Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:31
  • Data zakończenia: 17 grudnia 2025 08:48

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 6,00 V
B. 1,50 V
C. 15,00 V
D. 0,15 V
Wskazanie wynosi 1,5 V, bo skala woltomierza jest wyskalowana od 0 do 100, a pełny zakres pomiarowy wynosi 5 V. Wskazówka zatrzymała się na wartości 30, co oznacza 30% pełnego wychylenia. Wystarczy więc obliczyć 30/100 × 5 V = 1,5 V. To klasyczny przykład miernika analogowego z podziałką procentową, gdzie rzeczywiste napięcie odczytuje się po przeliczeniu proporcji. W praktyce takie rozwiązanie stosuje się po to, żeby jeden przyrząd mógł pracować w różnych zakresach – zmienia się jedynie wartość Umax, a skala procentowa pozostaje ta sama. To rozwiązanie często spotykane w szkolnych laboratoriach, a także w starszych multimetrów analogowych. Moim zdaniem dobrze to pokazuje, jak ważne jest zwracanie uwagi na opis przyrządu – bez informacji o zakresie (Umax) trudno byłoby poprawnie odczytać wartość napięcia.

Pytanie 2

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. cięcia przewodów.
C. zaciskania wtyków RJ45.
D. ściągania izolacji.
Narzędzia przedstawione na ilustracjach to zaciskarki do końcówek tulejkowych. Służą one do zakładania tulejek na przewody wielodrutowe, co jest niezbędne, aby zapewnić pewny i bezpieczny kontakt w złączach śrubowych. Tulejki te, nazywane też ferrulami, pozwalają na właściwe ułożenie przewodów w zaciskach, co jest kluczowe w instalacjach elektrycznych. Z mojego doświadczenia, dobrze zaciśnięta tulejka znacząco poprawia jakość połączenia i zmniejsza ryzyko uszkodzenia przewodu. Zaciskanie tulejek jest standardem w profesjonalnych instalacjach, zwłaszcza tam, gdzie liczy się niezawodność i bezpieczeństwo. Narzędzia te są zaprojektowane tak, aby zapewnić odpowiednią siłę nacisku, co gwarantuje trwałość połączenia. To ważne, bo nieodpowiednio zaciśnięta tulejka może prowadzić do problemów z przewodnością lub wręcz awarii. Niektórzy twierdzą, że można się obyć bez tych narzędzi, ale moim zdaniem, ich użycie jest nie tylko dobrą praktyką, ale wręcz koniecznością w profesjonalnej pracy elektryka. Zaciskarki dostępne są w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w szerokim zakresie aplikacji, od domowych instalacji po przemysłowe systemy elektryczne.

Pytanie 3

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 4,2 m
B. 6,4 m
C. 8,5 m
D. 2,2 m
Dobrze to rozgryzłeś. Wysokość podnoszenia cieczy przy prędkości obrotowej n = 1850 1/min i wydajności 550 m³/h to 4,2 m. Z wykresu widać, że dla tej wartości obrotów, krzywa charakterystyczna pompy przecina się w okolicach 4,2 m na osi wysokości podnoszenia. Takie oszacowanie jest zgodne z zasadami projektowania i doboru pomp w praktyce inżynierskiej. Ważne jest, aby zrozumieć, jak parametry takie jak prędkość obrotowa i wydajność wpływają na działanie pompy. W przypadku pomp, ich charakterystyki są kluczowym elementem pozwalającym określić, jak będą działały w różnych warunkach. Znajomość tej zależności jest istotna podczas projektowania systemów pompowych, gdzie należy dążyć do pracy w optymalnym punkcie charakterystyki. Dobrze dobrana pompa zapewnia nie tylko efektywne działanie, ale także mniejsze zużycie energii, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i oszczędności energii w przemyśle.

Pytanie 4

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PD
B. P
C. PI
D. PID
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 5

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiany temperatury od 0 do +90 °C?

