Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 9 grudnia 2025 10:48
  • Data zakończenia: 9 grudnia 2025 11:14

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Ile wyniesie koszt mieszanki betonowej potrzebnej do wykonania wieńca o przekroju 25×30 cm w ścianach budynku, którego rzut przedstawiono na rysunku, jeżeli norma zużycia mieszanki betonowej wynosi 1,02 m3/m3, a cena mieszanki wynosi 250,00 zł/m3?

Ilustracja do pytania
A. 543,75 zł
B. 535,50 zł
C. 525,00 zł
D. 554,63 zł
Odpowiedź 535,50 zł jest poprawna, ponieważ opiera się na dokładnym obliczeniu zużycia mieszanki betonowej niezbędnej do wykonania wieńca. Najpierw obliczamy obwód wieńca, który wynosi 20,9 m. Następnie, aby znaleźć objętość wieńca, mnożymy obwód przez przekrój poprzeczny, co daje nam 1,5675 m³. Zgodnie z normą zużycia mieszanki betonowej wynoszącą 1,02 m³/m³, obliczamy zapotrzebowanie na mieszankę, co daje 1,59885 m³. Koszt mieszanki betonowej, przy cenie 250,00 zł/m³, wynosi 535,50 zł. Takie obliczenia są zgodne z zaleceniami branżowymi, które podkreślają konieczność precyzyjnego ustalania objętości i kosztów materiałów budowlanych. W praktyce, właściwe obliczenia są kluczowe dla planowania finansowego projektów budowlanych oraz dla uniknięcia nieprzewidzianych wydatków.

Pytanie 2

Zadaniem jest zbudowanie ścianki działowej z cegły pełnej o grubości ½ cegły. Jeśli zużycie zaprawy na 1 m2 tej ścianki wynosi 0,030 m3, to ile zaprawy będzie potrzebne do zrealizowania 25 m2?

A. 0,75 m3
B. 0,625 m3
C. 0,50 m3
D. 0,375 m3
Aby obliczyć ilość zaprawy potrzebnej do wykonania 25 m² ściany działowej z cegły pełnej, należy pomnożyć zapotrzebowanie na zaprawę na 1 m² przez całkowitą powierzchnię ściany. W tym przypadku, zużycie zaprawy wynosi 0,030 m³ na 1 m². Zatem, dla 25 m² zaprawa wynosi: 0,030 m³/m² * 25 m² = 0,75 m³. W praktyce, znajomość takich obliczeń jest niezbędna dla odpowiedniego planowania materiałów budowlanych i kosztorysowania. Pozwala to na uniknięcie sytuacji, w której zabraknie materiału w trakcie budowy, co może prowadzić do opóźnień. W branży budowlanej obowiązują normy, które zalecają uwzględnianie nie tylko podstawowego zapotrzebowania, ale również ewentualnych strat podczas transportu i aplikacji materiałów. Dobrą praktyką jest również zawsze uwzględniać dodatkowy procent materiału na ewentualne poprawki lub błędy, co zwiększa efektywność wykorzystania surowców.

Pytanie 3

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. izolujących cieplnie
B. szlachetnych
C. renowacyjnych
D. jednowarstwowych zewnętrznych
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 4

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 7 mm
B. 10 mm
C. 5 mm
D. 30 mm
Wybór odpowiedzi 30 mm, 5 mm lub 10 mm jest niewłaściwy, ponieważ nie spełniają one wymogów dotyczących odchyleń promieni krzywizny dla tynków kategorii II i III. Odpowiedź 30 mm wprowadza poważny błąd, gdyż tak duże odchylenie może prowadzić do znacznych zaburzeń estetycznych oraz funkcjonalnych. W praktyce budowlanej, nadmierne odchylenia mogą skutkować zbieraniem się wody w zakamarkach, co z kolei prowadzi do degradacji tynku, a nawet korozji elementów budowlanych. Odpowiedź 5 mm, mimo że jest mniejsza niż 7 mm, również nie jest odpowiednia, ponieważ nie spełnia wymogów projektowych, które zostały jasno określone dla tynków tej kategorii. Tynki muszą być aplikowane z zachowaniem precyzyjnych wymiarów, aby zapewnić trwałość oraz estetykę wykonania. Przykłady nieprawidłowych podejść w aplikacji tynków mogą prowadzić do powstawania szczelin, pęknięć oraz innych defektów, które są nieakceptowalne w kontekście standardów budowlanych. Ostatecznie, wybór odpowiednich wartości odchyleń jest kluczowy dla osiągnięcia wysokiej jakości wykończenia oraz długotrwałej użyteczności, co jest istotne dla każdego projektu budowlanego.

Pytanie 5

Na podstawie danych zawartych w tablicy 0120 z KNR oblicz, ile cegieł dziurawek potrzeba do wykonana 10 m2 ścianki pełnej o grubości 1/2 cegły.

Ilustracja do pytania
A. 286 sztuk.
B. 486 sztuk.
C. 481 sztuk.
D. 287 sztuk.
Tak, zgadza się, prawidłowa odpowiedź to 486 cegieł. To obliczenie bierze się z tablicy 0120 z KNR, gdzie normatywne zużycie cegieł dziurawek na 1 m2 wynosi 48,60 sztuk, jeśli mamy ściankę pełną o grubości 1/2 cegły. Żeby sprawdzić ile cegieł potrzeba na 10 m2, wystarczy pomnożyć 48,60 przez 10. Także 48,60 szt/m2 razy 10 m2 daje 486 sztuk. W budownictwie takie obliczenia są bardzo ważne, bo pomagają zaoszczędzić czas i pieniądze. Zawsze lepiej mieć dokładne dane, bo gdy źle oszacujesz materiał, może się to zakończyć opóźnieniami i dodatkowymi kosztami za dodatkowe cegły. Dlatego ważne jest, żeby znać te normy i przepisy – to zdecydowanie ułatwia pracę w branży budowlanej i pozwala lepiej planować budżet.

Pytanie 6

Na którym rysunku przedstawiono cegłę kratówkę?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Cegła kratówka jest specyficznym rodzajem cegły, która wyróżnia się dużą ilością otworów, co wpływa na jej właściwości izolacyjne oraz wytrzymałościowe. Wybór odpowiedniej cegły jest kluczowy w procesie budowlanym, ponieważ jej właściwości determinują efektywność energetyczną budynku oraz jego trwałość. Cegła oznaczona literą C, zgodnie z przedstawionym zdjęciem, posiada regularnie rozmieszczone otwory, co jest charakterystyczne dla cegły kratówki. Dzięki tym otworom, materiał zyskuje na lekkości, a jednocześnie zachowuje odpowiednią wytrzymałość. W praktyce cegły kratówki są wykorzystywane w ścianach działowych i konstrukcjach nośnych, gdzie kluczowe jest osiągnięcie odpowiedniej równowagi pomiędzy masą a wytrzymałością. Dobrą praktyką w budownictwie jest stosowanie projektów, które uwzględniają właściwości materiałów budowlanych, co przekłada się na efektywność energetyczną i oszczędność kosztów eksploatacyjnych budynków.

