębie różnych użytkowników. W sytuacji, gdy wiele urządzeń jest podłączonych do jednego punktu dostępu, mogą one swobodnie komunikować się ze sobą oraz z innymi urządzeniami w sieci, co nie spełnia wymagań izolacji ruchu. Ruter z WiFi, z kolei, jest bardziej zaawansowanym urządzeniem, które umożliwia nie tylko dostęp do sieci, ale także routing pomiędzy różnymi sieciami. Jego główną funkcją jest kierowanie ruchu oraz zarządzanie adresacją IP, ale nie jest to tożsame z wydzieleniem grupy komputerów w ramach tej samej sieci. Konwerter mediów jest urządzeniem, które zmienia format sygnału (np. z miedzianego na światłowodowy), ale nie ma funkcji zarządzania ruchem w sieci ani wydzielania grup komputerów. Typowe błędy myślowe w przypadku tych odpowiedzi wynikają z nieporozumienia dotyczącego funkcji i zastosowań tych urządzeń; użytkownicy mogą mylić ich podstawowe role, co prowadzi do fałszywych wniosków na temat ich możliwości w kontekście zarządzania siecią.

Pytanie 7

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11a
B. IEEE 802.11b
C. IEEE 802.11g
D. IEEE 802.11n
Wybór standardu IEEE 802.11b, 802.11a lub 802.11g nie zapewnia osiągnięcia przepustowości powyżej 54 Mbps. Standard 802.11b, wprowadzony w 1999 roku, obsługuje maksymalną prędkość 11 Mbps, co w praktyce jest niewystarczające do nowoczesnych aplikacji wymagających szerokopasmowego dostępu. Standard 802.11g, również popularny, pozwala na szybkości do 54 Mbps, jednak nie umożliwia ich przekroczenia, co stanowi ograniczenie w kontekście rosnącego zapotrzebowania na wydajność sieci. Z kolei 802.11a, który operuje w paśmie 5 GHz, osiąga prędkości do 54 Mbps, ale nie jest w stanie wykorzystać pełnego potencjału technologii MIMO i szerszych kanałów, które oferuje 802.11n. Decydując się na starsze standardy, użytkownicy mogą napotkać problemy z przepustowością w sytuacjach, gdzie wiele urządzeń łączy się z siecią równocześnie, co prowadzi do spadku wydajności. W kontekście najlepszych praktyk, zaleca się wybór najnowszych standardów, takich jak 802.11n lub 802.11ac, aby zapewnić stabilne i szybkie połączenia, szczególnie w środowiskach intensywnie korzystających z technologii bezprzewodowej. Zrozumienie różnic pomiędzy tymi standardami jest kluczowe dla efektywnego zarządzania sieciami i zaspokajania potrzeb użytkowników.

Pytanie 8

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
B. Modem – łączenie sieci lokalnej z Internetem
C. Ruter – łączenie komputerów w tej samej sieci
D. Przełącznik – segmentacja sieci na VLAN-y
Wszystkie inne odpowiedzi sugerują niezgodne przyporządkowania dotyczące funkcji urządzeń sieciowych. Modem, który jest urządzeniem konwertującym sygnały z sieci lokalnej na sygnały, które mogą być przesyłane przez linię telefoniczną lub kablową, rzeczywiście odpowiada za nawiązywanie połączenia pomiędzy siecią lokalną a Internetem. Jest to kluczowy element w architekturze sieci, szczególnie w przypadku tradycyjnych połączeń DSL czy kablowych. Przełącznik, z kolei, jest urządzeniem operującym na warstwie drugiej modelu OSI, które umożliwia komunikację pomiędzy różnymi urządzeniami w obrębie tej samej sieci lokalnej, a także może implementować technologię VLAN (Virtual Local Area Network), divując ruch sieciowy w sposób logiczny i zwiększający bezpieczeństwo oraz wydajność. Access Point, będący punktem dostępowym, umożliwia bezprzewodowe podłączenie do sieci lokalnej i jest kluczowym elementem w sieciach bezprzewodowych, umożliwiającym komunikację między urządzeniami mobilnymi a lokalnym systemem sieciowym. Zrozumienie ról tych urządzeń w architekturze sieciowej jest fundamentalne, ponieważ błędne przyporządkowania mogą prowadzić do nieefektywnego projektowania i wdrażania sieci, co w praktyce skutkuje problemami z przepustowością, bezpieczeństwem oraz zarządzaniem siecią.

Pytanie 9

Jakie są właściwe przewody w wtyku RJ-45 według standardu TIA/EIA-568 dla konfiguracji typu T568B?

A. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
B. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
C. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
D. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
Zrozumienie kolejności przewodów w wtyku RJ-45 jest kluczowe dla prawidłowej konfiguracji i działania sieci komputerowych. Niestety, wiele błędnych odpowiedzi wskazuje na niepełne zrozumienie normy TIA/EIA-568, a w szczególności zakończenia T568B. Osoby wybierające inne kolejności mogą nie zdawać sobie sprawy, że nieprzestrzeganie ustalonych standardów prowadzi do licznych problemów z siecią, takich jak spadki wydajności, zakłócenia sygnału, a nawet całkowita utrata połączenia. Na przykład, w odpowiedziach, które podają przewody w innej kolejności, występuje zamiana kolorów, co potencjalnie może prowadzić do błędnego podłączenia urządzeń. Przykładowo, zamiana przewodów zielonych i pomarańczowych skutkuje błędnym przypisaniem par przewodów, co w technologii Ethernet jest kluczowe dla prawidłowego przesyłania danych. Często technicy mylą się także w kontekście przewodów zasilających urządzenia PoE, gdzie prawidłowe połączenie jest kluczowe dla dostarczenia energii. Również, brak znajomości norm T568A i T568B oraz ich zastosowań w różnych instalacjach sieciowych prowadzi do nieodpowiednich praktyk, które mogą przyczynić się do nieefektywności w działaniu sieci. Dlatego kluczowe jest, aby technicy i osoby zajmujące się instalacjami sieciowymi dokładnie poznali te normy, aby uniknąć typowych błędów myślowych i zapewnić stabilność oraz wydajność sieci.

Pytanie 10

Jakie medium transmisyjne w sieciach LAN wskazane jest do używania w obiektach historycznych?

A. Kabel typu "skrętka"
B. Kabel koncentryczny
C. Światłowód
D. Fale radiowe
Wybór medium transmisyjnego w zabytkowych budynkach wymaga szczególnej uwagi, ponieważ wiele opcji może przynieść więcej problemów niż korzyści. Światłowód, mimo swojej wysokiej wydajności i dużej prędkości transmisji, wiąże się z koniecznością wykonywania skomplikowanych prac instalacyjnych, które mogą zagrażać integralności budynku. Instalacja światłowodu często wymaga prowadzenia kabli przez ściany i podłogi, co może naruszyć strukturalne i estetyczne aspekty zabytkowego obiektu, a także pociągać za sobą kosztowne prace renowacyjne. Także, kabel koncentryczny, mimo iż zapewnia przyzwoitą transmisję danych, jest przestarzałą technologią, która nie oferuje wystarczających prędkości w porównaniu do nowszych rozwiązań i może być trudna do zainstalowania w zabytkowych wnętrzach. Kabel typu „skrętka” jest popularnym rozwiązaniem w sieciach lokalnych, jednak również wymaga czasami kładzenia kabli, co w przypadku zabytków może nie być wykonalne. Wybór niewłaściwego medium transmisyjnego, które wymaga ingerencji w konstrukcję budynku, może prowadzić do zniszczeń i problemów z utrzymaniem jakości zabytków, co jest niezgodne z najlepszymi praktykami konserwatorskimi. Dlatego w takich warunkach zastosowanie fal radiowych staje się najlepszym rozwiązaniem, unikającym wszelkich negatywnych skutków związanych z tradycyjnymi kablami.

Pytanie 11

Którego z elementów dokumentacji lokalnej sieci komputerowej nie uwzględnia dokumentacja powykonawcza?

A. Wyników pomiarów oraz testów
B. Kosztorysu wstępnego
C. Opisu systemu okablowania
D. Norm i wytycznych technicznych
Wybór odpowiedzi dotyczącej wyników pomiarów i testów, opisu okablowania lub norm i zaleceń technicznych nie jest adekwatny, ponieważ te elementy są kluczowymi składnikami dokumentacji powykonawczej. Wyniki pomiarów i testów są niezbędne do oceny, czy sieć działa zgodnie z wymaganiami. Zawierają one istotne dane, które pozwalają na identyfikację ewentualnych problemów oraz na weryfikację, czy instalacja spełnia normy techniczne. Opis okablowania jest równie ważny, jako że precyzyjne informacje o typach kabli, ich długościach oraz sposobach ich ułożenia są konieczne do dalszej konserwacji i serwisowania systemu. Normy i zalecenia techniczne zapewniają, że projektowana sieć jest zgodna z aktualnymi standardami branżowymi, co ma kluczowe znaczenie dla bezpieczeństwa i wydajności instalacji. Często zdarza się, że osoby odpowiadające na tego typu pytania mylą dokumentację projektową z powykonawczą, co prowadzi do błędnych wyborów. Kluczowe jest zrozumienie, że dokumentacja powykonawcza obejmuje elementy dotyczące rzeczywistej realizacji projektu, a kosztorys wstępny odnosi się jedynie do fazy planowania i budżetowania, co sprawia, że nie jest częścią dokumentacji powykonawczej.

Pytanie 12

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Wkrętaka krzyżakowego
B. Wkrętaka płaskiego
C. Narzędzia uderzeniowego
D. Zaciskarki do wtyków RJ45
Narzędzie uderzeniowe jest kluczowym elementem w procesie zarabiania końcówek kabla UTP w modułach keystone ze stykami typu 110. Działa ono na zasadzie mechanicznego uderzenia, które umożliwia skuteczne i trwałe połączenie żył kabla z odpowiednimi stykami w module. Użycie narzędzia uderzeniowego zapewnia, że przewody są dokładnie wciśnięte w styki, co zapobiega problemom z przesyłem sygnału oraz minimalizuje straty. W praktyce, podczas zarabiania końcówek, ważne jest, aby żyły kabla były odpowiednio uporządkowane zgodnie z kolorami standardu T568A lub T568B, co jest kluczowe dla zachowania spójności i jakości połączeń sieciowych. Standardy te są uznawane w branży telekomunikacyjnej jako najlepsze praktyki. Narzędzie to jest niezbędne, ponieważ inne narzędzia, takie jak wkrętaki, nie są zaprojektowane do tego typu operacji i mogą prowadzić do uszkodzenia styków lub niewłaściwego połączenia.

