Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 8 grudnia 2025 14:15
  • Data zakończenia: 8 grudnia 2025 14:28

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 5 cm
B. 25 cm
C. 2,5 cm
D. 50 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 2

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. pl.
B. al.
C. dr.
D. ul.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 3

Osnowy geodezyjne klasyfikuje się na różne grupy na podstawie ich precyzji oraz metody zakładania, jakich używa się do ich tworzenia?

A. podstawowe, podstawowe bazowe, pomiarowe
B. podstawowe fundamentalne, podstawowe bazowe, szczegółowe
C. poziome bazowe, podstawowe wysokościowe, sytuacyjne
D. fundamentalne, podstawowe bazowe, sytuacyjne
Odpowiedź 'podstawowe fundamentalne, podstawowe bazowe, szczegółowe' jest poprawna, ponieważ odzwierciedla klasyfikację osnow geodezyjnych w kontekście ich dokładności oraz metod zakładania. Osnowy fundamentalne stanowią podstawę dla innych sieci geodezyjnych, zapewniając najwyższy poziom dokładności i stabilności. Przykładem ich zastosowania są pomiary, które tworzą ogólnokrajowe systemy odniesienia, na podstawie których prowadzi się dalsze prace geodezyjne. Osnowy bazowe to sieci, które są wykorzystywane do precyzyjnych pomiarów lokalnych, a osnowy szczegółowe są stosowane do opracowywania map oraz w projektach budowlanych, gdzie wymagana jest wysoka precyzja. Klasyfikacja ta jest zgodna z normami międzynarodowymi oraz krajowymi, które nakładają obowiązek stosowania odpowiednich sieci geodezyjnych w zależności od skali i dokładności projektów geodezyjnych.

Pytanie 4

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 200g
B. 300g
C. 100g
D. 400g
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych Δx<sub>AB</sub> i Δy<sub>AB</sub>. W tym przypadku mamy do czynienia z sytuacją, gdy Δx<sub>AB</sub> = 0 oraz Δy<sub>AB</sub> > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 5

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:1000
B. 1:2000
C. 1:500
D. 1:5000
Skale 1:1000 oraz 1:500 są zbyt szczegółowe i niepraktyczne dla tworzenia mapy zasadniczej w kontekście obszarów o znacznym zainwestowaniu. Mapa w skali 1:1000 mogłaby dostarczyć nadmiarowych informacji, które w kontekście planowania przestrzennego mogą prowadzić do trudności w interpretacji i nadmiaru szczegółów, które nie są wymagane na etapie ogólnych analiz. W przypadku skali 1:500, takie odwzorowanie jest właściwe dla bardzo szczegółowych planów, jak plany architektoniczne dla pojedynczych budynków, a nie dla dużych obszarów urbanistycznych. Z kolei skala 1:5000, choć może wydawać się użyteczna do przedstawienia szerszego kontekstu geograficznego, nie zapewnia wystarczającej dokładności dla lokalizacji budynków i infrastruktury w obszarach intensywnej zabudowy. Idealna skala do mapy zasadniczej powinna zatem zrównoważyć potrzebę szczegółowości z możliwością łatwego przedstawienia i interpretacji danych. Ostatecznie, nieprawidłowe wybory skali mogą prowadzić do błędów w analizach przestrzennych, co z kolei może skutkować nieodpowiednimi decyzjami planistycznymi oraz problemami prawnymi związanymi z zagospodarowaniem terenu.

Pytanie 6

Który ze sporządzanych w terenie dokumentów geodezyjnych jest wykorzystywany m.in. do zlokalizowania trwale ustalonego punktu osnowy?

A. Szkic budowlany
B. Opis topograficzny
C. Szkic polowy
D. Plan osnowy
Analizując inne dokumenty geodezyjne, łatwo można zauważyć ich różnorodność oraz specyfikę, która nie zawsze jest zrozumiała dla osób nieobeznanych z tematem. Projekt osnowy to dokument, który ma na celu zaplanowanie rozmieszczenia punktów osnowy, jednak nie jest to dokument powstający w terenie, lecz raczej przedprojektowy. Ponadto, jego zawartość nie umożliwia odnalezienia konkretnego, zastabilizowanego punktu osnowy, ponieważ projekt ma charakter koncepcyjny, a nie operacyjny. Szkic tyczenia, z drugiej strony, jest dokumentem używanym w trakcie prac geodezyjnych do zaznaczania lokalizacji budynków czy innych obiektów, ale także nie służy bezpośrednio do identyfikacji punktów osnowy. Warto zauważyć, że szkic polowy to dokument, który jest bardziej roboczy i obejmuje zapisy dotyczące pomiarów wykonanych na ziemi, ale również nie dostarcza pełnej informacji o stałych punktach osnowy. Zrozumienie różnicy między tymi dokumentami i ich zastosowaniami jest kluczowe dla każdego geodety, a błędne przypisanie ich funkcji może prowadzić do nieporozumień oraz błędów w wykonaniu prac geodezyjnych. W branży geodezyjnej ważne jest, aby każdy dokument był wykorzystywany zgodnie z jego przeznaczeniem, co wpływa na efektywność i dokładność prowadzonych pomiarów oraz projektów.

Pytanie 7

Maksymalna różnica dwukrotnego pomiaru ΔH na jednym stanowisku, przeprowadzonego metodą niwelacji geometrycznej, powinna wynosić nie więcej niż

A. +/- 3 mm
B. +/- 2 mm
C. +/- 4 mm
D. +/- 5 mm
Wybór odpowiedzi inne niż +/- 4 mm może prowadzić do nieporozumień dotyczących precyzji pomiarów w niwelacji geometrycznej. Odpowiedzi takie jak +/- 2 mm, +/- 3 mm oraz +/- 5 mm ustawiają zbyt rygorystyczne lub zbyt liberalne wymagania co do dokładności pomiarów. Zbyt wysoka dokładność, jak w przypadku +/- 2 mm, może nie być realistyczna w warunkach polowych, gdzie czynniki takie jak warunki atmosferyczne, nierówności terenu czy niewłaściwe ustawienie sprzętu mogą wprowadzać znaczne zmiany w wynikach. Z kolei zbyt duży zakres błędu, jak +/- 5 mm, nie zapewnia wystarczającej precyzji, co jest kluczowe w kontekście inżynieryjnym, gdzie różnice w wysokościach mogą prowadzić do poważnych problemów konstrukcyjnych. Ponadto, brak zrozumienia standardów branżowych dotyczących tolerancji błędu może prowadzić do opóźnień w projektach oraz zwiększenia kosztów związanych z korektą błędów. W praktyce, zgodnie z wytycznymi organizacji takich jak FIG czy ISO, akceptowalny błąd pomiaru w niwelacji geometrycznej powinien wynosić maksymalnie +/- 4 mm, co pozwala na zrównoważenie precyzji i wykonalności pomiarów w rzeczywistych warunkach.