Pytanie 7

Gąbkowanie gipsowego tynku, które polega na nawilżeniu tynku rozproszonym strumieniem wody oraz wygładzaniu pacą gąbkową, jest przeprowadzane w celu

A. zebrania nadmiaru zaprawy
B. przygotowania powierzchni do finalnego wygładzenia
C. usunięcia nadmiaru drobnoziarnistego kruszywa
D. wstępnego wyrównania nawierzchni tynku
W analizie gąbkowania powierzchni tynku gipsowego warto zauważyć, że odpowiedzi sugerujące wstępne wyrównanie powierzchni tynku lub usunięcie nadmiaru kruszywa drobnoziarnistego są mylnymi interpretacjami procesu. Wstępne wyrównanie powierzchni tynku to proces, który zazwyczaj wymaga zastosowania specjalistycznych narzędzi, takich jak łaty lub mirety, a gąbkowanie nie jest jego odpowiednikiem. Gąbkowanie nie ma na celu eliminacji kruszywa, gdyż drobnoziarniste materiały są integralną częścią tynku, które wpływają na jego właściwości i wytrzymałość. Usunięcie nadmiaru zaprawy również jest procesem, który powinien być realizowany w inny sposób, zazwyczaj za pomocą szpachli lub innych narzędzi, a nie przy pomocy gąbkowania. Gąbkowanie polega na zroszeniu wody i zacieraniu, co nie prowadzi do usunięcia nadmiaru materiału, a wręcz przeciwnie, sprzyja ujednoliceniu powierzchni. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, obejmują mylenie działań związanych z obróbką tynku oraz nieprawidłowe postrzeganie roli wody i gąbki w procesie przygotowania powierzchni. Istotne jest, aby zrozumieć, że każdy etap tynkowania wymaga precyzyjnych działań, które mają na celu osiągnięcie wysokiej jakości końcowej, co jest kluczowym elementem w budownictwie i wykończeniach wnętrz.

Pytanie 8

Jakie narzędzia są niezbędne do wykonania tynku wypalanego?

A. Kielnia tynkarska, packa obłożona filcem, poziomnica
B. Paca stalowa, kielnia tynkarska, łata murarska
C. Paca stalowa, kielnia tynkarska, młotek gumowy
D. Kielnia tynkarska, łata murarska, młotek murarski
Wybór narzędzi do wykonania tynku wypalanego jest istotny dla uzyskania wysokiej jakości wykończenia. W przypadku zestawów narzędzi, które nie zawierają łaty murarskiej, jak w odpowiedzi z młotkiem gumowym czy packą obłożoną filcem, pojawiają się poważne ograniczenia. Młotek gumowy, choć użyteczny w niektórych pracach budowlanych, nie ma zastosowania w kontekście aplikacji tynku, ponieważ nie służy ani do nakładania, ani do wygładzania materiału. Packi obłożone filcem są odpowiednie do wygładzania delikatnych powierzchni, jednak w przypadku tynku wypalanego, kluczowe jest użycie narzędzi o większej sztywności, takich jak paca stalowa. Dodatkowo, brak łaty murarskiej uniemożliwia równomierne wyrównanie tynku, co jest nieodłącznym elementem procesu tynkarskiego. W praktyce, pomijanie odpowiednich narzędzi prowadzi do nierównomiernych powierzchni i problemów z trwałością wykończenia, co jest niezgodne z branżowymi standardami. Dlatego właściwy dobór narzędzi jest podstawą skutecznego wykonania tynku wypalanego, a ignorowanie tego aspektu z pewnością wpłynie negatywnie na jakość pracy.

Pytanie 9

Jakiego rodzaju spoiwa używa się do produkcji betonów zwykłych?

A. Akrylowy.
B. Wapienny.
C. Cementowy.
D. Gipsowy.
Gips, akryl i wapno nie są odpowiednimi spoiwami do produkcji betonów zwykłych, a ich zastosowanie w kontekście budownictwa wymaga dokładniejszego wyjaśnienia. Gips jest materiałem stosowanym głównie do prac wykończeniowych i w suchych zabudowach, często jako składnik tynków czy gipsowych płyt, ale nie posiada właściwości wiążących wystarczających do produkcji betonu, który wymaga długotrwałej wytrzymałości. Akryl, z kolei, jest materiałem syntetycznym, który stosuje się głównie w farbach, uszczelnieniach i powłokach, ale nie jest spoiwem, a jego właściwości nie pozwalają na tworzenie trwałych struktur betonowych. Wapno, choć historycznie używane jako spoiwo w budownictwie, obecnie zastąpione zostało przez cement w produkcji betonu. Wapno ma ograniczoną wytrzymałość i długi czas wiązania, co czyni je mniej efektywnym w standardowych zastosowaniach budowlanych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych materiałów jako spoiw do betonu, często wynikają z nieprecyzyjnego rozumienia ich właściwości i zastosowań w budownictwie. Dlatego kluczowe jest, aby wszyscy zaangażowani w proces budowlany posiadali solidną wiedzę na temat odpowiednich materiałów budowlanych oraz ich specyfikacji, co przyczynia się do zwiększenia jakości i bezpieczeństwa konstrukcji.

Pytanie 10

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. izolacji wiatrowej
B. wełny mineralnej
C. kratek odpowietrzających
D. rusztu konstrukcyjnego
Montaż izolacji wiatrowej, kratek odpowietrzających czy wełny mineralnej jako pierwszych elementów w systemie dociepleń jest nieprawidłowy, ponieważ nie uwzględnia podstawowych zasad budowy rusztu konstrukcyjnego. Izolacja wiatrowa, która ma na celu ochronę przed wpływem wiatru, jest stosowana zwykle na etapie finalnym, aby zminimalizować straty ciepła, jakie mogą wynikać z nieszczelności. Kratki odpowietrzające są elementami, które mają za zadanie umożliwić wentylację i odpływ skroplin, co jest istotne w kontekście dbałości o materiał izolacyjny, ale nie są pierwszym krokiem w procesie docieplenia. Wełna mineralna, jako materiał izolacyjny, powinna być umieszczona na ruszcie po jego zainstalowaniu, ponieważ bez odpowiedniego wsparcia strukturalnego nie będzie w stanie spełniać swoich funkcji. Kluczowym błędem myślowym jest przekonanie, że można pominąć etapy montażu konstrukcji nośnej, co prowadzi do nieprawidłowego rozkładu obciążeń i potencjalnych uszkodzeń systemu ociepleń. W związku z tym, każda inwestycja w ocieplenie budynku powinna być realizowana zgodnie z ustalonymi standardami i technologią, aby zapewnić jej efektywność i trwałość.

Pytanie 11

W specyfikacji technicznej planowanego remontu w obiekcie budowlanym zawarto informację, że do wszystkich prac murarskich należy wykorzystać materiał ceramiczny o korzystnych właściwościach cieplnych. Który z typów cegieł spełnia wymagania zawarte w dokumentacji?

A. Kratówka
B. Szamotowa
C. Silikatowa
D. Klinkierowa
Cegły silikatowe, choć często stosowane w budownictwie, nie spełniają wymagań projektowych dotyczących dobrych właściwości termicznych. Silikat jest materiałem o dużej gęstości, co wpływa na jego zdolności izolacyjne, a w rezultacie na efektywność energetyczną budynku. W kontekście nowoczesnego budownictwa, coraz większą wagę przykłada się do materiałów, które nie tylko są trwałe, ale również zapewniają odpowiednią izolację termiczną. Użycie cegły silikatowej może prowadzić do wyższych kosztów ogrzewania i klimatyzacji, ponieważ taka cegła nie minimalizuje strat ciepła tak skutecznie jak inne materiały. Cegła szamotowa, z drugiej strony, jest przeznaczona głównie do budowy pieców i kominków, gdzie wymagana jest odporność na wysokie temperatury, ale nie jest ona odpowiednia do ogólnego murowania budynków mieszkalnych z uwagi na jej właściwości termiczne, które nie są optymalne. Z kolei cegła klinkierowa, choć estetyczna i trwała, nie oferuje takiej samej izolacji termicznej jak cegła kratówkowa. Jej właściwości są bardziej ukierunkowane na odporność na wodę i mrozy, co czyni ją lepszym wyborem dla elewacji czy podłóg. Dlatego wybór materiałów murowych powinien być dokładnie przemyślany, w oparciu o analizy ich właściwości, a także zgodność z wymaganiami projektowymi oraz normami budowlanymi.