Pytanie 13

Przed przystąpieniem do podłączania urządzeń do sieci komputerowej należy wykonać pomiar długości przewodów. Dlaczego jest to istotne?

A. Aby określić, ile urządzeń można podłączyć do jednego portu switcha.
B. Aby nie przekroczyć maksymalnej długości przewodu zalecanej dla danego medium transmisyjnego, co zapewnia prawidłowe działanie sieci i minimalizuje ryzyko zakłóceń.
C. Aby ustalić parametry zasilania zasilacza awaryjnego (UPS) dla stanowisk sieciowych.
D. Aby zapobiec przegrzewaniu się okablowania w trakcie pracy sieci.
Pomiar długości przewodów sieciowych to naprawdę kluczowy etap przy planowaniu i montażu sieci. Chodzi przede wszystkim o to, żeby nie przekraczać zalecanej długości dla wybranego medium transmisyjnego, np. skrętki czy światłowodu. Standardy, takie jak TIA/EIA-568, jasno określają, że dla skrętki UTP Cat.5e/Cat.6 maksymalna długość jednego odcinka to 100 metrów – wliczając w to patchcordy. Gdy przewód jest dłuższy, sygnał potrafi się mocno osłabić, pojawiają się opóźnienia, błędy transmisji, a nawet całkowite zerwanie połączenia. W praktyce, jeśli ktoś o tym zapomni, sieć potrafi działać bardzo niestabilnie – szczególnie przy wyższych przepływnościach lub w środowiskach o dużych zakłóceniach elektromagnetycznych. Z mojego doświadczenia wynika, że nieprzemyślane prowadzenie kabli to jeden z najczęstszych powodów reklamacji u klientów. Prawidłowy pomiar i stosowanie się do limitów to po prostu podstawa profesjonalnego podejścia i gwarancja, że sieć będzie działać zgodnie z założeniami projektowymi. Branżowe dobre praktyki zawsze zakładają uwzględnienie tych długości już na etapie projektowania, żeby uniknąć problemów w przyszłości.

Pytanie 14

Czy okablowanie strukturalne można zakwalifikować jako część infrastruktury?

A. pasywnej
B. terenowej
C. czynnej
D. dalekosiężnej
Wybór infrastruktury terytorialnej to chyba nieporozumienie, bo to nie do końca pasuje do roli okablowania strukturalnego. Ta terytorialna infrastruktura dotyczy głównie geograficznego zasięgu sieci, a nie jej wnętrza. A jak mówimy o infrastrukturze aktywnej, to mamy na myśli urządzenia jak switche czy routery, które przetwarzają i zarządzają danymi – więc to zupełnie inny temat niż pasywne okablowanie. Okablowanie strukturalne, jako część infrastruktury pasywnej, nie jest w to zaangażowane, tylko tworzy ramy dla tych aktywnych elementów. Jakby wybierać infrastrukturę dalekosiężną, to można by pomyśleć, że okablowanie strukturalne obsługuje wszystko na dużych odległościach, a to tak nie działa, bo zależy to od tych aktywnych technologii, które mogą korzystać z pasywnych połączeń. Najważniejsze jest zrozumienie, że pasywne elementy okablowania są podstawą całej sieci, a ich dobra instalacja i zarządzanie są kluczowe, żeby system działał niezawodnie i efektywnie.

Pytanie 15

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 11 Mb/s
B. 54 Mb/s
C. 108 Mb/s
D. 150 Mb/s
Odpowiedzi takie jak 150 Mb/s, 11 Mb/s czy 108 Mb/s to niestety nieporozumienia. Przykładowo, 150 Mb/s nie pasuje do żadnego dobrze znanego standardu 802.11; to prędkość z 802.11n lub 802.11ac, ale nie 802.11g. Natomiast 11 Mb/s odnosi się do 802.11b, który był stosowany głównie przed 802.11g. 108 Mb/s to też chyba mylne wrażenie, bo to wartość z dodatkowego trybu w 802.11g, ale nie jest to maksymalna prędkość. Takie błędne myślenie często bierze się z mylenia różnych standardów i ich specyfikacji, co prowadzi do przypisania złej prędkości. Warto więc lepiej poznać różnice między standardami oraz ich zastosowaniem, aby nie wpaść w takie pułapki.

Pytanie 16

Na którym rysunku został przedstawiony panel krosowniczy?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia, czym jest panel krosowniczy oraz jego funkcji w infrastrukturze sieciowej. Odpowiedzi A, C i D mogą być mylone z innymi elementami, takimi jak przełączniki, routery czy inne urządzenia sieciowe, które pełnią różne role w architekturze sieci. Przełącznik, na przykład, jest urządzeniem, które łączy różne urządzenia w sieci lokalnej, ale nie pełni funkcji organizacji kabli. Z kolei router odpowiada za trasowanie danych pomiędzy różnymi sieciami, co również różni się od funkcji panelu krosowniczego. Często zdarza się, że osoby mylą również panele krosownicze z patch panelami, które mają podobny cel, ale różnią się konstrukcją i specyfiką zastosowania. Panele patchowe są bardziej przeznaczone do łatwego podłączenia i rozłączenia okablowania, podczas gdy panele krosownicze są bardziej zaawansowane i stosowane w bardziej złożonych instalacjach. Niezrozumienie tych podstawowych różnic może prowadzić do błędnych odpowiedzi w pytaniach dotyczących infrastruktury sieci. Aby poprawić swoje zrozumienie, warto zapoznać się z dokumentacją branżową oraz standardami dotyczących okablowania, co ułatwi rozróżnianie między różnymi elementami systemów teleinformatycznych.