Pytanie 8

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:500
B. 1:1 000
C. 1:10 000
D. 1:5 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 9

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az1-2 – α + 200g
B. Az2-3 = Az2-1 – α + 200g
C. Az2-3 = Az2-1 + α - 200g
D. Az2-3 = Az1-2 + α - 200g
Wybór niewłaściwego wzoru do obliczeń azymutu kolejnego boku może wynikać z błędnego zrozumienia relacji między azymutami a pomierzonymi kątami. W przypadku wzorów, które dodają kąt lewy α do azymutu poprzedniego, ale nie uwzględniają odpowiedniej korekty wynikającej z kierunku pomiaru, dochodzi do istotnych błędów. Przykładowo, wzór Az2-3 = Az1-2 – α + 200g sugeruje, że kąt lewy powinien być odejmowany, co nie jest zgodne z kierunkiem pomiaru. To podejście prowadzi do fałszywych obliczeń, ponieważ kąt lewy oznacza ruch w kierunku przeciwnym do azymutu, a nie jego redukcję. Podobnie, pomyłkowe stosowanie wzorów, które mają na celu dodawanie lub odejmowanie wartości 200g w niewłaściwy sposób, może wprowadzać chaos w wynikach. Typowym błędem myślowym jest założenie, że każdy kąt lewy powinien być traktowany w ten sam sposób, niezależnie od kontekstu pomiarowego. Ważne jest, aby w praktyce geodezyjnej stosować się do standardów, które definiują, jak kąt lewy współdziała z azymutami, a także dokładnie przemyśleć każdy krok obliczeń, aby uniknąć nieścisłości.

Pytanie 10

Jakie oznaczenie literowe powinno znaleźć się na szkicu inwentaryzacji powykonawczej budynku, który ma być przekształcony w bibliotekę?

A. k
B. b
C. e
D. f
Oznaczenia literowe w inwentaryzacji są ważne, bo pomagają w klasyfikacji i organizacji pomieszczeń w budynkach. Odpowiedzi jak 'f', 'b' czy 'e' pokazują różne pomieszczenia, ale w kontekście biblioteki mogą być mylące. Oznaczenie 'f' może się kojarzyć z funkcjami, które w ogóle nie są związane z przestrzeniami publicznymi, takimi jak jakieś nagrody czy pomieszczenia techniczne. No i 'b' jest często używane w kontekście budynków publicznych, ale nie mówi nic konkretnego o funkcji biblioteki. A 'e' odnosi się do przestrzeni edukacyjnych, które też nie zawsze są w bibliotece. Warto pamiętać, żeby przy inwentaryzacji kierować się standardami branżowymi i wytycznymi do oznaczania pomieszczeń, bo złe klasyfikacje mogą potem powodować problemy w zarządzaniu budynkiem i jego rozwoju. Właściwe oznaczenia naprawdę wpływają na efektywność działania budynku.

Pytanie 11

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Reperów
B. Trygonometryczna
C. Geometryczna
D. Punktów rozproszonych
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 12

Czym jest metoda wcięcia kątowego w geodezji?

A. Metodą określania pozycji punktu poprzez pomiary kątów z dwóch znanych punktów.
B. Metodą określania nachylenia terenu, co odbywa się najczęściej przy użyciu niwelatora.
C. Metodą wyznaczania powierzchni terenu, co jest realizowane innymi technikami, takimi jak metoda poligonizacji.
D. Metodą pomiaru długości za pomocą taśmy mierniczej, co jest stosowane w mniej precyzyjnych pomiarach terenowych.
Metoda wcięcia kątowego to jedna z podstawowych metod stosowanych w geodezji do określania pozycji punktu. Polega ona na wyznaczeniu położenia nieznanego punktu na podstawie pomiaru kątów z dwóch znanych punktów. Jest to szczególnie przydatne w sytuacjach, gdy nie można bezpośrednio zmierzyć odległości do punktu docelowego, na przykład z powodu przeszkód terenowych. W praktyce metoda ta stosowana jest często w terenach trudno dostępnych, gdzie klasyczne metody pomiarowe, takie jak wcięcie liniowe, są trudne do zastosowania. Wcięcie kątowe znajduje zastosowanie w tworzeniu sieci geodezyjnych i jest kluczowe w pracach inżynierskich, zwłaszcza tam, gdzie wymagana jest wysoka precyzja pomiaru. Z mojego doświadczenia, stosowanie tej metody jest nie tylko efektywne, ale również pozwala na uzyskanie precyzyjnych wyników przy minimalnym nakładzie pracy w terenie. Warto zaznaczyć, że dokładność uzyskanych wyników zależy od jakości instrumentów pomiarowych oraz precyzji wykonania pomiarów kątowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 13

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 400 m
B. 600 m
C. 300 m
D. 500 m
Długość 500 m to świetny wybór. W geodezji zaleca się, żeby boki w ciągach poligonowych miały długość od 150 m do maksymalnie 500 m. Dzięki temu pomiary są dokładniejsze, bo ograniczamy błędy, jakie mogą się pojawić w trakcie pracy. Kiedy mamy dłuższe odcinki, na przykład powyżej 500 m, to ryzyko błędów rośnie, co jest szczególnie niekorzystne, gdy mówimy o precyzyjnych pomiarach. Zdarza się, że geodeta pracuje w trudnych warunkach, jak w miastach czy w czasie złej pogody, i wtedy dłuższe odcinki mogą wprowadzać dodatkowe problemy. W kontekście poligonizacji, ważne jest też, żeby punkty były równomiernie rozłożone, co pomaga w lepszym określeniu ich położenia i zmniejsza szanse na błędy. Dlatego dobrze jest trzymać się tych zalecanych długości, żeby nasze wyniki były jak najwyższej jakości.