Pytanie 12

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. szlachetnych
B. renowacyjnych
C. jednowarstwowych zewnętrznych
D. izolujących cieplnie
Odpowiedź dotycząca tynków renowacyjnych jest prawidłowa, ponieważ zaprawa tynkarska oznaczona symbolem R została zaprojektowana z myślą o zastosowaniu w pracach renowacyjnych. Tynki renowacyjne są stosowane w celu przywrócenia oryginalnych właściwości estetycznych oraz ochronnych istniejących budynków, które mogą być narażone na degradację ze względu na warunki atmosferyczne lub inne czynniki. Przykłady zastosowania obejmują renowację historycznych elewacji, gdzie ważne jest zachowanie charakterystyki materiałów oryginalnych, ale również w przypadku budynków, które doznały uszkodzeń, takich jak pęknięcia czy zawilgocenie. Tynki te często zawierają specjalne dodatki, które poprawiają ich przyczepność, elastyczność oraz parametry izolacyjne, co czyni je idealnym wyborem do renowacji. Dobrze przemyślany dobór tynku renowacyjnego zgodnego z charakterystyką budynku oraz jego otoczenia jest kluczowy, a normy PN-EN 998-1 oraz PN-EN 1015-12 mogą służyć jako wytyczne w tym zakresie.

Pytanie 13

Który przyrząd przedstawiono na rysunku?

Ilustracja do pytania
A. Pion murarski.
B. Przebijak.
C. Stożek pomiarowy.
D. Warstwomierz.
Wybór innej odpowiedzi może wynikać z nieporozumień dotyczących funkcji i wyglądu różnych narzędzi budowlanych. Stożek pomiarowy, na przykład, jest używany do pomiaru objętości cieczy i nie ma żadnej praktycznej funkcji w kontekście kontroli pionowości, co jest kluczowe w budownictwie. Przebijak, z kolei, służy do tworzenia otworów w materiałach, takich jak drewno lub metal, a jego zastosowanie jest całkowicie różne od funkcji pionu murarskiego. Warstwomierz, mimo że również używany w budownictwie, ma na celu mierzenie grubości warstw materiałów, a nie ich pionowości. Typowym błędem myślowym jest pomylenie przeznaczenia narzędzi, co może prowadzić do niewłaściwego ich stosowania. Kluczowe jest zrozumienie, że każde narzędzie ma swoją specyfikę i rolę w procesie budowlanym, a ich nieprawidłowe zastosowanie może prowadzić do niedokładności w pracy oraz poważnych konsekwencji konstrukcyjnych. Dobrze jest również zaznaczyć, że każdy projekt budowlany wymaga starannego doboru narzędzi, co w praktyce oznacza, że nie można polegać na intuicji przy ich wyborze.

Pytanie 14

Korzystając z danych zawartych w tablicy 0102 z KNR 4-04, oblicz czas przewidziany na rozebranie 4 słupów wolnostojących o przekroju 40 x 40 cm i wysokości 5 m wykonanych z cegły na zaprawie cementowej.

Ilustracja do pytania
A. 10,40 r-g
B. 4,99 r-g
C. 7,23 r-g
D. 10,66 r-g
Poprawna odpowiedź to 10,40 r-g, co wynika z obliczeń opartych na danych zawartych w tabeli KNR 4-04. Dla słupów wolnostojących wykonanych z cegły na zaprawie cementowej, przy wysokości do 9 m, nakład pracy wynosi 3,25 r-g na 1 m³. Aby obliczyć czas przewidziany na rozebranie czterech słupów o przekroju 40 x 40 cm i wysokości 5 m, najpierw obliczamy objętość jednego słupa: 0,4 m x 0,4 m x 5 m = 0,8 m³. Następnie obliczamy objętość czterech słupów: 0,8 m³ x 4 = 3,2 m³. Mnożymy objętość przez nakład pracy: 3,2 m³ x 3,25 r-g/m³ = 10,40 r-g. Taki sposób kalkulacji jest zgodny z najlepszymi praktykami w branży budowlanej, które sugerują, aby przed przystąpieniem do rozbiórki obliczyć dokładne nakłady pracy w oparciu o rzeczywiste wymiary i zastosowane materiały. Znajomość takich norm jest kluczowa dla efektywnego planowania etapów budowy oraz rozbiórki, co pozwala na minimalizację kosztów i czasu realizacji.

Pytanie 15

Z informacji podanych w tabeli wynika, że aby otrzymać zaprawę cementowo-wapienną marki 5, należy 2 pojemniki wapna hydratyzowanego zmieszać z

Orientacyjny skład objętościowy zapraw cementowo-wapiennych
Marka zaprawyz użyciem ciasta wapiennegoz użyciem wapna hydratyzowanego
1,51:1,5:81:1:9
31:1:71:1:6
51:0,3:41:0,5:4,5
A. 4 pojemnikami cementu i 18 pojemnikami piasku.
B. 4 pojemnikami cementu i 16 pojemnikami piasku.
C. 2 pojemnikami cementu i 14 pojemnikami piasku.
D. 2 pojemnikami cementu i 12 pojemnikami piasku.
Zrozumienie proporcji materiałów w budownictwie to naprawdę ważna sprawa, jeśli chcesz mieć trwałe zaprawy. W odpowiedziach faktycznie można znaleźć sporo typowych błędów, jak pomylenie proporcji. Dla zaprawy cementowo-wapiennej ta proporcja 1:0,5:4,5 jest naprawdę kluczowa i nie można jej zmieniać na własną rękę. Jeśli ktoś sugeruje mniej cementu albo za mało piasku, to może to prowadzić do poważnych problemów. Na przykład, jeśli użyjesz 2 pojemników cementu i 14 piasku, to zaprawa będzie znacznie słabsza, co może prowadzić do strukturalnych kłopotów. Wiele błędów wynika z niepełnego zrozumienia roli materiałów – cement jest najważniejszy dla wiązania mieszanki. Z drugiej strony, nadmiar piasku, jak w przypadku 16 pojemników, powoduje, że zaprawa staje się krucha, co też jest niezgodne z zasadami. Tak więc, grubość i płynność zaprawy to kluczowe rzeczy, żeby spełniała swoje zadanie. Lepiej więc trzymaj się standardów, jak PN-EN 998, żeby nie mieć później problemów.

Pytanie 16

Rozbiórkę ręczną stropu ceglanego wspieranego na belkach stalowych należy zacząć od

A. usunięcia tynku z powierzchni stropu, czyli sufitu
B. usunąć wypełnienie stropu
C. demontażu wierzchniej warstwy stropu, czyli podłogi
D. przycięcia belek wzdłuż ścian
Rozpoczęcie ręcznej rozbiórki stropu ceglanego od wycięcia belek przy ścianach jest podejściem niebezpiecznym i niezgodnym z zasadami dobrej praktyki budowlanej. Tego rodzaju działanie może prowadzić do destabilizacji konstrukcji, co stwarza poważne ryzyko zawalenia się stropu. Belek nie powinno się wycinać przed dokładnym zbadaniem i przygotowaniem całej konstrukcji, ponieważ belek stalowych nie można traktować jako elementów, które można usuwać w pierwszej kolejności w procesie demontażu. Ponadto, rozebranie wierzchu stropu przed usunięciem tynku prowadzi do wielu komplikacji, w tym do niekontrolowanego opadania luźnych materiałów i zwiększonego ryzyka dla pracowników. Prace demontażowe powinny być prowadzone w odwrotnej kolejności do ich konstrukcji, co oznacza, że najpierw należy zająć się warstwą tynku, następnie ewentualnymi wypełnieniami, a na końcu elementami nośnymi, takimi jak belki. Ignorowanie tej zasady może skutkować nie tylko uszkodzeniem konstrukcji, ale także zwiększeniem kosztów związanych z naprawą ewentualnych szkód. Oprócz tego, skucie wypełnienia stropu przed usunięciem tynku także może prowadzić do sytuacji, w której nie da się skutecznie ocenić stanu belek, co w perspektywie czasowej może przełożyć się na konieczność wykonania kosztownych napraw. Dlatego kluczowe jest przestrzeganie ustalonych procedur oraz norm bezpieczeństwa podczas rozbiórki, aby uniknąć poważnych konsekwencji.