Pytanie 17

Jakie urządzenie należy użyć, aby połączyć sieć lokalną z Internetem?

A. ruter.
B. most.
C. przełącznik.
D. koncentrator.
Ruter to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy siecią lokalną a Internetem. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co pozwala na wymianę informacji pomiędzy urządzeniami wewnątrz sieci lokalnej a użytkownikami zewnętrznymi. Ruter wykonuje funkcje takie jak kierowanie pakietów, NAT (Network Address Translation) oraz zarządzanie adresami IP. Przykładem zastosowania rutera w praktyce jest sytuacja, gdy mamy w domu kilka urządzeń (komputery, smartfony, tablety), które łączą się z Internetem. Ruter pozwala tym urządzeniom na korzystanie z jednego, publicznego adresu IP, co jest zgodne z praktykami oszczędzania przestrzeni adresowej. Ruter może również zapewniać dodatkowe funkcje, takie jak zapora sieciowa (firewall) oraz obsługa sieci bezprzewodowych (Wi-Fi), co zwiększa bezpieczeństwo i komfort użytkowania. To urządzenie jest zatem niezbędne w każdej sieci, która chce mieć dostęp do globalnej sieci Internet.

Pytanie 18

Na podstawie jakiego adresu przełącznik podejmuje decyzję o przesyłaniu ramki?

A. Adresu źródłowego MAC
B. Adresu źródłowego IP
C. Adresu docelowego IP
D. Adresu docelowego MAC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adres docelowy MAC jest kluczowym elementem w procesie przesyłania ramek przez przełączniki w sieci lokalnej (LAN). Przełączniki operują na warstwie drugiej modelu OSI, co oznacza, że ich głównym zadaniem jest przekazywanie ramek na podstawie adresów MAC. Kiedy przełącznik otrzymuje ramkę, analizuje jej nagłówek w celu zidentyfikowania adresu docelowego MAC. Na tej podstawie podejmuje decyzję o tym, na który port powinien przesłać ramkę, aby dotarła do odpowiedniego urządzenia. Przykładem zastosowania tego mechanizmu jest sytuacja, gdy w sieci znajduje się komputer, który wysyła dane do drukarki. Przełącznik, znając adres MAC drukarki, przekierowuje ramki tylko do portu, do którego jest podłączona drukarka. Dzięki temu zwiększa się efektywność przesyłania danych w sieci, minimalizując zbędny ruch. Standardy takie jak IEEE 802.1D regulują działanie przełączników i techniki, takie jak tablice MAC, które przechowują powiązania między adresami MAC a portami, co jeszcze bardziej zwiększa wydajność sieci.

Pytanie 19

Podczas przetwarzania pakietu przez ruter jego czas życia TTL

A. przyjmuje przypadkową wartość
B. pozostaje bez zmian
C. ulega zmniejszeniu
D. ulega zwiększeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czas życia pakietu (TTL - Time To Live) jest kluczowym parametrem w protokole IP, który decyduje o tym, jak długo pakiet może przebywać w sieci, zanim zostanie odrzucony. Każdy ruter, przez który przechodzi pakiet, zmniejsza wartość TTL o 1. Dzieje się tak, ponieważ TTL ma na celu zapobieganie nieskończonemu krążeniu pakietów w sieci, które mogą być spowodowane błędami w routingu. Przykładowo, jeśli pakiet ma początkową wartość TTL równą 64, to po przejściu przez 3 rutery, jego wartość TTL spadnie do 61. W praktyce, administratorzy sieci powinni być świadomi wartości TTL, ponieważ może to wpływać na wydajność sieci oraz na czas, w którym pakiety docierają do celu. Dobrą praktyką jest monitorowanie TTL w celu optymalizacji tras i diagnozowania problemów z łącznością. W standardach protokołu IP, zmniejszanie TTL jest istotne, ponieważ zapewnia, że pakiety nie będą krążyły w sieci bez końca, co może prowadzić do przeciążenia i degradacji jakości usług.

Pytanie 20

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 30 m2
B. 10 m2
C. 20 m2
D. 5 m2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 21

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Przenik zbliżny
B. Przenik zdalny
C. Suma przeników zdalnych
D. Suma przeników zbliżnych i zdalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenik zbliżny to parametr okablowania strukturalnego, który odnosi się do stosunku mocy sygnału testowego w jednej parze przewodów do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu kabla. W praktyce oznacza to, że przenik zbliżny jest miarą wpływu sygnałów z jednej pary na sygnały w innej parze, co jest szczególnie istotne w systemach telekomunikacyjnych i sieciach komputerowych. Zrozumienie tego parametru jest kluczowe dla zapewnienia wysokiej jakości sygnału oraz minimalizacji zakłóceń między parami przewodów. Przykładowo, w instalacjach Ethernet o wysokiej prędkości, niski przenik zbliżny jest niezbędny do zapewnienia integralności danych, co jest zgodne z normami TIA/EIA-568 oraz ISO/IEC 11801. W celu minimalizacji przeniku zbliżnego stosuje się odpowiednie techniki ekranowania oraz skręcania par, co w praktyce pozwala na uzyskanie lepszej wydajności i niezawodności w komunikacji.