Pytanie 14

Dokonano pomiaru kąta pionowego w dwóch ustawieniach lunety, uzyskując rezultaty: OI= 101g80c70cc, OII= 298g17c00cc. Jaki jest kąt zenitalny?

A. 298g18c15cc
B. 199g98c85cc
C. 101g81c85cc
D. 196g36c30cc
Żeby obliczyć kąt zenitalny w oparciu o pomiary kątów pionowych zrobione w dwóch różnych położeniach lunety, trzeba skorzystać z wzoru: Kąt zenitalny = O<sub>I</sub> + O<sub>II</sub> - 200g. W naszym przypadku mamy O<sub>I</sub> = 101g80c70cc i O<sub>II</sub> = 298g17c00cc. Jak to zsumujemy: 101g80c70cc + 298g17c00cc wychodzi 399g97c70cc. Następnie odejmujemy 200g: 399g97c70cc - 200g = 199g97c70cc. Jak przeliczymy te części kątowe, dostajemy kąt zenitalny równy 101g81c85cc. Takie obliczenia są mega ważne w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary kątów i wysokości są kluczowe do określania pozycji punktów w przestrzeni. W praktyce znajomość kątów zenitalnych to podstawa, jeśli chodzi o ustalanie ukształtowania terenu i związane z tym obliczenia przy budowie i projektowaniu różnych rzeczy.

Pytanie 15

Topograficzny opis punktu osnowy pomiarowej nie zawiera

A. skali przygotowania opisu
B. nazwiska geodety, który sporządził opis
C. miar umożliwiających lokalizację znaku
D. numeru punktu osnowy, który jest opisywany
Zauważyłem, że w innych odpowiedziach były ważne rzeczy, które są potrzebne do dobrego opisu topograficznego punktu osnowy. Każdy punkt musi mieć swój numer identyfikacyjny, bo to dzięki niemu można go łatwo zlokalizować i znaleźć w terenie. To jest naprawdę kluczowe w geodezji. Oprócz tego, potrzebne są też miary, żeby określić, jak się dotrzeć do znaku - mogą to być odległości czy kierunki do pobliskich punktów. W trudnych warunkach terenowych jasne wskazanie lokalizacji jest mega ważne. No i nie zapominaj, że dobrze jest podać nazwisko geodety, który opisał ten punkt, bo to gwarantuje odpowiedzialność i rzetelność dokumentów. Powinno się sprawdzić każdy opis przez odpowiedzialnego geodetę. Takie podejście zapewnia, że wszystko jest zgodne z normami. Zrozumienie, jak te wszystkie elementy się do siebie odnoszą, jest ważne dla sprawnego działania systemu osnowy geodezyjnej oraz jakości danych pomiarowych.

Pytanie 16

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. szkiców polowych
B. wywiadów terenowych
C. obliczeń
D. sprawozdań technicznych
Wywiady terenowe nie są częścią prac związanych z przetwarzaniem wyników pomiarów, ponieważ koncentrują się głównie na zbieraniu danych jakościowych i informacji bezpośrednich od osób lub społeczności. Podczas gdy prace przetwarzające wyniki pomiarów obejmują obliczenia, analizy statystyczne oraz sporządzanie szkiców polowych, wywiady terenowe mają na celu pozyskanie kontekstu oraz opinii, co jest zupełnie innym procesem. Na przykład w badaniach geologicznych, gdy zbierane są dane o składzie gleby, analiza wyników takich jak pH, zawartość wody czy skład chemiczny wymaga precyzyjnych obliczeń. Szkice polowe służą do wizualizacji i dokumentacji zbieranych danych, a sprawozdania techniczne podsumowują wyniki i konkluzje. Dlatego wywiady terenowe, choć cenne, nie są elementem przetwarzania wyników pomiarów, lecz częścią metodologii zbierania danych.

Pytanie 17

Korzystając z danych zamieszczonych w tabeli, oblicz kąt skręcenia pomiędzy układami współrzędnych wtórnym i pierwotnym.

Numer punktuUkład pierwotnyUkład wtórny
XpYpXwYw
1100,00100,00400,00400,00
2123,00134,00377,00366,00
3145,00162,00355,00338,00
4200,00200,00300,00300,00
A. 200g
B. 50g
C. 250g
D. 300g
Prawidłowa odpowiedź to 200g, co oznacza kąt skręcenia między układami współrzędnych wtórnym i pierwotnym. Aby obliczyć kąt skręcenia, ważne jest zrozumienie, jak układy współrzędnych są ze sobą powiązane. Kąt ten można określić poprzez analizę różnic między danymi w układzie pierwotnym a tymi w układzie wtórnym. W praktyce, poprawne obliczenie kąta skręcenia jest kluczowe w dziedzinach takich jak inżynieria, architektura oraz robotyka, gdzie precyzyjne określenie orientacji obiektów jest niezbędne do prawidłowego działania mechanizmów i systemów. Kiedy zmieniamy orientację układów współrzędnych, musimy uwzględnić nie tylko kąt, ale także zmiany w lokalizacji oraz ewentualne przekształcenia, które mogą wpłynąć na dalsze obliczenia. Znajomość prawidłowego obliczania kąta skręcenia jest zgodna z najlepszymi praktykami w zakresie projektowania systemów, w których precyzja ma kluczowe znaczenie dla ich funkcjonowania.