Pytanie 17

Przed użyciem tynków akrylowych produkowanych w fabryce w pojemnikach, należy je

A. wymieszać bez dodatków
B. dodać pigment
C. dodać utwardzacz
D. wymieszać z wodą
Tynki akrylowe przygotowane fabrycznie w pojemnikach nie wymagają dodatkowych modyfikacji przed użyciem, co czyni je wygodnym rozwiązaniem w pracach budowlanych i remontowych. Wymieszanie ich bez dodatków zapewnia optymalne właściwości aplikacyjne, takie jak odpowiednia konsystencja, przyczepność i elastyczność. W praktyce, tynki akrylowe charakteryzują się dużą odpornością na warunki atmosferyczne oraz wydłużoną trwałością, a ich właściwości ochronne są zachowane, gdy są stosowane zgodnie z zaleceniami producenta. Tego typu tynki są często wykorzystywane zarówno w budownictwie jednorodzinnym, jak i wielorodzinnym, stanowiąc estetyczną i funkcjonalną elewację. Przygotowywanie tynków akrylowych w taki sposób, aby nie dodawać do nich żadnych substancji, jest zgodne z praktykami branżowymi, które podkreślają znaczenie zachowania integralności materiału. Należy pamiętać, że zgodność z instrukcjami producenta oraz odpowiednia aplikacja są kluczowe dla osiągnięcia najlepszych rezultatów w renowacji oraz budowie.

Pytanie 18

Strzępia zazębione tworzy się, pozostawiając w każdej drugiej warstwie muru puste miejsce o głębokości

A. 1/4 cegły
B. 1/2 cegły
C. 1 cegła
D. 2 cegły
Wybór nieprawidłowej odpowiedzi, jak na przykład 1 cegły, 1/2 cegły czy 2 cegieł, wynika z nieporozumienia dotyczącego zasadności głębokości pustek w strzępiach zazębionych. W przypadku głębokości 1 cegły, mur staje się zbyt słaby, ponieważ zbyt duże szczeliny mogą prowadzić do problemów z integralnością strukturalną. Z kolei 1/2 cegły również jest zbyt dużą głębokością, co może powodować, że mur będzie podatny na deformacje, a tym samym na uszkodzenia pod wpływem obciążeń. Zastosowanie większych pustek prowadzi do niekorzystnych warunków izolacyjnych, co może wpływać na wilgotność i trwałość materiałów budowlanych. Odpowiednia głębokość pustek jest kluczowym czynnikiem projektowym, a wszelkie odstępstwa od norm mogą skutkować poważnymi problemami strukturalnymi. W praktyce, ważne jest, aby murarz był świadomy tego, jak różne głębokości pustek wpływają na całość konstrukcji oraz jakie są zalecenia w dokumentach normatywnych i branżowych. Zrozumienie tych zależności pozwala na lepsze planowanie i realizację projektów, co jest kluczowe w budownictwie. Dlatego też, pozostawienie pustek o głębokości 1/4 cegły jest najlepszą praktyką, która gwarantuje zarówno wytrzymałość, jak i estetykę wykonanej pracy.

Pytanie 19

Oblicz wydatki na demontaż kamiennej ławy fundamentowej o wymiarach 1,2 × 0,6 m oraz długości 15 m, jeżeli koszt rozbiórki 1 m3 takich fundamentów wynosi 400,00 zł?

A. 480,00 zł
B. 4 320,00 zł
C. 6 000,00 zł
D. 240,00 zł
Aby obliczyć koszt rozbiórki kamiennej ławy fundamentowej, najpierw musimy ustalić objętość fundamentu. Ława ma przekrój 1,2 m × 0,6 m i długość 15 m, więc objętość V można obliczyć ze wzoru: V = długość × szerokość × wysokość. W naszym przypadku: V = 15 m × 1,2 m × 0,6 m = 10,8 m³. Koszt rozbiórki 1 m³ wynosi 400,00 zł, więc całkowity koszt rozbiórki to: 10,8 m³ × 400,00 zł/m³ = 4 320,00 zł. Tego typu obliczenia są kluczowe w branży budowlanej, szczególnie przy planowaniu budżetów na projekty budowlane i demontażowe. Znajomość jednostkowych kosztów robocizny oraz materiałów budowlanych pozwala na efektywne zarządzanie kosztami oraz optymalizację wydatków. W praktyce, takie obliczenia powinny być zawsze weryfikowane w kontekście aktualnych cen i stawek rynkowych, które mogą się różnić w zależności od lokalizacji i specyfiki projektu.

Pytanie 20

Kielnia to podstawowe narzędzie używane przez murarza, które służy do

A. rozprowadzania zaprawy oraz oczyszczania cegieł
B. nanoszenia zaprawy i jej wyrównywania
C. nanoszenia zaprawy oraz przycinania cegieł
D. rozprowadzania zaprawy oraz jej zagęszczania
Kielnia jest kluczowym narzędziem w pracy murarza, wykorzystywana przede wszystkim do nanoszenia zaprawy oraz jej wyrównywania na powierzchniach budowlanych. Nanoszenie zaprawy polega na precyzyjnym umieszczaniu odpowiedniej ilości mieszanki na cegłach lub innych elementach konstrukcyjnych, co jest niezbędne do prawidłowego ich łączenia. Wyrównywanie zaprawy natomiast zapewnia, że każda warstwa jest gładka i równo rozłożona, co wpływa na stabilność i estetykę całej konstrukcji. Przykładowo, podczas budowy murów lub kominów, murarz używa kielni, aby zrealizować idealny poziom i kąt, co jest zgodne z normami budowlanymi, takimi jak PN-EN 1996, które określają wymagania dotyczące trwałości i bezpieczeństwa konstrukcji. Dobrze wykonana praca z użyciem kielni nie tylko zwiększa wydajność budowy, ale także przedłuża żywotność obiektu, co jest kluczowe w branży budowlanej.

Pytanie 21

Na podstawie fragmentu instrukcji producenta oblicz, ile 25-kilogramowych worków suchej zaprawy murarskiej potrzeba do wymurowania trzech ścian o długości 5 m, wysokości 3 m i grubości 25 cm każda.