Pytanie 22

Jednostką przenikania zdalnego FEXT, dotyczącego okablowania strukturalnego, jest

A. s
B. dB
C. Ω
D. V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
FEXT, czyli far-end crosstalk, to zjawisko zakłócenia sygnału w systemach okablowania strukturalnego, które występuje, gdy sygnał z jednego toru kablowego wpływa na tor inny, znajdujący się w dalszej odległości. Jednostką przeniku zdalnego FEXT jest dB (decybel), co oznacza, że mierzy się go w logarytmicznej skali, co pozwala na łatwiejsze porównanie poziomów sygnału i zakłóceń. W praktyce, zrozumienie i mierzenie FEXT jest kluczowe w projektowaniu i eksploatacji systemów komunikacyjnych, zwłaszcza w sieciach Ethernet oraz w technologii DSL. Przykładowo, w standardach takich jak ISO/IEC 11801, zagadnienia dotyczące FEXT są regulowane, a ich wartości graniczne są określone, aby zapewnić minimalizację zakłóceń i poprawę jakości sygnału. Właściwe projektowanie systemów okablowania, w tym odpowiednia separacja torów kablowych oraz dobór materiałów, przyczynia się do zmniejszenia przeniku FEXT i zwiększenia efektywności komunikacji.

Pytanie 23

Switch pełni rolę głównego elementu w sieci o topologii

A. pełnej siatki
B. pierścienia
C. magistrali
D. gwiazdy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W topologii gwiazdy, switch pełni rolę centralnego punktu, do którego podłączone są wszystkie urządzenia w sieci. Dzięki temu, każda wiadomość wysyłana z jednego urządzenia do drugiego przechodzi przez switch, co pozwala na efektywne zarządzanie ruchem sieciowym oraz minimalizację kolizji. Topologia ta jest często stosowana w praktycznych wdrożeniach, na przykład w biurach czy sieciach lokalnych, gdzie wymagana jest wysoka przepustowość oraz niezawodność. Stosowanie switchów w sieciach o topologii gwiazdy wspiera zastosowanie segmentacji sieci, co zwiększa bezpieczeństwo oraz umożliwia łatwiejsze zarządzanie zasobami. Z perspektywy standardów branżowych, topologia gwiazdy jest zalecana w rozwoju nowoczesnych sieci lokalnych, co znajduje potwierdzenie w dokumentach takich jak IEEE 802.3, dotyczących Ethernetu. W praktyce eliminacja zbędnych połączeń i skoncentrowanie komunikacji poprzez switch pozwala na uproszczenie diagnozowania problemów sieciowych, co znacząco podnosi efektywność administracji IT.

Pytanie 24

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
B. umożliwiająca zdalne połączenie z urządzeniem
C. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
D. pozwalająca ograniczyć przepustowość na wyznaczonym porcie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 25

Jakie kanały powinno się wybrać dla trzech sieci WLAN 2,4 GHz, aby zredukować ich wzajemne zakłócenia?

A. 2, 5,7
B. 1,6,11
C. 3, 6, 12
D. 1,3,12

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór kanałów 1, 6 i 11 dla trzech sieci WLAN 2,4 GHz jest optymalnym rozwiązaniem, ponieważ te kanały są jedynymi, które są od siebie wystarczająco oddalone, aby zminimalizować zakłócenia. W paśmie 2,4 GHz, które jest ograniczone do 14 kanałów, tylko te trzy kanały nie nachodzą na siebie, co pozwala na skuteczną separację sygnałów. Przykładowo, jeśli używamy kanału 1, to jego widmo interferencyjne kończy się w okolicach 2,412 GHz, co nie koliduje z sygnałami z kanału 6 (2,437 GHz) i 11 (2,462 GHz). W praktyce, zastosowanie tych kanałów w bliskim sąsiedztwie, na przykład w biurze z trzema punktami dostępowymi, zapewnia nieprzerwaną komunikację dla użytkowników i redukcję zakłóceń. Warto również pamiętać, że zgodnie z zaleceniami IEEE 802.11, stosowanie tych trzech kanałów w konfiguracji nie tylko poprawia jakość sygnału, ale także zwiększa przepustowość sieci, co jest szczególnie ważne w środowiskach o dużej gęstości użytkowników.

Pytanie 26

Które urządzenie jest stosowane do mocowania kabla w module Keystone?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie oznaczone literą D to narzędzie do zaciskania, które jest niezbędne w procesie mocowania kabli w modułach Keystone. Dzięki zastosowaniu tego narzędzia, możliwe jest pewne i trwałe połączenie kabla z modułem, co jest kluczowe dla zapewnienia stabilności i jakości sygnału w systemach teleinformatycznych. W praktyce, narzędzie to pozwala na precyzyjne wprowadzenie żył kabla do złącza, a następnie ich zaciśnięcie, co zapewnia dobre przewodnictwo oraz minimalizuje ryzyko awarii. Użycie narzędzia do zaciskania zgodnie z normami EIA/TIA-568 umożliwia osiągnięcie wysokiej jakości połączeń w sieciach lokalnych. Dobrą praktyką jest również stosowanie narzędzi, które umożliwiają testowanie poprawności wykonania połączenia, co pozwala na wczesne wykrycie ewentualnych błędów. W efekcie, stosowanie odpowiednich narzędzi do mocowania kabli w modułach Keystone przyczynia się do zwiększenia efektywności i niezawodności całej infrastruktury sieciowej.