Ilustracja do pytania
A. Czujnik 2.
B. Czujnik 1.
C. Czujnik 4.
D. Czujnik 3.
Czujnik 2 jest idealnym wyborem do wytłaczarki, ponieważ spełnia kluczowe wymogi dotyczące zakresu pracy i temperatury. Zasięg działania tego czujnika wynosi od 0 do 1,6 mm, co doskonale pokrywa wymagany zakres 0,8 ÷ 0,9 mm. To ważne, aby czujnik mógł precyzyjnie wykrywać zmiany w tej specyficznej odległości, zapewniając optymalne działanie maszyny. Dodatkowo, czujnik ten działa w zakresie temperatur od -20 do +110°C, co w pełni obejmuje wymagany zakres 0 do +90°C. Dzięki temu niezawodnie funkcjonuje w różnych warunkach pracy, co jest kluczowe w dynamicznym środowisku przemysłowym. Warto zauważyć, że czujnik ten ma obudowę IP67, co zapewnia dobrą odporność na pył i wodę, co jest często nieuniknione w środowisku produkcyjnym. W praktyce oznacza to, że czujnik ten jest odporny na trudne warunki pracy, co zwiększa jego trwałość i niezawodność. W branży stosowanie czujników o odpowiednich parametrach jest kluczowe, aby uniknąć przestojów i nieplanowanych napraw, które mogą być kosztowne.

Pytanie 6

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. optycznego.
B. magnetycznego.
C. pojemnościowego.
D. indukcyjnego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.

Pytanie 7

Przedstawiony na rysunku czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. napiężeń.
C. temperatury.
D. pola magnetycznego.
To, co widzisz na zdjęciu, to czujnik typu kontaktron, który służy do detekcji pola magnetycznego. Kontaktrony są powszechnie używane w różnych zastosowaniach, takich jak systemy alarmowe, gdzie wykrywają obecność lub ruch drzwi i okien. Działają na zasadzie magnetycznego zamknięcia obwodu - kiedy w pobliżu znajdzie się magnes, dwie metalowe blaszki wewnątrz szklanej obudowy stykają się, zamykając obwód elektryczny. W przemyśle te czujniki są również stosowane do wykrywania pozycji maszyn czy robotów, a także w urządzeniach takich jak liczniki rowerowe, gdzie magnes zamocowany na kole zamyka obwód kontaktronu z każdą pełną rewolucją. Co ciekawe, kontaktrony są bardzo niezawodne, ponieważ nie mają mechanicznych części ruchomych, co zmniejsza ryzyko awarii. Moim zdaniem, to niesamowite, że coś tak prostego w konstrukcji może być tak użyteczne w tylu dziedzinach.

Pytanie 8

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. V3
B. V2
C. N4
D. N2
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 9

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano układ bariery zawierający czujnik

Ilustracja do pytania
A. magnetyczny.
B. pojemnościowy.
C. optyczny.
D. indukcyjny.
Odpowiedź optyczny jest prawidłowa, ponieważ w systemach bezpieczeństwa często stosuje się bariery świetlne, które opierają się na technologii optycznej. Tego typu czujniki składają się z nadajnika i odbiornika, które tworzą niewidzialną linię światła, najczęściej podczerwonego. Kiedy coś lub ktoś przecina tę linię, system jest w stanie natychmiast zareagować, na przykład zatrzymać maszynę, co jest kluczowe dla zapewnienia bezpieczeństwa pracowników. W wielu zakładach przemysłowych bariery optyczne są standardem, ponieważ pozwalają na szybkie i skuteczne wykrywanie obecności osób w niebezpiecznych strefach. Co więcej, dzięki różnorodnym konfiguracjom, można je dostosować do specyficznych potrzeb danego stanowiska pracy. Moim zdaniem, zastosowanie technologii optycznej w takich rozwiązaniach jest jednym z najlepszych przykładów na to, jak nowoczesna technologia wpływa na poprawę warunków bezpieczeństwa w przemyśle. Nowoczesne standardy BHP często wymagają stosowania takich rozwiązań, co podkreśla ich znaczenie w dzisiejszym środowisku pracy.

Pytanie 10

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1 i L2 i L3.
B. Sumy rezystancji żył L1, L2, L3 oraz PEN.
C. Rezystancji żył L1, L2, L3.
D. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
Rozważając inne odpowiedzi, warto zastanowić się, dlaczego mogą być mylące. Pomiar rezystancji żył L1, L2, L3 to typowa procedura podczas oceny przewodów, ale nie dotyczy izolacji. Skupia się na przewodności, a nie na izolacyjności. W praktyce, niska rezystancja może wskazywać na uszkodzenia takie jak wady fabryczne lub uszkodzenia mechaniczne, ale to nie izolacja. Z kolei suma rezystancji żył L1, L2, L3 oraz PEN nie jest standardowym parametrem w testach izolacyjnych. Może to wprowadzać w błąd, sugerując zbiorczy pomiar, który nie ma zastosowania w ocenie jakości izolacji. Rezystancja izolacji między przewodami L1 i L2 i L3 odnosi się tylko do pomiarów między tymi przewodami, co jest ważnym testem w kontekście sprawdzania potencjalnych zwarć, ale w przedstawionej sytuacji chodzi o sprawdzenie izolacji względem PEN. W takich sytuacjach, myślenie o pomiarze rezystancji jako zbiorczym wskaźniku jakości wszystkich elementów może prowadzić do przeoczenia kluczowych aspektów związanych z bezpieczeństwem. Pamiętajmy, że dokładne rozumienie, co i dlaczego mierzymy, jest podstawą zachowania bezpieczeństwa i sprawności instalacji.