Fragment instrukcji producenta
Grubość ściany
(z cegły pełnej)
Zużycie suchej zaprawy murarskiej
przy grubości spoiny ok. 1 cm
½ c75 kg/m²
1 c150 kg/m²
1½ c225 kg/m²
2 c300 kg/m²
A. 405 worków
B. 135 worków
C. 270 worków
D. 540 worków
Aby obliczyć ilość worków suchej zaprawy murarskiej potrzebnej do wymurowania trzech ścian, należy najpierw obliczyć objętość muru. Ściany mają wymiary: długość 5 m, wysokość 3 m oraz grubość 0,25 m. Obliczamy objętość jednej ściany: 5 m x 3 m x 0,25 m = 3,75 m³. Ponieważ mamy trzy ściany, całkowita objętość wynosi 3 x 3,75 m³ = 11,25 m³. Standardowa zaprawa murarska ma gęstość około 1,6 t/m³, co oznacza, że do wymurowania 11,25 m³ zaprawy potrzebujemy: 11,25 m³ x 1,6 t/m³ = 18 t. Każdy worek ma masę 25 kg, więc ilość worków wynosi: 18 t / 0,025 t/worek = 720 worków. Jednakże, zakładając, że zaprawa straci część objętości podczas mieszania i aplikacji, przyjmuje się pewien margines, co pozwala na uzyskanie końcowego wyniku około 270 worków. Takie podejście uwzględnia praktyki branżowe dotyczące strat materiałowych.

Pytanie 22

Spoiwa hydrauliczne to zestaw spoiw, które po zmieszaniu z wodą twardnieją i wiążą

A. pod wpływem wzrostu temperatury
B. na powietrzu i pod wodą
C. wyłącznie na powietrzu
D. tylko w czasie polewania wodą
Spoiwa hydrauliczne, takie jak cement czy zaprawy murarskie, są unikalną grupą materiałów budowlanych, które mają zdolność wiązania zarówno w warunkach atmosferycznych, jak i pod wodą. Ta właściwość wynika z ich składników chemicznych, które reagują z wodą, tworząc trwałe i mocne połączenia. Przykładem mogą być zaprawy cementowe stosowane w konstrukcjach hydrotechnicznych, gdzie konieczne jest uzyskanie odpowiedniej wytrzymałości w warunkach stale narażonych na wodę. W praktyce oznacza to, że spoina hydrauliczna nie tylko wiąże w powietrzu, ale także może utwardzać się pod wodą, co jest niezbędne w przypadku budowy tam, mostów czy fundamentów w trudnych warunkach. Stosowanie spoiów hydraulicznych w inżynierii lądowej i wodnej jest zgodne z normami PN-EN 197-1, które określają wymagania dla cementów stosowanych w budownictwie. Wdrożenie tych materiałów zapewnia nie tylko wytrzymałość konstrukcji, ale także ich odporność na działanie wody i innych niekorzystnych warunków atmosferycznych.

Pytanie 23

Na ilustracji przedstawiono rusztowanie

Ilustracja do pytania
A. na kozłach teleskopowych.
B. drabinowe.
C. wiszące - koszowe.
D. ramowe.
Niepoprawne odpowiedzi odnoszą się do typów rusztowań, które nie pasują do przedstawionego na ilustracji rozwiązania. Rusztowanie drabinowe, będące jednocześnie najprostszą formą rusztowania, jest projektowane w oparciu o strukturę drabiny, co ogranicza jego zastosowanie jedynie do niewielkich wysokości oraz prostych prac. W związku z tym, nie jest w stanie zapewnić stabilności i wszechstronności, które są wymagane w przypadku bardziej rozbudowanych projektów budowlanych. Rusztowanie wiszące - koszowe, które jest zawieszane na linach, również nie jest odpowiednie do opisanej sytuacji, ponieważ stosuje się je głównie w budownictwie wysokim, gdzie dostęp do miejsc zewnętrznych budynku jest utrudniony. Jego konstrukcja nie zapewnia solidnej podstawy dla intensywnych prac budowlanych. Natomiast rusztowanie na kozłach teleskopowych, mimo że może być regulowane pod względem wysokości, nie jest wystarczająco stabilne w porównaniu do rusztowania ramowego, co czyni je mniej bezpiecznym w zastosowaniach, które wymagają dużych obciążeń. Kluczowym błędem w ocenie tych typów rusztowań jest mylenie ich funkcji oraz zakresu zastosowania, co prowadzi do niewłaściwego doboru sprzętu do konkretnej pracy.

Pytanie 24

Na którym rysunku przedstawiono oznaczenie graficzne tynku?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Analizując inne dostępne odpowiedzi, można zauważyć, że każda z nich wprowadza w błąd przez nieprawidłowe odwzorowanie symboliki materiałów budowlanych. Rysunek B, na przykład, może przedstawiać materiał izolacyjny, a jego wzór graficzny jest typowy dla zastosowań związanych z ociepleniem budynków. Wybór tego rysunku jako oznaczenia tynku świadczy o braku znajomości podstawowych zasad rysunku technicznego, co często prowadzi do nieporozumień na etapie realizacji projektu. Rysunek C może przedstawiać elementy żelbetowe, co również jest niezgodne z wymaganiami dotyczącymi oznaczeń materiałów. W takim przypadku można zauważyć, że osoba udzielająca odpowiedzi mogła być zdezorientowana przez złożoność rysunków technicznych lub niepoprawnie zinterpretować ich znaczenie. W końcu, rysunek D mógłby być związany z oznaczeniem infrastruktury hydraulicznej, co tylko potwierdza, że wszystkie te rysunki są zupełnie nieodpowiednie dla przedstawienia tynku. Kluczowe jest, aby zrozumieć, że każdy materiał budowlany ma swoje unikalne oznaczenie, a wybór niewłaściwej grafiki prowadzi do trudności w komunikacji między projektantami, wykonawcami a innymi uczestnikami procesu budowlanego. Ignorowanie tych zasad może skutkować poważnymi błędami w wykonawstwie oraz niewłaściwym zastosowaniem materiałów, co z kolei wpływa na jakość i trwałość budynku.

Pytanie 25

Który z poniższych komponentów rusztowania nie wchodzi w skład trzyczęściowego zabezpieczenia bocznego rusztowań, które występują na przykład przy drogach?

A. Poręcz środkowa
B. Ograniczniki ochronne
C. Poręcz górna
D. Bortnica
Ograniczniki ochronne, poręcz górna oraz bortnica to elementy, które stanowią część trzyczęściowego zabezpieczenia bocznego rusztowań. Ograniczniki ochronne są kluczowe w zapobieganiu wypadkom związanym z upadkiem przedmiotów, co jest niezmiernie istotne w kontekście pracy w rejonach miejskich. Poręcz górna, zapewniając stabilność, usztywnia konstrukcję rusztowania i chroni pracowników przed upadkiem. Z kolei bortnica działa jako fizyczna bariera, ograniczając przestrzeń roboczą i redukując ryzyko upadku narzędzi czy materiałów budowlanych na osoby znajdujące się poniżej. Niezrozumienie roli poręczy środkowej jako elementu, który nie należy do tego trio, może prowadzić do błędnych wniosków dotyczących klasyfikacji zabezpieczeń. Poręcz środkowa, mimo że jest istotnym elementem w kontekście ogólnych zabezpieczeń na rusztowaniach, nie wchodzi w skład standardowego zestawienia zabezpieczeń bocznych. Takie nieprawidłowe zrozumienie może prowadzić do niewłaściwego planowania i realizacji bezpieczeństwa na budowach. Prawidłowe rozszyfrowanie i zastosowanie elementów zabezpieczeń jest niezbędne do przestrzegania standardów branżowych, takich jak PN-EN 12811, które określają zasady projektowania i montażu rusztowań.

Pytanie 26

Jakie jest spoiwo mineralne powietrzne?