Pytanie 27

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. gwiazdy
B. pierścienia
C. magistrali
D. siatki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.

Pytanie 28

Adres MAC (Medium Access Control Address) stanowi sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. drugiej o długości 32 bitów
B. trzeciej o długości 32 bitów
C. trzeciej o długości 48 bitów
D. drugiej o długości 48 bitów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przypisanym do interfejsu sieciowego w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Składa się z 48 bitów, co przekłada się na 6 bajtów, a jego zapis często reprezentowany jest w postaci szesnastkowej. Adresy MAC są kluczowe dla komunikacji w sieci Ethernet, ponieważ umożliwiają identyfikację urządzeń i kontrolowanie dostępu do medium transmisyjnego. Zastosowanie adresów MAC w praktyce obejmuje np. konfigurację filtrów adresów MAC w routerach czy przełącznikach, co może zwiększać bezpieczeństwo sieci. W standardzie IEEE 802.3, który definiuje technologie Ethernet, zdefiniowane są zasady dotyczące przydziału adresów MAC oraz ich użycia w sieciach lokalnych. Dobrą praktyką w administracji sieci jest również monitorowanie i zarządzanie adresami MAC, co ułatwia diagnozowanie problemów oraz wykrywanie nieautoryzowanych urządzeń w sieci.

Pytanie 29

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. numeru portu przełącznika
B. nazwa komputera w sieci lokalnej
C. znacznika ramki Ethernet 802.1Q
D. adresu MAC karty sieciowej komputera

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nazwa komputera w sieci lokalnej, znana również jako hostname, jest używana głównie do identyfikacji urządzenia w bardziej przyjazny sposób dla użytkowników. Jednakże, nie ma wpływu na przypisanie komputera do konkretnej sieci wirtualnej, ponieważ przynależność ta opiera się na technicznych aspektach działania sieci, takich jak adresacja i mechanizmy VLAN. Wirtualne sieci lokalne (VLAN) są definiowane na poziomie przełączników sieciowych, które wykorzystują znaczniki ramki Ethernet 802.1Q do identyfikacji i segregacji ruchu. Dlatego, aby przypisać komputer do konkretnej VLAN, kluczowe jest wykorzystanie adresów MAC i numerów portów przełącznika, które są bezpośrednio związane z fizycznym połączeniem urządzenia w sieci. Zastosowanie VLAN-ów pozwala na efektywne zarządzanie ruchem sieciowym oraz zwiększenie bezpieczeństwa i organizacji w dużych środowiskach sieciowych. Zrozumienie tej kwestii jest niezbędne dla skutecznego projektowania i zarządzania infrastrukturą sieciową.

Pytanie 30

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 10 m
B. 6 m
C. 3 m
D. 5 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgodnie z normą PN-EN 50174, maksymalna łączna długość kabla połączeniowego między punktem abonenckim a komputerem i kabla krosowniczego nie powinna przekraczać 10 metrów. Przekroczenie tej długości może prowadzić do pogorszenia jakości sygnału, co jest szczególnie istotne w środowiskach, gdzie wymagana jest wysoka wydajność transmisji danych, jak w biurach czy centrach danych. Na przykład, w przypadku instalacji sieciowych w biurze, stosowanie kabli o długości 10 metrów zapewnia stabilne połączenie oraz minimalizuje straty sygnału. Warto również zwrócić uwagę na zasady dotyczące zarządzania kablami, które sugerują, aby unikać zawirowań i nadmiernych zakrętów, aby nie wprowadzać dodatkowych zakłóceń. Dobre praktyki w zakresie instalacji kabli mówią, że warto również stosować wysokiej jakości przewody oraz komponenty, które są zgodne z normami, co dodatkowo wpływa na niezawodność całej infrastruktury sieciowej.

Pytanie 31

Symbol graficzny przedstawiony na rysunku oznacza

Ilustracja do pytania
A. otwarty kanał kablowy.
B. gniazdo telekomunikacyjne.
C. zamknięty kanał kablowy.
D. główny punkt dystrybucyjny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ten symbol, który widzisz na rysunku, oznacza gniazdo telekomunikacyjne. To taki ważny element w całej sieci telekomunikacyjnej. W praktyce to gniazda są wykorzystywane do podłączania różnych urządzeń, jak telefony czy modemy. Z tego co wiem, według norm PN-EN 50173, powinny być one dobrze oznaczone, żeby łatwo było je zidentyfikować. To naprawdę ułatwia zarządzanie kablami i urządzeniami. Używanie standardowych symboli w dokumentacji i projektach jest kluczowe, bo poprawia komunikację między specjalistami i pozwala szybko znaleźć punkty dostępowe. Poza tym, ważne też, żeby stosować odpowiednie kable, jak Cat 5e czy Cat 6, bo to wpływa na jakość przesyłu danych. No i przy projektowaniu sieci nigdy nie można zapominać o tych standardach, bo to klucz do niezawodności i wydajności systemu.