Pytanie 18

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 0,1 cm2
B. 100,0 cm2
C. 1,0 cm2
D. 10,0 cm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego podejścia do obliczeń związanych z polem powierzchni na mapie w określonej skali. Na przykład, odpowiedzi takie jak 0,1 cm2 i 10,0 cm2 mogą sugerować błędne obliczenia w przeliczeniach jednostek lub zrozumienia, jak skala wpływa na rzeczywiste wymiary. W przypadku 0,1 cm2, nieprawidłowość polega na tym, że ktoś mógł błędnie zinterpretować przeliczenie, zakładając, że powierzchnia na mapie jest znacznie mniejsza, niż jest w rzeczywistości, co prowadzi do zaniżenia wartości. Z kolei 10,0 cm2 może wydawać się uzasadnione, gdyż można by pomyśleć o jednostkowym przeliczeniu, ale pomija to kluczowy krok w rozumieniu skali, który polega na prawidłowym przeliczeniu całkowitego obszaru. Kluczowym błędem wielu uczniów jest niepełne zrozumienie, że pole powierzchni na mapie jest funkcją kwadratu długości boku, a nie jedynie przeliczeniem liniowym. Prawidłowe zrozumienie geometrii oraz równań powierzchni jest istotne, a także znajomość tego, jak współczesne metody pomiarowe i kartograficzne wymagają precyzyjnych obliczeń, aby uniknąć błędów w planowaniu przestrzennym czy inżynieryjnym.

Pytanie 19

Na podstawie danych zamieszczonych w tabeli, oblicz wartość współczynnika kierunkowego cos A linii pomiarowej A-B, który jest stosowany do obliczenia współrzędnych punktu pomierzonego metodą ortogonalną.

ΔXA-B = 216,11 mΔYA-B = 432,73 mdA-B = 483,69 m
sin AA-B = ΔYA-B / dA-B          cos AA-B = ΔXA-B / dA-B
A. cos A = 2,0024 A-B
B. cos A = 0,4994 A-B
C. cos A = 0,4468 A-B
D. cos A = 2,2382 A-B
Wartość współczynnika kierunkowego cos A dla linii pomiarowej A-B wynosząca 0,4468 jest prawidłowa i wynika z zastosowania wzoru, który polega na podziale różnicy współrzędnych X punktów A i B przez odległość między nimi. W praktyce, obliczając współrzędne punktu pomierzonego metodą ortogonalną, kluczowe jest uwzględnienie precyzyjnych danych o położeniu punktów, co pozwala na uzyskanie wiarygodnych wyników. Zastosowanie współczynnika kierunkowego w geodezji i kartografii jest niezbędne, aby prawidłowo określić lokalizację punktu w przestrzeni. W ramach standardów geodezyjnych, takich jak PN-EN ISO 19111, wskazuje się na znaczenie dokładnych obliczeń kierunkowych dla zapewnienia wysokiej jakości danych przestrzennych, które są fundamentem wielu analiz w inżynierii, planowaniu przestrzennym czy ochronie środowiska. Użycie współczynnika kierunkowego w praktyce pozwala nie tylko na obliczenia, ale także na wizualizację relacji przestrzennych, co jest niezbędne w nowoczesnych systemach informacji geograficznej (GIS).

Pytanie 20

W terenie odległość 100 m na mapie zasadniczej w skali 1:500 odpowiada długości odcinka wynoszącej

A. 20 cm
B. 20 mm
C. 50 cm
D. 50 mm
Odpowiedzi takie jak '50 cm', '50 mm' czy '20 mm' są nietrafione, bo widać, że tu jest błąd w zrozumieniu przeliczeń skali. Na przykład, '50 cm' mówi, że 100 metrów w skali 1:500 ma długość 50 cm, co jest pomyłką, bo to by oznaczało 250 metrów. To typowy błąd, że źle zastosowano proporcje skali, co prowadzi do nieporozumień dotyczących rzeczywistej długości. Z kolei '50 mm' pasowałoby tylko przy skali 1:2000, co pokazuje, jak ważne jest, żeby umieć przeliczać mm i cm w kontekście skali. Odpowiedzi '20 mm' i '20 cm' to też nie to, bo 20 mm to tylko 2 metry, co nie ma zastosowania przy 100 metrach. Przy pracy z mapami trzeba ściśle przestrzegać zasad przeliczania i znać skuteczne metody konwersji jednostek, żeby uniknąć zamieszania w projektach geodezyjnych czy budowlanych. Na co dzień, to pomaga mieć dokładne odwzorowanie i dobrze zaplanować teren, zwłaszcza w kontekście przepisów prawnych i norm, które są kluczowe w geodezji i kartografii.

Pytanie 21

Wysokości elementów infrastruktury terenu na mapach geodezyjnych podaje się z dokładnością

A. 0,05 m
B. 0,1 m
C. 0,5 m
D. 0,01 m
Podawanie wysokości elementów naziemnych uzbrojenia terenu z mniejszą dokładnością, jak 0,1 m, 0,5 m, czy 0,05 m, jest niewłaściwe w kontekście standardów geodezyjnych. Użycie takich wartości prowadzi do znacznych błędów w dokumentacji oraz w realizacji terenowych przedsięwzięć. Na przykład, przy budowie dróg, różnice rzędu 0,1 m mogą skutkować niewłaściwym odwodnieniem, co z kolei prowadzi do erozji gruntów lub zalewania nawierzchni. W praktyce, projektanci i inżynierowie opierają się na danych o dokładności 0,01 m, aby mieć pewność, że ich prace będą dostosowane do rzeczywistych warunków terenowych. Niestety, nieprecyzyjne wartości mogą również wpływać na oceny geotechniczne i analizy ryzyka, co może prowadzić do poważnych konsekwencji prawnych w przypadku, gdy inwestycja nie spełnia wymogów budowlanych. Ponadto, stosowanie nieodpowiednich wartości dokładności może wprowadzać zamieszanie w komunikacji między różnymi podmiotami zaangażowanymi w projekt, co może prowadzić do konfliktów i dodatkowych kosztów. W kontekście geodezji, kluczowe jest przestrzeganie uznanych standardów, aby zapewnić rzetelność i profesjonalizm w procesach pomiarowych.

Pytanie 22

Długość boku kwadratowej działki a = 100,00 m została zmierzona z średnim błędem ma = ±5 cm. Jaką wartość ma średni błąd mp w obliczeniu pola P tej działki?