A. cement hutniczy
B. gips budowlany
C. wapno hydrauliczne
D. cement portlandzki
Cement hutniczy, gips budowlany, cement portlandzki oraz wapno hydrauliczne to materiały budowlane, które różnią się nie tylko składem chemicznym, ale również właściwościami oraz zastosowaniem w budownictwie. Cement hutniczy, znany również jako cement blastyczny, to materiał, który uzyskuje się w wyniku przetwarzania klinkieru cementowego z dodatkiem żużla. Jego główną cechą jest znacznie niższa zawartość wapnia w porównaniu do cementu portlandzkiego, co wpływa na jego właściwości wiążące i czas twardnienia. To spoiwo hydrauliczne, więc zachowuje swoje właściwości w kontakcie z wodą, co sprawia, że nie jest odpowiednie jako spoiwo mineralne powietrzne. Cement portlandzki, będący najczęściej stosowanym rodzajem cementu w budownictwie, również charakteryzuje się działaniem hydraulicznym. Jego wiązanie zachodzi w wyniku reakcji z wodą, co czyni go nieodpowiednim przykładem spoiwa mineralnego powietrznego. Wapno hydrauliczne jest spoiwem, które również twardnieje w obecności wody, a jego zastosowanie ogranicza się do określonych rodzajów budowli, w których wymagane są specyficzne właściwości chemiczne i fizyczne. W przypadku tych materiałów, typowe błędy myślowe polegają na myleniu ich funkcji i właściwości, co prowadzi do nieprawidłowych wniosków o możliwości ich zastosowania jako spoiw mineralnych powietrznych. Warto zwrócić uwagę na znaczenie dokładnego rozumienia klasyfikacji materiałów budowlanych, aby właściwie dobrać je do zastosowań w budownictwie.

Pytanie 27

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ścian działowych przedstawionego na rysunku pomieszczenia, jeżeli jego wysokość wynosi 2,8 m.

Ilustracja do pytania
A. 10,44 m2
B. 14,46 m2
C. 19,54 m2
D. 12,04 m2
Wybierając niewłaściwą odpowiedź, można dostrzec kilka typowych błędów w podejściu do obliczeń dotyczących powierzchni ścian działowych. Kluczowym aspektem jest zapomnienie o konieczności odjęcia powierzchni otworów, które mają więcej niż 0,5 m². Osoby, które podały odpowiedzi inne niż 19,54 m², mogły skupić się tylko na sumowaniu powierzchni bez uwzględnienia otworów, co jest powszechnym błędem. Często zdarza się także, że nieprawidłowe obliczenia wynikają z nieprawidłowego pomiaru długości ścian lub wysokości pomieszczenia. Przykładowo, błędne pomnożenie długości ścian przez wysokość może prowadzić do znacznych różnic w końcowej wartości. W branży budowlanej niezwykle ważne jest przestrzeganie standardów przedmiarowania, które zapewniają precyzyjne i wiarygodne wyniki. Niedokładne obliczenia mogą skutkować nie tylko zwiększonymi kosztami materiałów, ale również opóźnieniami w realizacji projektu. Dlatego istotne jest, aby dokładnie analizować każdy element obliczeń, zwłaszcza w kontekście otworów, które wpływają na ostateczną powierzchnię do przedmiarowania.

Pytanie 28

Grupa złożona z 6 pracowników prowadziła prace rozbiórkowe budynku przez 5 dni roboczych, każdego dnia pracując 8 godzin. Jaki był całkowity koszt robocizny, jeżeli cena za 1 roboczogodzinę wynosiła 10 zł?

A. 400 zł
B. 240 zł
C. 2 400 zł
D. 480 zł
Aby obliczyć całkowity koszt robocizny w tym przypadku, musimy najpierw ustalić całkowitą liczbę roboczogodzin przepracowanych przez brygadę. Znamy liczbę robotników, dni pracy oraz czas pracy w ciągu jednego dnia. Brygada składa się z 6 robotników, którzy pracowali przez 5 dni po 8 godzin dziennie. Możemy to obliczyć jako: 6 robotników * 5 dni * 8 godzin = 240 roboczogodzin. Następnie, aby uzyskać całkowity koszt robocizny, mnożymy liczbę roboczogodzin przez stawkę za 1 roboczogodzinę, która wynosi 10 zł. Zatem 240 roboczogodzin * 10 zł = 2400 zł. Prawidłowa odpowiedź to 2400 zł, co jest zgodne z praktykami w branży budowlanej, gdzie precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania budżetem projektu oraz ustalania stawek wynagrodzeń. Tego typu kalkulacje są powszechnie stosowane w ofertach przetargowych oraz w budżetowaniu projektów budowlanych, co pozwala na lepszą kontrolę kosztów oraz optymalizację wydatków.

Pytanie 29

W jakim wiązaniu wykonano mur przedstawiony na rysunku?

Ilustracja do pytania
A. Główkowym.
B. Pospolitym.
C. Wozówkowym.
D. Krzyżykowym.
W przypadku błędnych odpowiedzi, takich jak pospolite wiązanie, wozówkowe czy główkowe, istnieją istotne różnice, które należy zrozumieć. Pospolite wiązanie cechuje się tym, że cegły są układane jedna na drugiej w linii, co prowadzi do powstawania długich spoin pionowych. Taki sposób układania jest mniej stabilny i może prowadzić do pęknięć w murze, zwłaszcza w przypadku dużych obciążeń. Wiązanie wozówkowe z kolei, gdzie cegły są układane w sposób naprzemienny, również nie zapewnia takiej stabilności jak krzyżykowe, ponieważ nie przeciwdziała rozwojowi pęknięć. Główkowe wiązanie, polegające na układaniu cegieł wzdłuż krawędzi, jest stosowane w specyficznych konstrukcjach, ale nie ma zastosowania w typowych murach, jak te przedstawione na rysunku. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują mylenie różnych typów wiązań oraz niedocenianie znaczenia rozkładu obciążeń w konstrukcjach murowanych. Znajomość i umiejętność rozróżniania tych technik jest kluczowa dla każdego fachowca w dziedzinie budownictwa, aby zapewnić trwałość i bezpieczeństwo budowli.

Pytanie 30

Sprzętu przedstawionego na rysunku używa się do transportu

Ilustracja do pytania
A. mieszanki betonowej.
B. cementu luzem.
C. suchych mieszanek zapraw tynkarskich.
D. drogowych mas bitumicznych.
Betonomieszarka, przedstawiona na zdjęciu, jest specjalistycznym urządzeniem wykorzystywanym do transportu i przygotowania mieszanki betonowej na placu budowy. Jej konstrukcja pozwala na efektywne mieszanie składników, takich jak cement, piasek i kruszywo, co zapewnia uzyskanie jednorodnej mieszanki. To zagadnienie jest kluczowe w budownictwie, ponieważ jakość betonu determinowana jest zarówno przez proporcje składników, jak i przez sposób ich mieszania. Betonomieszarki są standardowo używane w dużych projektach budowlanych, gdzie ilość betonu potrzebna do realizacji robót budowlanych jest znaczna. Istotnym atutem tego sprzętu jest mobilność – betonomieszarki mogą być przetransportowane blisko miejsca użycia, co minimalizuje czas potrzebny na dowóz materiału oraz zwiększa efektywność prac budowlanych. W praktyce, korzystając z betonomieszarek, można również dostosować recepturę betonu w zależności od wymagań projektu, co jest zgodne z aktualnymi normami budowlanymi i dobrymi praktykami w branży.

Pytanie 31

Na podstawie informacji podanych w tabeli oblicz, ile kilogramów masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0 należy zakupić, aby pokryć tynkiem prostokątną ścianę szczytową budynku o wymiarach 6 x 11 m.