Pytanie 32

Na ilustracji przedstawiono symbol

Ilustracja do pytania
A. punktu dostępowego.
B. przełącznika.
C. rutera.
D. bramki VoIP.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na ilustracji przedstawiono symbol punktu dostępowego, który jest istotnym elementem nowoczesnych sieci bezprzewodowych. Punkt dostępowy (ang. access point) umożliwia połączenie urządzeń takich jak laptopy, smartfony czy tablety z siecią lokalną LAN, zapewniając zasięg i mobilność. Działa jako most łączący urządzenia klienckie z infrastrukturą sieciową, co jest szczególnie ważne w biurach, szkołach czy domach, gdzie wiele urządzeń korzysta z jednego źródła internetu. W kontekście standardów, punkty dostępowe są zgodne z normami IEEE 802.11, co zapewnia interoperacyjność i bezpieczeństwo przesyłanych danych. Przykładem zastosowania punktów dostępowych jest tworzenie rozległych sieci Wi-Fi w obiektach publicznych, takich jak centra handlowe czy lotniska, gdzie niezbędne jest zapewnienie stabilnego i szybkiego dostępu do internetu dla wielu użytkowników jednocześnie. Zrozumienie funkcji punktów dostępowych jest kluczowe dla projektowania efektywnych i wydajnych sieci bezprzewodowych.

Pytanie 33

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Maskę w adresie dla K1.
B. Adres bramy dla K1.
C. Maskę w adresie dla K2.
D. Adres bramy dla K2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adres bramy dla K2 jest kluczowym elementem w zapewnieniu, że urządzenia K1 i K2 mogą się komunikować. K1, posiadający adres 10.0.0.2 z maską 255.255.255.128, znajduje się w podsieci 10.0.0.0/25, co oznacza, że jego adresy IP w tej podsieci mieszczą się w zakresie od 10.0.0.1 do 10.0.0.126. Z kolei K2 ma adres 10.0.0.102 z maską 255.255.255.192, co wskazuje na podsieć 10.0.0.64/26, obejmującą adresy od 10.0.0.65 do 10.0.0.126. Aby zapewnić komunikację między tymi urządzeniami, muszą one być w tej samej podsieci lub muszą mieć odpowiednio skonfigurowane bramy. W przypadku K2, adres bramy 10.0.0.1 nie jest poprawny, ponieważ znajduje się w innej podsieci. K2 powinno mieć bramę w swojej podsieci, na przykład 10.0.0.65. Takie podejście jest zgodne z dobrymi praktykami projektowania sieci, które zalecają, aby urządzenia komunikujące się ze sobą miały wspólny adres bramy lub znajdowały się w tej samej podsieci. W praktyce, niewłaściwa konfiguracja adresów bramy i submask często prowadzi do problemów z komunikacją w sieciach, co podkreśla znaczenie dokładnej analizy adresacji IP.

Pytanie 34

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. światłowodowy
B. typ U/FTP
C. współosiowy
D. typ U/UTP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kabel światłowodowy to najlepszy wybór do projektowania sieci LAN w środowiskach z dużymi zakłóceniami elektromagnetycznymi, ponieważ korzysta z włókien szklanych do przesyłania danych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi. W porównaniu do kabli miedzianych, światłowody są odporne na interferencje i mogą transmitować sygnały na znacznie większe odległości z wyższą przepustowością. Na przykład, w zastosowaniach takich jak centra danych, gdzie wiele urządzeń komunikuje się jednocześnie, stosowanie światłowodów zapewnia niezawodność i stabilność połączeń. Standardy, takie jak IEEE 802.3, promują wykorzystanie technologii światłowodowej dla osiągnięcia maksymalnej wydajności i minimalizacji strat sygnału. Dodatkowo, w miejscach o dużym natężeniu elektromagnetycznym, takich jak blisko dużych silników elektrycznych czy urządzeń radiowych, światłowody zapewniają pełną ochronę przed zakłóceniami, co czyni je idealnym rozwiązaniem dla nowoczesnych aplikacji sieciowych.

Pytanie 35

Urządzenie sieciowe, które umożliwia dostęp do zasobów w sieci lokalnej innym urządzeniom wyposażonym w bezprzewodowe karty sieciowe, to

A. koncentrator
B. punkt dostępu
C. panel krosowy
D. przełącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt dostępu, czyli access point, to mega ważny element każdej sieci bezprzewodowej. Dzięki niemu urządzenia z bezprzewodowymi kartami mogą się łączyć z siecią lokalną. W praktyce, to taki centralny hub, gdzie wszyscy klienci mogą znaleźć dostęp do różnych zasobów w sieci, jak Internet czy drukarki. Z mojego doświadczenia, punkty dostępu świetnie sprawdzają się w biurach, szkołach i miejscach publicznych, gdzie sporo osób potrzebuje dostępu do sieci naraz. Standardy jak IEEE 802.11 mówią o tym, jak te punkty powinny działać i jakie protokoły komunikacyjne wykorzystują. Żeby dobrze zamontować punkty dostępu, trzeba je odpowiednio rozmieszczać, tak by zminimalizować martwe strefy i mieć mocny sygnał, co jest istotne dla wydajności naszej sieci bezprzewodowej.