Pytanie 11

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 1, P2 – 2, P3 – B0,1
B. P1 – 1, P2 – 1, P3 – A10
C. P1 – 2, P2 – 2, P3 – A0,1
D. P1 – 2, P2 – 1, P3 – B10
Ustawienie przekaźnika czasowego wymaga zrozumienia, jak działa mechanizm nastawienia czasu oraz funkcji. Pierwsza niepoprawna kombinacja (P1 – 1, P2 – 1, P3 – A10) zakłada niewłaściwy tryb operacyjny (A), który nie jest odpowiedni dla opóźnionego załączenia, a także błędnie ustawia jednostki czasu. Tryb A jest dla natychmiastowego załączenia, co nie spełnia wymagania opóźnienia. Druga konfiguracja (P1 – 2, P2 – 2, P3 – A0,1) również błędnie wybiera tryb A i dodatkowo ustala zbyt krótki czas mnożnika 0,1 sekundy, co prowadzi do niepoprawnego czasu całkowitego. Kolejna odpowiedź (P1 – 1, P2 – 2, P3 – B0,1) używa poprawnego trybu B, ale błędnie ustawia mnożnik na 0,1 sekundy, co ponownie skutkuje nieodpowiednim czasem opóźnienia. Aby uniknąć takich błędów, należy dokładnie przestudiować funkcje każdego pokrętła oraz jak wpływają one na całościowe działanie przekaźnika. Z mojego doświadczenia, kluczem do poprawnej konfiguracji jest dokładne rozumienie instrukcji i zastosowania właściwych jednostek czasu, co często jest pomijane w praktyce, prowadząc do nieefektywnego działania systemu.

Pytanie 12

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. manometr.
B. zawór.
C. filtr.
D. smarownicę.
Manometr to urządzenie, które służy do pomiaru ciśnienia gazów lub cieczy. Na schemacie zespołu przygotowania powietrza ten symbol wskazuje na obecność manometru. W praktyce manometry są niezwykle istotne w systemach pneumatycznych, ponieważ pomagają monitorować i utrzymywać odpowiednie ciśnienie robocze. Bez prawidłowego ciśnienia, systemy mogą działać nieefektywnie lub, co gorsza, uszkodzić się. W standardach inżynieryjnych, manometry są zazwyczaj montowane w miejscach łatwo dostępnych, aby umożliwić szybki odczyt i ocenę sytuacji. Ich zastosowanie jest szerokie - od przemysłowych kompresorów, przez systemy grzewcze, aż po instalacje wodociągowe. Dzięki manometrom można szybko zdiagnozować problemy z ciśnieniem, co jest kluczowe w utrzymaniu bezpieczeństwa i efektywności systemów. Moim zdaniem, umiejętność prawidłowego odczytywania i interpretowania wskazań manometrów jest jednym z podstawowych elementów wiedzy każdego technika zajmującego się systemami pneumatycznymi czy hydraulicznymi. To nie tylko teoria, ale praktyka, którą warto znać.

Pytanie 13

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. NPN NC
C. NPN NO
D. PNP NO
Wybór odpowiedzi PNP NO, PNP NC lub NPN NO mógł wynikać z błędnego zrozumienia charakterystyki działania czujników. Tranzystory PNP są używane w sytuacjach, gdzie wyjście czujnika ma dostarczać napięcie do obciążenia, a w przypadku odpowiedzi NO (normally open), obwód jest otwarty w stanie nieaktywnym. To oznacza, że dopiero po aktywacji czujnika obwód się zamyka, co często stosuje się w systemach, gdzie potrzebne jest szybkie załączanie obwodów po wykryciu zmiany stanu. Jednak w przedstawionym schemacie wyjście jest typu NPN, co determinuje odwrotną logikę. NPN NO sugerowałoby, że w stanie nieaktywnym obwód jest otwarty, co nie jest zgodne z analizą pokazanych połączeń. Wybór odpowiedzi PNP może wynikać z mylnej interpretacji symboli lub przewodów sygnałowych, co jest częstym błędem w pracy z dokumentacją techniczną. Prawidłowe zrozumienie schematów elektrycznych wymaga uwagi na szczegóły takie jak oznaczenia przewodów, symbole tranzystorów i sposób ich podłączenia w obwodzie. Tego rodzaju błędy mogą prowadzić do nieprawidłowego działania systemów, co w niektórych przypadkach skutkuje poważnymi konsekwencjami.