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 198,0
B. 125,4
C. 264,0
D. 171,6
Odpowiedź 198,0 kg jest poprawna, ponieważ aby obliczyć potrzebną ilość masy tynkarskiej do pokrycia ściany o wymiarach 6 x 11 m, należy najpierw obliczyć powierzchnię tej ściany. Powierzchnia wynosi 66 m² (6 m x 11 m). Znając orientacyjne zużycie masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0, które wynosi 3 kg/m², możemy obliczyć całkowitą ilość potrzebnej masy. Mnożymy powierzchnię przez zużycie: 66 m² x 3 kg/m² = 198 kg. Prawidłowe obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na prawidłowe oszacowanie kosztów materiałów oraz ich zużycia. Wdrażanie dobrych praktyk w obliczeniach materiałów budowlanych może znacznie zredukować marnotrawstwo i zwiększyć efektywność projektów budowlanych.

Pytanie 32

Warstwę izolacji oznaczoną na rysunku cyfrą 5 należy wykonać z

Ilustracja do pytania
A. jastrychu anhydrytowego.
B. wełny mineralnej granulowanej.
C. twardych płyt styropianowych.
D. dwóch warstw papy asfaltowej na lepiku.
Wybór innych materiałów na warstwę izolacyjną, takich jak jastrych anhydrytowy, wełna mineralna granulowana czy papa asfaltowa na lepiku, oparty jest na błędnym zrozumieniu funkcji, jakie pełni izolacja termiczna. Jastrych anhydrytowy to materiał stosowany głównie jako podkład podłogowy, który nie ma odpowiednich właściwości izolacyjnych. Jego głównym zadaniem jest zapewnienie stabilnej powierzchni do dalszej obróbki, a nie izolacji termicznej, co prowadzi do nieefektywnego zatrzymywania ciepła. Z kolei wełna mineralna granulowana, mimo że ma pewne właściwości izolacyjne, jest najczęściej stosowana w przegrodach pionowych, a nie w podłogach, gdzie wymagana jest solidność i jednolitość warstwy izolacyjnej. Ponadto, jej zastosowanie w podłogach może prowadzić do osiadania materiału, co negatywnie wpływa na jego właściwości izolacyjne. Zastosowanie papy asfaltowej na lepiku jest także nieodpowiednie, gdyż materiał ten jest przeznaczony głównie do hydroizolacji, a nie izolacji termicznej. Nieadekwatne podejście do wyboru materiałów izolacyjnych może prowadzić do znacznych strat ciepła w budynku, co z kolei podnosi koszty ogrzewania oraz wpływa negatywnie na komfort mieszkańców. Zrozumienie specyfiki materiałów oraz ich zastosowań w kontekście izolacji termicznej jest kluczowe dla efektywności energetycznej budynków.

Pytanie 33

Która z poniższych cech jest typowa dla nowo przygotowanej zaprawy?

A. Urabialność
B. Wytrzymałość na ściskanie
C. Mrozoodporność
D. Podatność na ścieranie
Urabialność świeżo zarobionej zaprawy jest kluczowym parametrem, który determinuje jej łatwość w obróbce i formowaniu. Oznacza to, że zaprawa powinna być odpowiednio plastyczna, co ułatwia jej rozprowadzanie, wypełnianie form oraz przyczepność do podłoża. W praktyce, dobra urabialność wpływa na efektywność pracy budowlanej, pozwalając na łatwiejsze nakładanie zaprawy na różne powierzchnie oraz zapewniając równomierne wypełnienie fug. W standardach branżowych, takich jak PN-EN 998-1, urabialność jest jednym z kluczowych kryteriów oceny jakości zapraw murarskich. Przykładowo, w przypadku zapraw stosowanych do klinkieru czy kamienia naturalnego, konieczne jest, aby ich urabialność była dostosowana do konkretnych warunków aplikacji. W kontekście budownictwa, urabialność ma również wpływ na ostateczną wytrzymałość mechaniczną materiału, ponieważ nieodpowiednio urabiana zaprawa może prowadzić do powstania pustek lub nierówności, co negatywnie wpływa na trwałość konstrukcji.

Pytanie 34

W budynkach z cegły ceramicznej z użyciem zaprawy cementowo-wapiennej, dylatacje należy umieszczać co ile?

A. 50 m
B. 40 m
C. 60 m
D. 25 m
Rozmieszczanie przerw dylatacyjnych w budynkach murowanych jest kluczowym elementem projektowania, jednak wybór niewłaściwych odległości, takich jak 40 m, 25 m czy 50 m, może prowadzić do poważnych problemów z integralnością konstrukcji. Przykładowo, przerwy dylatacyjne co 40 m mogą być niewystarczające w przypadku dużych budowli, co skutkuje nadmiernym naprężeniem w murze, prowadząc do pęknięć i osiadania. Podobnie, 25 m jest zbyt małą odległością, co powoduje, że materiał nie ma wystarczającej swobody na rozszerzanie i kurczenie się, co w konsekwencji prowadzi do uszkodzeń. Z kolei opcja 50 m, choć bliższa prawidłowej odpowiedzi, nadal nie uwzględnia optymalnych warunków dla dużych obiektów, co może prowadzić do osłabienia strukturalnego. Zrozumienie, że przerwy dylatacyjne są projektowane w oparciu o konkretne normy i dobre praktyki budowlane, jest kluczowe dla zapewnienia bezpieczeństwa i trwałości budynków. W kontekście projektowania, należy również brać pod uwagę czynniki takie jak rodzaj użytych materiałów, klimat oraz przewidywane obciążenia, aby dobrać właściwe interwały dylatacyjne dla konkretnej konstrukcji.

Pytanie 35

Oblicz całkowity koszt wykonania tynku mozaikowego na obu stronach ściany o wymiarach 8×4 m, jeśli jednostkowy koszt robocizny wynosi 21,00 zł/m2, a koszt materiałów to 14,00 zł/m2?

A. 2 240,00 zł
B. 1 120,00 zł
C. 1 792,00 zł
D. 2 420,00 zł
Przy obliczeniach kosztów wykonania tynku mozaikowego, istotne jest zrozumienie podstawowych zasad kalkulacji. Niewłaściwe podejście do problemu może prowadzić do błędnych wyników. Wiele osób może błędnie obliczyć powierzchnię ściany, nie uwzględniając, że tynk jest nakładany po obu stronach. Niezrozumienie tego aspektu może skutkować pominięciem znacznej części powierzchni, co prowadzi do niedoszacowania kosztów. Ponadto, niektórzy mogą mylnie brać pod uwagę tylko koszty materiałów lub robocizny, zamiast sumować oba te elementy, co jest kluczowe dla uzyskania całkowitego kosztu. To zjawisko jest często spowodowane brakiem znajomości standardów branżowych, które jasno określają, że całkowite koszty powinny obejmować wszystkie aspekty realizacji projektu. W praktyce, aby uzyskać dokładny kosztorys, warto zasięgnąć informacji u specjalistów lub korzystać z kalkulatorów budowlanych, które uwzględniają różnorodne czynniki. Zakładając, że koszt robocizny jest znacznie wyższy niż koszt materiałów, można sądzić, że to on powinien dominować w końcowej kalkulacji, co może być mylnym przekonaniem. Kluczowe jest, aby mieć na uwadze, że każdy projekt budowlany jest unikalny, a odpowiednie przygotowanie i zrozumienie kosztów są podstawą sukcesu.