A. mp = ±5 m2
B. mp = ±10 m2
C. mp = ±1 m2
D. mp = ±20 m2
Niepoprawne odpowiedzi są rezultatem błędnych interpretacji zależności między błędami pomiarowymi a obliczanym polem. Wartości błędów przedstawione w odpowiedziach, takie jak mp = ±20 m2, mp = ±5 m2 czy mp = ±1 m2, nie są zgodne z zasadami propagacji błędów. Na przykład, mp = ±20 m2 sugeruje, że błąd pomiarowy jest większy niż rzeczywisty wpływ błędu długości boku na pole, co jest sprzeczne z logiką obliczeń. Taki błąd myślowy może wynikać z nieprawidłowego zastosowania wzoru na błąd średni lub nieuwzględnienia, że pole jest funkcją kwadratową. Odpowiedź mp = ±5 m2 z kolei nie uwzględnia całkowitego wpływu błędu pomiarowego na pole, co ogranicza dokładność obliczeń. Wydaje się, że w tym przypadku nie zrozumiano, że należy pomnożyć długość boku przez 2, aby uwzględnić wpływ błędu w obliczeniach. Z kolei mp = ±1 m2 jest zdecydowanie zaniżonym wynikiem, który również ignoruje zasadnicze zasady propagacji błędów. W praktyce, przy obliczeniach inżynieryjnych, niedoszacowanie błędów może prowadzić do poważnych konsekwencji, stąd tak istotne jest stosowanie odpowiednich wzorów i metod w celu uzyskania precyzyjnych wyników. Warto również pamiętać o standardach metrologicznych, które kładą nacisk na odpowiednie traktowanie błędów pomiarowych w każdym etapie pracy. Wysoka dokładność obliczeń jest kluczowa w wielu dziedzinach, w tym w budownictwie, geodezji i inżynierii, gdzie błędy mogą wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 23

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. kompletną liczbę kilometrów od startu trasy
B. numer hektometra w konkretnej sekcji kilometra
C. liczbę hektometrów w danym kilometrze trasy
D. całkowitą liczbę metrów w jednym odcinku trasy
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego systemu oznaczania. Na przykład, odpowiedź wskazująca na numer hektometra w danym kilometrze sugeruje, że cyfra 2 odnosi się do odcinka hektometrowego, co jest mylące. W rzeczywistości nie stosuje się takiego zapisu w kontekście punktów pomiarowych. Koncepcja ta może prowadzić do błędnych założeń, ponieważ punkt 2 w schemacie <sub>2</sub>/<sub>5</sub> nie odnosi się do jednostek hektometrycznych, które są używane na bardziej lokalnym poziomie. Z kolei odniesienie do pełnej liczby metrów w jednym odcinku trasy pomija kluczowy aspekt systemu, który wyraźnie definiuje pełne kilometry. Może to być mylące, zwłaszcza gdy rozważamy różnice w jednostkach pomiarowych. Trzeba również brać pod uwagę, że standardy branżowe, które regulują oznaczanie tras, jasno określają, jak powinny być przedstawiane odległości, co jeszcze bardziej podkreśla, że numeracja kilometrów jest fundamentalna dla właściwego zrozumienia struktury tras. Często popełnianym błędem jest niezweryfikowanie kontekstu, w jakim są używane konkretne oznaczenia, co skutkuje wyborem odpowiedzi, które wydają się mieć sens, ale w rzeczywistości są sprzeczne z ustalonymi normami. Ważne jest, aby zawsze odnosić się do najnowszych standardów i praktyk w branży, aby unikać nieporozumień.

Pytanie 24

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Państwowego Zasobu Geodezyjnego i Kartograficznego
B. Archiwum Geodezyjnego
C. Banku Danych Lokalnych
D. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 25

W ciągu niwelacyjnym teoretyczna suma różnic wysokości, mająca wartość 0 m, jest uzyskiwana w przypadku

A. otwartego.
B. jednostronnie nawiązanego.
C. dwustronnie nawiązanego.
D. zamkniętego.
Wybór innych opcji, takich jak niwelacja otwarta, dwustronnie nawiązana czy jednostronnie nawiązana, wiąże się z istotnymi różnicami w koncepcji i praktyce pomiarowej. Niwelacja otwarta, która polega na pomiarze różnic wysokości wzdłuż jednego, niezamkniętego odcinka, pozwala na gromadzenie danych z różnych punktów, ale nie zapewnia automatycznych możliwości weryfikacji dokładności, ponieważ nie wraca się do punktu wyjścia. Tworzy to potencjalne źródło błędów pomiarowych, które mogą wynikać z wpływu warunków atmosferycznych lub innych czynników zewnętrznych. Lewą stroną jest niwelacja jednostronnie nawiązana, gdzie pomiar prowadzony jest tylko w jednym kierunku, co również nie pozwala na eliminację błędów systematycznych. Niwelacja dwustronnie nawiązana, choć bardziej dokładna niż jednostronna, nadal wymaga powrotu do punktów pomiarowych, ale nie gwarantuje sumy 0 m, ponieważ każda sekcja pomiarowa może być narażona na różne błędy. W praktyce, realizacja projektów budowlanych wymaga standardów precyzyjnych pomiarów, dlatego niwelacja zamknięta jest preferowaną metodą, gdyż umożliwia kontrolę i weryfikację danych. Typowe błędy myślowe w wyborze niewłaściwej metody pomiarowej wynikają z niedostatecznego zrozumienia konsekwencji zastosowania otwartych systemów pomiarowych oraz braku znajomości zasad działania niwelacji zamkniętej, co może prowadzić do niedokładnych wyników.