Pytanie 14

Na którym rysunku przedstawiono symbol graficzny będący oznaczeniem napędu łącznika uruchamianego przez obrót?

A. Rysunek 3
Ilustracja do odpowiedzi A
B. Rysunek 1
Ilustracja do odpowiedzi B
C. Rysunek 4
Ilustracja do odpowiedzi C
D. Rysunek 2
Ilustracja do odpowiedzi D
Wybór niewłaściwego symbolu może wynikać z nieznajomości specyfiki oznaczeń stosowanych w elektrotechnice. Rysunki 1, 2 i 4 mogą wprowadzać w błąd, ponieważ nie są standardowym oznaczeniem napędu łącznika uruchamianego przez obrót. Na przykład rysunek 1 przypomina symbole stosowane do oznaczania innych funkcji, takie jak przyciski czy wyłączniki, ale nie odnosi się do napędu obrotowego. Podobnie, rysunek 2 może sugerować mechaniczny sposób działania, lecz brak charakterystycznych elementów obrotu sprawia, że odbiega od właściwego oznaczenia. Często spotykaną pomyłką jest mylenie symboli graficznych z powodu ich podobieństwa wizualnego, co prowadzi do błędów w interpretacji schematów. Aby uniknąć takich niejasności, warto zaznajomić się z obowiązującymi normami, które określają wygląd symboli wykorzystywanych w dokumentacji technicznej. Ważne jest, by analizować kontekst zastosowania symbolu i jego miejsce w schemacie, co pomaga zrozumieć jego funkcję i zastosowanie. Dokładne zrozumienie symboliki to klucz do efektywnego projektowania i użytkowania systemów elektrycznych.

Pytanie 15

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. środkowego na 100
B. dolnego i górnego na 1
C. dolnego na 1
D. górnego na 1
Poprawne jest ustawienie dolnego pokrętła (oznaczonego jako t-Stop) na wartość 1 sekundy. Na przedstawionym panelu widoczne są trzy potencjometry: t-Start, U-Start i t-Stop. Pierwszy odpowiada za czas łagodnego rozruchu, drugi za napięcie początkowe przy starcie silnika, a trzeci – dolny – za czas łagodnego zatrzymania. W zadaniu chodzi o uzyskanie zatrzymania w czasie 1 sekundy, więc należy wyregulować właśnie t-Stop. W praktyce przemysłowej taki układ softstartu pozwala uniknąć gwałtownych zmian momentu i obciążeń mechanicznych przy zatrzymywaniu taśmociągu. Ustawienie t-Stop = 1 s oznacza, że napięcie na wyjściu będzie płynnie redukowane do zera w ciągu jednej sekundy, co zapobiega szarpnięciom i luzom w układzie przeniesienia napędu. Moim zdaniem to jedno z najważniejszych ustawień przy układach transportowych – zbyt krótki czas powoduje zbyt szybkie hamowanie i naprężenia w taśmie, a zbyt długi wydłuża cykl produkcyjny. Warto też pamiętać, że t-Start i t-Stop powinny być ustawione proporcjonalnie do masy i bezwładności całego układu, aby zachować płynność pracy.

Pytanie 16

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiana temperatury od 0 do +90 °C?