Pytanie 36

Do zakończenia kabla skręcanego wtykiem 8P8C wykorzystuje się

A. spawarkę światłowodową
B. narzędzie uderzeniowe
C. zaciskarkę do złączy typu F
D. zaciskarkę do wtyków RJ-45

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaciskarka do wtyków RJ-45 jest narzędziem niezbędnym do zakończenia skrętek, które są powszechnie stosowane w sieciach Ethernet. Wtyki RJ-45, znane również jako wtyki 8P8C, mają osiem pinów, które muszą być odpowiednio umieszczone i zabezpieczone w obudowie wtyku. Proces zaciskania polega na wprowadzeniu skrętek do wtyku, a następnie użyciu zaciskarki do trwałego ściśnięcia metalowych styków wtyku, co zapewnia solidne połączenie elektryczne. W branży telekomunikacyjnej i informatycznej, stosowanie zaciskarki do RJ-45 jest standardową praktyką, szczególnie w instalacjach sieciowych. Umożliwia to tworzenie niestandardowych kabli Ethernet o różnych długościach, co znacznie ułatwia konfigurację i organizację sieci. Dobrą praktyką jest również przestrzeganie kolorów okablowania zgodnie z normą T568A lub T568B, co zapewnia spójność i poprawność połączeń. Ponadto, używanie zaciskarki do RJ-45 pozwala na łatwe naprawy kabli oraz ich rekonfiguracje, co jest niezwykle istotne w dynamicznie zmieniającym się środowisku IT.

Pytanie 37

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 250 zł
B. 300 zł
C. 100 zł
D. 200 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.

Pytanie 38

Zgodnie z normą PN-EN 50173 segment okablowania pionowego łączącego panele krosownicze nie powinien przekraczać długości

A. 2000 m
B. 500 m
C. 1500 m
D. 100 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgodnie z normą PN-EN 50173, maksymalna długość odcinka okablowania pionowego łączącego panele krosownicze wynosi 500 m. Ta wartość została ustalona na podstawie analiz dotyczących wydajności transmisji danych, a także wpływu długości kabli na parametry sygnału. Główne powody ograniczenia długości to zapewnienie optymalnej jakości sygnału oraz minimalizacja strat sygnałowych i opóźnień. Zastosowanie tej długości jest kluczowe w projektowaniu sieci, ponieważ pozwala na utrzymanie wysokiej wydajności w ramach strukturalnego okablowania. W praktyce oznacza to, że jeżeli w projekcie sieci lokalnej (LAN) planujemy umieścić urządzenia, takie jak przełączniki czy routery, musimy zapewnić, aby odległość pomiędzy nimi a panelami krosowniczymi nie przekraczała 500 m. Taki standard jest również zgodny z innymi normami międzynarodowymi, co pozwala na jednolite podejście do projektowania i instalacji systemów okablowania w różnych krajach. Dostosowując się do tych wytycznych, zwiększamy niezawodność oraz łatwość zarządzania siecią, co jest kluczowe w nowoczesnych rozwiązaniach IT.

Pytanie 39

Które z poniższych urządzeń pozwala na bezprzewodowe łączenie się z siecią lokalną opartą na kablu?

A. Punkt dostępowy
B. Modem
C. Przełącznik
D. Media konwerter

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt dostępowy, znany również jako access point, jest kluczowym urządzeniem w kontekście bezprzewodowych sieci lokalnych. Jego głównym zadaniem jest umożliwienie urządzeniom bezprzewodowym, takim jak laptopy, smartfony czy tablety, dostępu do kablowej sieci lokalnej. Punkty dostępowe działają na zasadzie połączenia z routerem lub przełącznikiem za pomocą kabla Ethernet, a następnie transmitują sygnał bezprzewodowy w określonym zasięgu, co pozwala użytkownikom na wygodne korzystanie z internetu bez konieczności używania kabli. Standardy takie jak IEEE 802.11, powszechnie znane jako Wi-Fi, definiują parametry pracy punktów dostępowych, w tym szybkości transmisji danych oraz zakresy częstotliwości. Dzięki implementacji punktów dostępowych w biurach, szkołach czy przestrzeniach publicznych, można zapewnić użytkownikom mobilny dostęp do sieci, co jest niezbędne w dobie pracy zdalnej i mobilności. Przykładem zastosowania punktów dostępowych są sieci hot-spot w kawiarniach lub na lotniskach, gdzie użytkownicy mogą łączyć się z internetem w sposób elastyczny i wygodny.

Pytanie 40

Jakiego wtyku należy użyć do zakończenia ekranowanej skrętki czteroparowej?

A. RP-SMA
B. SC
C. 8P8C
D. RJ-11

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wtyk 8P8C, znany również jako RJ-45, jest standardowym złączem stosowanym w sieciach Ethernet oraz do zakończeń ekranowanych skrętek, takich jak skrętki czteroparowe. Umożliwia on przesyłanie danych z prędkością do 10 Gbps na odległość do 100 metrów, co czyni go odpowiednim wyborem dla nowoczesnych aplikacji sieciowych. Wtyk 8P8C jest zaprojektowany do obsługi ośmiu żył, które są odpowiednio parowane, co minimalizuje zakłócenia elektromagnetyczne. Użycie wtyku 8P8C w kablach sieciowych zapewnia zgodność z normami TIA/EIA-568, które definiują sposób układania i zakończenia przewodów. W praktyce, właściwe zakończenie kabla skręcanego z użyciem wtyku 8P8C pozwala na osiągnięcie optymalnej wydajności oraz stabilności połączeń, co jest kluczowe w środowiskach biurowych i przemysłowych, gdzie jakość sygnału ma ogromne znaczenie dla pracy systemów informatycznych.