Pytanie 26

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Dodanie nowych elementów treści mapy
B. Korekta zmian w nazewnictwie
C. Usunięcie sytuacji, która już nie istnieje w terenie
D. Wprowadzenie jedynie wybranych danych
Wszystkie pozostałe odpowiedzi sugerują działania, które są integralną częścią aktualizacji mapy zasadniczej. Naniesienie nowych elementów treści mapy jest kluczowym zadaniem, które zapewnia, że mapa odzwierciedla aktualny stan infrastruktury i zagospodarowania przestrzennego. W praktyce oznacza to, że nowe budynki, drogi czy inne obiekty muszą być wprowadzane do zasobów mapowych, aby mogły być wykorzystywane w planowaniu przestrzennym i decyzjach administracyjnych. Zmiany w nazewnictwie to kolejny istotny aspekt, ponieważ aktualizacja nazw ulic czy obiektów jest niezbędna dla poprawnego funkcjonowania systemów informacyjnych oraz dla użytkowników, którzy korzystają z tych danych w codziennym życiu. Usunięcie sytuacji nieistniejącej już w terenie, takie jak zlikwidowane budynki czy drogi, również jest ważne, ponieważ w przeciwnym razie użytkownicy mogą być wprowadzani w błąd przez nieaktualne informacje. Prowadzi to do typowego błędu myślowego, w którym użytkownicy mogą zakładać, że aktualizacja mapy nie wymaga pełnej weryfikacji danych, a jedynie fragmentarycznego podejścia. Taka strategia może skutkować powstawaniem nieścisłości oraz nieaktualności, co podważa wiarygodność mapy jako źródła informacji. Zastosowanie standardowych procedur aktualizacji, zgodnych z normami branżowymi, jest kluczowe dla zachowania rzetelności i użyteczności mapy zasadniczej.

Pytanie 27

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:500
B. 1:2000
C. 1:1000
D. 1:5000
Wybór innych odpowiedzi, takich jak 1:5000, 1:500 lub 1:2000, wynika z błędnej interpretacji skali mapy oraz jej zastosowania w kontekście dokumentacji geodezyjnej. Skala 1:5000, na przykład, jest stosunkowo dużą skalą, co oznacza, że odwzorowuje większy obszar, ale z mniejszym poziomem szczegółowości. Użycie takiej skali w arkuszu mapy zasadniczej, który powinien przedstawiać szczegóły lokalizacji oraz granice działek, może prowadzić do nieprecyzyjnych i mylnych informacji. Z kolei skala 1:500, choć również nie jest najwłaściwsza, jest zbyt szczegółowa w kontekście większych obszarów i powinna być stosowana w sytuacjach, gdy konieczne jest ścisłe odwzorowanie bardzo małych przestrzeni. Odpowiedź 1:2000, mimo że zbliżona do poprawnej, nie dostarcza wystarczających detali dla lokalizacji, co również czyni ją niewłaściwą w kontekście arkusza mapy zasadniczej. Typowe błędy myślowe, które prowadzą do takich wniosków, obejmują niewłaściwe zrozumienie przeznaczenia skali mapy oraz brak znajomości standardów geodezyjnych, które jasno określają, jakie skale są odpowiednie dla różnych rodzajów dokumentacji. Właściwe zapoznanie się z normami geodezyjnymi oraz praktycznym zastosowaniem map w różnych skalach jest kluczowe dla uzyskania dokładnych i użytecznych informacji przestrzennych.

Pytanie 28

W niwelacji trygonometrycznej przewyższeniem określamy różnicę wysokości między

A. reperami a punktem celowania
B. punktem celowania a stanowiskiem instrumentu
C. sąsiednimi reperami
D. punktem celowania a horyzontem instrumentu
W przypadku niwelacji trygonometrycznej nie każdy pomiar różnicy wysokości pomiędzy różnymi punktami jest traktowany jako przewyższenie. Odpowiedzi, które wskazują na różnice pomiędzy reperami a punktem celowania, pomiędzy punktem celowania a stanowiskiem instrumentu czy sąsiednimi reperami, wprowadzają w błąd, ponieważ nie oddają istoty tego, co oznacza przewyższenie. Repery są punktami o znanej wysokości, które służą jako odniesienie w pomiarach. Chociaż ważne jest określenie różnicy wysokości pomiędzy nimi, to w kontekście przewyższenia istotny jest pomiar w odniesieniu do poziomu horyzontu instrumentu. Często popełnianym błędem jest mylenie różnych punktów odniesienia, co prowadzi do nieprawidłowej interpretacji wyników pomiarów. W geodezji kluczowe jest ścisłe przestrzeganie definicji oraz terminologii, aby unikać nieporozumień, które mogą skutkować poważnymi konsekwencjami w realizowanych projektach. Zrozumienie różnicy między różnicą wysokości a przewyższeniem jest fundamentalne dla każdego geodety oraz inżyniera, który zajmuje się pomiarami terenu oraz projektowaniem, dlatego tak istotne jest przyswojenie właściwych koncepcji i pojęć. Dobre praktyki w branży zalecają ciągłe szkolenie i aktualizację wiedzy w tym zakresie.

Pytanie 29

Jaki rodzaj mapy stosuje się do przedstawienia ukształtowania terenu miasta?

A. Mapa hydrogeologiczna
B. Mapa klimatyczna
C. Mapa topograficzna
D. Mapa katastralna
Mapa topograficzna jest nieocenionym narzędziem w geodezji i urbanistyce, ponieważ szczegółowo przedstawia ukształtowanie terenu. Dzięki niej można zobaczyć, jak kształtują się różnice wysokości w terenie, co jest kluczowe przy planowaniu infrastruktury miejskiej, budowy dróg czy projektowaniu nowych osiedli. Takie mapy wykorzystują poziomice do pokazania wysokości nad poziomem morza, co pozwala na wizualne zrozumienie krajobrazu. Poziomice są izoliniami, które łączą punkty o tej samej wysokości, co pozwala na łatwe zinterpretowanie nachyleń i różnic wysokości. W praktyce, podczas projektowania systemów odwadniających czy planowania zieleni miejskiej, zrozumienie topografii terenu jest kluczowe. Mapa topograficzna dostarcza także informacji o naturalnych i sztucznych obiektach, co jest nieocenione podczas planowania przestrzennego. Z mojego doświadczenia, korzystanie z map topograficznych pozwala uniknąć wielu problemów, które mogą pojawić się w trakcie realizacji projektów budowlanych.