TypHPD1204-PKHPD1202-NKHPD1406-NKHPD1408-PK
Zasięg (mm)0,8 do 1,40 do 1,60,5 do 1,80,8 do 2,4
Temperatura pracy
(°C)
+20 do +130-20 do +110-20 do +80+10 do +130
ObudowaIP68IP67IP54IP65
Czujnik 1.Czujnik 2.Czujnik 3.Czujnik 4.
A. Czujnik 2.
B. Czujnik 1.
C. Czujnik 3.
D. Czujnik 4.
Wybór czujnika do wytłaczarki to kluczowe zadanie, które musi uwzględniać specyfikacje techniczne oraz warunki pracy urządzenia. Czujnik 2, czyli HPD1202-NK, spełnia wymagania dotyczące zasięgu działania oraz zakresu temperatury. W przypadku wytłaczarek, gdzie precyzja jest kluczowa, zasięg 0 do 1,6 mm zapewnia wystarczającą dokładność, a temperatura pracy od -20 do +110 °C pozwala na pracę w zróżnicowanych warunkach. Ponadto, HPD1202-NK ma obudowę IP67, co oznacza, że jest dobrze chroniony przed pyłem oraz krótkotrwałym zanurzeniem w wodzie. Standardy IP są powszechnie uznawane w przemyśle i określają stopień ochrony przed ciałami stałymi i cieczami. W praktyce czujniki o takich parametrach są stosowane w przemyśle tworzyw sztucznych, gdzie często zmieniające się temperatury i wymagania dotyczące precyzji są na porządku dziennym. Dobrze dobrany czujnik wpływa na efektywność i niezawodność procesu produkcyjnego, minimalizując ryzyko awarii oraz zapewniając stabilną jakość produktów. To podejście zgodne z najlepszymi praktykami inżynierskimi, które kładą nacisk na zrozumienie specyfiki i wymagań procesu technologicznego przed wyborem odpowiedniego sprzętu.

Pytanie 17

Który z czujników należy zamontować w układzie sterowania wyłączarką, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz odporność na wibracje i zmiany temperatury 0 ÷ 90°C?

Ilustracja do pytania
A. HPD1406-NK
B. HPD1204-PK
C. HPD1408-PK
D. HPD1202-NK
Wybór czujnika HPD1202-NK jest trafny, ponieważ spełnia on wymagania dotyczące zasięgu oraz odporności na zmiany temperatury. Czujnik ten działa w zakresie od 0 do 1,6 mm, co pokrywa się z wymaganiem 0,8 ÷ 0,9 mm. Jest to istotne, gdyż precyzyjne określenie zasięgu czujnika ma kluczowe znaczenie w precyzyjnych aplikacjach jak np. sterowanie wyłączarką. Dodatkowo, HPD1202-NK może pracować w temperaturach od -20 do 110°C, co daje duży margines bezpieczeństwa i pozwala na pracę w trudnych warunkach środowiskowych. Warto też zwrócić uwagę na klasę ochrony IP67, która zabezpiecza czujnik przed pyłem i krótkotrwałym zanurzeniem w wodzie, co jest często niezbędne w aplikacjach przemysłowych. Z doświadczenia wiem, że wybór odpowiedniego czujnika to nie tylko kwestia parametrów, ale też niezawodności i odporności na warunki pracy. W praktyce, taki czujnik sprawdzi się w aplikacjach, gdzie wymagana jest nie tylko precyzja, ale i wytrzymałość.

Pytanie 18

W regulatorze PID symbolem TI oznacza się czas

A. opóźnienia.
B. propagacji.
C. zdwojenia.
D. wyprzedzenia.
Pojęcia takie jak czas propagacji, opóźnienia czy wyprzedzenia mogą być mylące w kontekście regulatorów PID. Czas propagacji odnosi się raczej do opóźnień sygnału w systemach komunikacyjnych i nie ma związku z funkcjonowaniem regulatora PID. Czas opóźnienia to parametr występujący w modelach układów dynamicznych, związany z czasem potrzebnym na reakcję systemu na dany sygnał wejściowy. Może to być czas transportu materiału w procesie, ale nie jest to bezpośrednio związane z parametrami TI regulatora PID. Kolejnym błędnym pojęciem jest czas wyprzedzenia, który w automatyce może dotyczyć członów korekcyjnych stosowanych do kompensacji opóźnień czy poprawy dynamiki układu, lecz nie odnosi się do TI, który jest czasem całkowania. Typowym błędem jest zakładanie, że wszystkie te czasy są wymienne, co prowadzi do nieprawidłowego dostrajania regulatorów i destabilizacji procesu. Rozumienie, że TI to czas zdwojenia, jest kluczowe, bo to on określa, jak szybko regulator skoryguje odchyłki procesu względem zadanej wartości, co jest fundamentem stabilizacji i optymalizacji w systemach sterowania. Warto więc zrozumieć te koncepcje, aby unikać typowych błędów w projektowaniu i stosowaniu regulatorów PID w praktyce inżynierskiej. Właściwe zrozumienie parametrów regulatora pozwala na bardziej efektywne projektowanie i implementację systemów automatyki, co przekłada się na większą niezawodność i wydajność procesów technologicznych. Dlatego też nauka i zrozumienie tych pojęć jest niezbędne dla inżynierów automatyków i technologów procesów. Takie podejście pozwala na zgodność z dobrą praktyką projektową i wymogami norm jakościowych, co w efekcie zwiększa konkurencyjność przedsiębiorstw na rynku."]