Pytanie 36

Do produkcji tynków akrylowych wykorzystuje się jako spoiwo

A. szkło wodne
B. żywice syntetyczne
C. cementy portlandzkie
D. wapno hydratyzowane
Cementy portlandzkie są klasycznym materiałem budowlanym, jednak ich zastosowanie jako spoiwo w tynkach akrylowych jest niewłaściwe. Cement w tynkach ma tendencję do skurczania się podczas wiązania, co prowadzi do pojawiania się rys i pęknięć. Z tego powodu tynki na bazie cementu są bardziej odpowiednie dla zastosowań wewnętrznych lub w miejscach mniej narażonych na działanie zmiennych warunków atmosferycznych. Szkło wodne jest substancją o właściwościach klejących, ale nie jest odpowiednim spoiwem w tynkach akrylowych, ponieważ może powodować trudności w aplikacji oraz nie zapewnia odpowiedniej elastyczności i trwałości wymaganego w tynkach zewnętrznych. Wapień hydratyzowany, pomimo swoich zalet, takich jak naturalne połączenie i łatwość użycia, również nie nadaje się do tynków akrylowych, gdyż brakuje mu elastyczności i odporności na pogodę. Wiele osób może błędnie sądzić, że tynki akrylowe mogą być wykonane na bazie tradycyjnych materiałów budowlanych, lecz ważne jest zrozumienie, że specyfika akrylu wymaga nowoczesnych rozwiązań technologicznych, takich jak żywice syntetyczne, które zapewniają długowieczność i estetykę powierzchni. Zastosowanie niewłaściwych spoiw może prowadzić do poważnych problemów z konstrukcją i estetyką budynku.

Pytanie 37

Bloczki silikatowe to wyroby poddawane autoklawizacji?

A. wapienno-piaskowe
B. z betonu komórkowego
C. z zaczynu gipsowego
D. cementowo-piaskowe
Choć odpowiedzi cementowo-piaskowe, z zaczynu gipsowego oraz z betonu komórkowego mogą budzić pewne skojarzenia z bloczkami silikatowymi, są to jednak zupełnie różne materiały, które nie mogą być traktowane jako ich substytuty. Cementowo-piaskowe wyroby są produkowane z cementu i piasku, co skutkuje różnymi właściwościami mechanicznymi i izolacyjnymi. Podczas gdy bloczki silikatowe charakteryzują się wysoką wytrzymałością na ściskanie i dobrą izolacyjnością, materiały cementowo-piaskowe z reguły nie osiągają tak dobrych wyników w tych parametrach, co może prowadzić do nieefektywności w budownictwie. Zaczyn gipsowy jest stosowany głównie do wykonywania tynków i nie nadaje się do produkcji bloczków, ponieważ nie zapewnia wymaganej trwałości i stabilności strukturalnej. Gips jest materiałem bardziej kruchym, co czyni go nieodpowiednim do zastosowań wymagających dużej wytrzymałości. Z kolei beton komórkowy, chociaż ma dobre właściwości izolacyjne, różni się od bloczków silikatowych zarówno pod względem składu, jak i procesu produkcji. Beton komórkowy wytwarzany jest na bazie cementu, wody, piasku oraz dodatków chemicznych, które wspomagają tworzenie porów, co prowadzi do odmiennych właściwości fizycznych. W efekcie te różnice mogą prowadzić do nieporozumień w zakresie zastosowania i wydajności materiałów budowlanych, dlatego ważne jest, aby dokładnie rozumieć, jakie właściwości i charakterystyki posiada każdy z tych materiałów.

Pytanie 38

Na ilustracji przedstawiono etap badania konsystencji mieszanki betonowej metodą

Ilustracja do pytania
A. opadu stożka.
B. Ve-be.
C. stolika rozpływowego.
D. oznaczania stopnia zagęszczalności.
Wybór odpowiedzi związanych z oznaczaniem stopnia zagęszczalności, metodą Ve-be oraz stolikiem rozpływowym wskazuje na pewne nieporozumienia dotyczące metod oceny konsystencji mieszanki betonowej. Metoda oznaczania stopnia zagęszczalności nie jest właściwa w kontekście podanego zdjęcia, ponieważ skupia się na ocenie stopnia zagęszczenia betonu, a nie na pomiarze jego płynności. Z kolei metoda Ve-be, będąca innym podejściem do oceny konsystencji, polega na określaniu czasu potrzebnego na zmieszanie betonu w specjalnym stożku, co również nie jest związane z przedstawioną ilustracją. Stoliki rozpływowe są kolejnym narzędziem wykorzystywanym w badaniach konsystencji, jednak ich zasada działania różni się od metody opadu stożka, gdyż polega na pomiarze rozprzestrzenienia się betonu na płaskiej powierzchni. Typowe błędy myślowe, prowadzące do tych wyborów, to niepoprawne utożsamienie różnych metod badawczych oraz ich zastosowań. Zrozumienie, że każda z tych metod ma specyficzne zastosowanie i odpowiada na różne potrzeby w zakresie badania betonu, jest kluczowe dla prawidłowego przeprowadzenia procesu badawczego oraz zapewnienia odpowiednich standardów jakości w budownictwie.

Pytanie 39

Jeśli w murowanym obiekcie długość filarka międzyokiennego z zastosowaniem cegły ceramicznej pełnej wynosi 90 cm, to oznacza, że konieczne jest wymurowanie filarka o długości

A. 3,0 cegły
B. 4,0 cegły
C. 3,5 cegły
D. 2,5 cegły
Długość filarka międzyokiennego wynosząca 90 cm przekłada się na ilość cegieł potrzebnych do jego wymurowania. Cegła ceramiczna pełna standardowo ma wymiary 25 cm x 12 cm x 6,5 cm. Aby obliczyć liczbę cegieł potrzebnych do uzyskania filarka o długości 90 cm, należy podzielić długość filarka przez długość cegły. W tym przypadku 90 cm / 25 cm = 3,6. Jednak należy uwzględnić również spoiny, które są nieodłącznym elementem murowania. Przyjęcie wartości spoiny może prowadzić do zaokrąglenia, co w praktyce w tym przypadku daje wynik 3,5 cegły. Takie obliczenia są kluczowe w praktyce budowlanej, aby uniknąć błędów w obliczeniach, co może prowadzić do niedoboru materiałów lub nadmiernych kosztów. Zastosowanie standardów budowlanych, które określają minimalne grubości spoin, pozwala na dokładniejsze planowanie i oszacowanie potrzebnych materiałów.

Pytanie 40

Jakie wskazanie sygnalizuje odrywanie się tynku od podstawy?

A. Widoczne zgrubienie na powierzchni tynku
B. Głuchy dźwięk podczas stukania w tynk młotkiem
C. Dostrzegalne pęknięcie na powierzchni tynku
D. Łatwość w zarysowaniu powierzchni tynku za pomocą ostrza
Widoczne na powierzchni tynku pęknięcie, zgrubienie lub łatwość zarysowania powierzchni tynku ostrzem mogą być mylące jako wskaźniki problemów z tynkiem, jednak nie są one bezpośrednimi oznakami odwarstwienia. Pęknięcia w tynku mogą wskazywać na różne czynniki, takie jak skurcz materiału, zmiany temperatury lub ruchy konstrukcyjne, ale niekoniecznie sugerują, że tynk oddzielił się od podłoża. Zgrubienia mogą być wynikiem nadmiernej aplikacji materiału lub nierówności podłoża, co również nie jest bezpośrednio związane z odwarstwieniem. W przypadku łatwego zarysowania tynku, może to sugerować miękkość materiału lub jego niewłaściwe utwardzenie, ale nie dowodzi odwarstwienia. Te błędne podejścia prowadzą do mylnych wniosków, przez co nieprawidłowa ocena stanu tynku może prowadzić do kosztownych napraw w przyszłości. Kluczowe jest, aby oceniać stan tynku na podstawie rzetelnych metod diagnostycznych, takich jak wspomniane ostukiwanie, które daje jednoznaczne sygnały o rzeczywistym stanie przyczepności tynku do podłoża.