Pytanie 30

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. mj2
B. mj
C. m1
D. m
Odpowiedź 'mj' jest poprawna, ponieważ symbol ten odnosi się do budynków mieszkalnych jednorodzinnych, w tym do budynków parterowych oraz tych z poddaszem nieużytkowym. W polskich standardach klasyfikacji obiektów budowlanych, symbol 'mj' stosuje się do identyfikacji budynków mieszkalnych, co jest zgodne z normami przedstawionymi w rozporządzeniu o klasyfikacji obiektów budowlanych. W praktyce, oznaczenie to ułatwia lokalizację budynków na mapach oraz w dokumentacji urbanistycznej, co jest kluczowe dla planowania przestrzennego i zarządzania infrastrukturą. Dodatkowo, w kontekście projektowania urbanistycznego, zastosowanie odpowiednich symboli umożliwia lepszą analizę zagospodarowania terenu oraz wpływa na prawidłowe funkcjonowanie systemów zarządzania kryzysowego oraz dostępu do usług komunalnych. Przykładem może być analiza potrzeb infrastrukturę dla budynków oznaczonych symbolem 'mj', co wpływa na planowanie sieci wodociągowych czy kanalizacyjnych, biorąc pod uwagę specyfikę zabudowy jednorodzinnej.

Pytanie 31

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 30 m
B. 25 m
C. 15 m
D. 20 m
Odpowiedzi, które sugerują inne długości rzędnej, takie jak 20 m, 30 m czy 15 m, mogą prowadzić do poważnych nieporozumień dotyczących standardów pomiarowych. Długości te są nieadekwatne do wymagań zawartych w normach geodezyjnych, które jasno określają optymalne zasięgi dla różnych metod pomiarowych. W przypadku 20 m można sądzić, że to zbyt krótka długość, która nie pozwala na uzyskanie wystarczającej precyzji przy dużych odległościach. Z kolei długość 30 m staje się problematyczna w kontekście pomiarów, gdyż może zwiększać ryzyko błędów kumulacyjnych oraz trudności związanych z precyzyjnym przenoszeniem wymiarów na większe odległości. Odpowiedź sugerująca 15 m jest nie tylko niewłaściwa, ale także w praktyce może prowadzić do istotnych trudności w realizacji pomiarów budowlanych, szczególnie na otwartych terenach, gdzie warunki atmosferyczne i uwarunkowania przestrzenne mogą wpływać na dokładność. Istotne jest, aby geodeci mieli świadomość, że stosowanie nieodpowiednich długości rzędnych może skutkować błędami, które mogą wpłynąć na całkowitą rzetelność projektu budowlanego, prowadząc do niepoprawnych danych geodezyjnych i konsekwencji w fazach realizacji inwestycji. Dlatego znajomość i stosowanie przyjętej długości rzędnej, jaką jest 25 m, jest kluczowe dla zapewnienia wysokiej jakości pomiarów.

Pytanie 32

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:250
B. 1:2000
C. 1:1000
D. 1:500
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to D<sub>AB</sub> = 33,00 m (rzeczywista długość) oraz d<sub>AB</sub> = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako D<sub>AB</sub> / d<sub>AB</sub>, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 33

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. inklinacji
B. centrowania
C. kolimacji
D. indeksu
Odpowiedź 'centrowania' jest prawidłowa, ponieważ pomiar kątów tachimetrem elektronicznym w dwóch położeniach lunety nie eliminuje błędu centrowania. Błąd centrowania odnosi się do nieprecyzyjnego umiejscowienia instrumentu geodezyjnego nad punktem pomiarowym. Nawet przy dokładnym ustawieniu lunety na dwóch różnych pozycjach, jeśli instrument nie jest idealnie wyśrodkowany, może wystąpić błąd w pomiarze kątów. W praktyce geodezyjnej, aby zminimalizować ten błąd, zaleca się stosowanie statywów o wysokiej stabilności oraz precyzyjnych zamocowań, które umożliwiają dokładne centrowanie instrumentu. Standardy geodezyjne, takie jak normy ISO i zalecenia organizacji geodezyjnych, podkreślają znaczenie precyzyjnego centrowania jako kluczowego elementu uzyskiwania wiarygodnych pomiarów. Dobrą praktyką jest również stosowanie instrumentów wyposażonych w funkcje automatycznego centrowania, co znacznie zwiększa dokładność pomiarów.

Pytanie 34

Jakie jest wartość azymutu odcinka AB, jeśli współrzędne punktów A i B to: YA = 100,00; XA = 100,00; YB = 150,00; XB = 50,00?

A. 225°
B. 45°
C. 315°
D. 135°
W przypadku błędnych odpowiedzi często pojawiają się mylne interpretacje dotyczące kierunków, które mogą prowadzić do nieprawidłowych obliczeń azymutu. Na przykład, wartości 45°, 315° i 225° mogą być wynikiem błędnych obliczeń lub niepoprawnej interpretacji kierunków. Azymut 45° oznaczałby kierunek północno-wschodni, co nie odpowiada rzeczywistemu położeniu punktu B w stosunku do punktu A, ponieważ punkt B leży na południowym zachodzie względem punktu A. Z kolei azymut 225° wskazuje kierunek południowo-zachodni, co również jest niezgodne z danymi współrzędnymi, gdzie B jest w rzeczywistości wyżej w osi Y, ale dalej w osi X. Azymut 315° z kolei sugeruje kierunek północno-zachodni, co jest błędne, gdyż nie uwzględnia faktu, że z punktu A do punktu B należy poruszać się w dół i w lewo. Kluczowym błędem myślowym jest niepoprawne rozumienie różnicy między azymutem a kierunkiem, co może prowadzić do pomyłek w obliczeniach. Ważne jest, aby przed przystąpieniem do obliczeń dokładnie zrozumieć, jak współrzędne wpływają na wyznaczane kierunki oraz aby stosować poprawne metody obliczania, które uwzględniają zarówno wartości X, jak i Y. W geodezji i kartografii, gdzie precyzja i poprawność kierunków są kluczowe, takie błędy mogą prowadzić do poważnych konsekwencji w analizach przestrzennych.

Pytanie 35

Jakie jest zwiększenie współrzędnej ∆y1-2, jeśli zmierzona długość d1-2 = 100,00 m, a sinA1-2 = 0,8910 oraz cosA1-2 = 0,4540?

A. 8,91 m
B. 45,40 m
C. 4,54 m
D. 89,10 m
Wybór odpowiedzi innych niż 89,10 m wskazuje na nieporozumienie dotyczące zastosowania funkcji trygonometrycznych w kontekście pomiarów i obliczeń. Na przykład, odpowiedzi wskazujące wartości takie jak 8,91 m, 45,40 m czy 4,54 m są wynikiem błędnych interpretacji wzoru na przyrost współrzędnej. Często zdarza się, że osoby, które nie mają solidnych podstaw w trygonometrii, mogą mylić wartości sinusoidalne z innymi parametrami, co prowadzi do błędnych obliczeń. Zastosowanie funkcji sinusowego w obliczeniach jest kluczowe, ponieważ to właśnie dzięki niemu jesteśmy w stanie określić wysokość w oparciu o długość oraz kąt. Odpowiedzi 8,91 m i 4,54 m mogą sugerować błędne pomnożenie lub podział, natomiast 45,40 m może wynikać z niepoprawnego zastosowania wartości cosinus, co nie ma zastosowania w tym kontekście. Kluczowe jest zrozumienie, że do obliczenia przyrostu wysokości (∆y) potrzebujemy wartości sinus, a nie cosinus, co jest fundamentalnym błędem w myśleniu matematycznym. W praktyce, niepoprawne obliczenia mogą prowadzić do poważnych konsekwencji w inżynierii i architekturze, gdzie precyzja jest niezbędna, a nieprawidłowe dane mogą skutkować niewłaściwym zaprojektowaniem konstrukcji lub systemów nawigacyjnych.

Pytanie 36

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. wojewoda
B. geodeta uprawniony
C. główny geodeta kraju
D. starosta
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 37

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Tylko do II grupy
B. Do I i II grupy
C. Tylko do I grupy
D. Do II i III grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 38

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 90°
B. 200°
C. 360°
D. 180°
Obroty o 180°, 360° lub 200° są błędne, ponieważ nie są one zgodne z zasadami dokładnego poziomowania teodolitu. Obrót o 180° oznaczałby, że alidade byłaby ustawiona w przeciwnym kierunku, co nie pozwoliłoby na właściwe sprawdzenie poziomowania w kierunkach prostopadłych. Taki kąt nie przynosi dodatkowych informacji o poziomie, a jedynie przesuwa punkt odniesienia na linię, co jest niepraktyczne w kontekście precyzyjnych pomiarów. Obrót o 360° oznaczałby, że alidade powróciłaby do pierwotnej pozycji, co również jest nieefektywne, gdyż nie wprowadza żadnych nowych danych dotyczących poziomowania. Natomiast wybór 200° jest nieadekwatny, gdyż nie ma uzasadnienia geodezyjnego dla takiego kąta w kontekście wykonywania pomiarów z wykorzystaniem teodolitu. W geodezji, każdy kąt obrotu i jego zastosowanie powinny być dobrze przemyślane i oparte na standardach, które gwarantują dokładność i niezawodność pomiarów. Użytkownicy teodolitu muszą być świadomi, że niepoprawne podejście do poziomowania prowadzi do błędnych wyników, które mogą skutkować poważnymi konsekwencjami w projektach budowlanych i inżynieryjnych.

Pytanie 39

Jakie znaczenie ma oznaczenie mz1 1 na mapie zasadniczej?

A. Dom w zabudowie szeregowej
B. Wieżowiec.
C. Budynek mieszkalny.
D. Jednorodzinny dom.
Zrozumienie zapisów na mapie zasadniczej jest kluczowe dla poprawnego odczytywania i interpretacji danych dotyczących przestrzeni miejskiej. Odpowiedzi sugerujące, że zapis 'mz1 1' odnosi się do kamienicy, domu jednorodzinnego lub domu w zabudowie szeregowej, bazują na nieprawidłowej interpretacji klasyfikacji obiektów budowlanych. Kamienice, które są zazwyczaj niskimi lub średniowysokimi budynkami mieszkalnymi, mają zupełnie inną charakterystykę, często związaną z zabudową miejską sprzed XX wieku, co nie pasuje do klasyfikacji wieżowców. Domy jednorodzinne i domy w zabudowie szeregowej są z kolei typowymi przykładami zabudowy niskiej, co również wyklucza je z tej klasyfikacji. Ważne jest, aby uniknąć stereotypowego myślenia, które może prowadzić do błędnych założeń o charakterystyce i przeznaczeniu obiektów budowlanych. Kluczowym błędem w rozumieniu tego zapisu jest zlekceważenie różnic w wysokości i przeznaczeniu budynków, które są podstawowymi kryteriami klasyfikacji. W kontekście planowania przestrzennego, nieprawidłowe przypisanie typów budynków może prowadzić do nieefektywnego zagospodarowania terenu, co w konsekwencji wpływa na jakość życia mieszkańców oraz funkcjonalność obszarów miejskich. Zrozumienie, że 'mz1 1' odnosi się do wieżowca, a nie do innych typów zabudowy, jest kluczowe dla właściwej analizy planów urbanistycznych i projektów architektonicznych.

Pytanie 40

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. geodezyjnej ewidencji sieci uzbrojenia terenu
B. szczegółowych osnów geodezyjnych
C. ewidencji gruntów i budynków
D. obiektów topograficznych
BDOT500, czyli Baza Danych Obiektów Topograficznych 500, jest kluczowym zbiorem danych, który gromadzi informacje o obiektach topograficznych na terenie Polski. Zawiera ona m.in. dane dotyczące rzek, jezior, gór, budynków i innych istotnych elementów krajobrazu. Użycie BDOT500 jest niezbędne w wielu dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska, a także w geodezji i kartografii. Przykładowo, podczas tworzenia map topograficznych, BDOT500 dostarcza rzetelnych i aktualnych informacji, co jest zgodne z normami określonymi w Polskiej Normie PN-EN ISO 19115, dotyczącej metadanych geograficznych. Dzięki temu użytkownicy mogą podejmować decyzje na podstawie wiarygodnych danych. Przy pracy z systemami GIS, wiedza o strukturze i zawartości BDOT500 umożliwia efektywne włączanie tych danych do różnych analiz przestrzennych, co przyczynia się do lepszego zarządzania zasobami oraz ochrony środowiska.