Pytanie 19

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. dławiący.
B. bezpieczeństwa.
C. zwrotny.
D. redukujący.
Wybór odpowiedniego zaworu w układach pneumatycznych jest kluczowy dla ich efektywnego i bezpiecznego funkcjonowania. Zawory bezpieczeństwa, choć w pewnym stopniu związane z kontrolą ciśnienia, pełnią inną funkcję niż zawory redukujące. Ich głównym zadaniem jest ochrona układu przed nadmiernym wzrostem ciśnienia, co mogłoby prowadzić do uszkodzeń. Nie zapewniają one jednak stałego ciśnienia w układzie. To może prowadzić do mylnego przekonania, że wystarczą do regulacji ciśnienia na poziomie operacyjnym. Zawory dławiące z kolei regulują przepływ, a nie ciśnienie, co oznacza, że ich zastosowanie w roli reduktora ciśnienia jest błędne. Są one używane raczej do kontroli prędkości przepływu, co jest istotne, ale nie w kontekście utrzymania stałego ciśnienia. Natomiast zawory zwrotne umożliwiają przepływ medium tylko w jednym kierunku, zapobiegając cofaniu się cieczy lub gazu. Choć są ważne w kontekście zapobiegania odwróceniu przepływu, nie mają wpływu na stabilizację ciśnienia. Zrozumienie różnicy pomiędzy tymi funkcjami jest kluczowe, ponieważ pozwala uniknąć błędnych założeń i potencjalnych problemów w projektowaniu i eksploatacji systemów pneumatycznych. Dobrym podejściem jest zawsze odniesienie się do norm i standardów, które określają specyfikacje i zastosowania poszczególnych typów zaworów, takich jak te wskazane w normach ISO czy DIN, co pozwoli lepiej dobierać komponenty do specyficznych zastosowań. Pozwala to na uniknięcie typowych błędów myślowych i zapewnia, że system będzie działał tak, jak powinien, bez ryzyka nieoczekiwanych awarii.

Pytanie 20

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. PD
C. P
D. PID
Regulator PI jest często stosowany w układach automatyki, gdzie wymagana jest korekcja błędu w sposób ciągły i precyzyjny. Na wykresie widzimy charakterystyczną odpowiedź skokową tego typu regulatora, która wskazuje na sumę proporcjonalnej i całkującej części. Część proporcjonalna, oznaczona jako K_R, odpowiada za szybkie reagowanie na zmiany, zaś część całkująca, charakteryzująca się stałą czasową T_i, wpływa na eliminację błędów ustalonych. Moim zdaniem, takie podejście jest niezwykle przydatne w układach, gdzie precyzja i stabilność są kluczowe, na przykład w systemach grzewczych lub klimatyzacyjnych. Standardy branżowe, takie jak ISA S5.1, zalecają stosowanie regulatorów PI w wielu aplikacjach przemysłowych ze względu na ich zdolność do utrzymania stabilności bez nadmiernego uchybu. W praktyce, znajomość odpowiednich parametrów regulacji umożliwia inżynierom dostosowanie układu do specyficznych wymagań operacyjnych, co jest kluczowe w dynamicznie zmieniających się środowiskach przemysłowych.

Pytanie 21

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód B
Ilustracja do odpowiedzi A
B. Przewód C
Ilustracja do odpowiedzi B
C. Przewód A
Ilustracja do odpowiedzi C
D. Przewód D
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 22

Na przedstawionym rysunku siłownik jest połączony ze słupkiem za pomocą

Ilustracja do pytania
A. łapy.
B. jarzma.
C. ucha.
D. kołnierza przedniego.
Siłownik połączony ze słupkiem za pomocą ucha to jedno z najczęściej stosowanych rozwiązań w mechanice. Ucho, jako element maszyny, pozwala na łatwe i pewne przymocowanie siłownika, co jest kluczowe dla jego poprawnego działania. W praktyce, takie połączenie umożliwia obrót siłownika wokół osi ucha, co jest niezbędne w wielu aplikacjach, takich jak automatyka bram czy napędy maszynowe. Dzięki użyciu ucha można osiągnąć większą elastyczność konstrukcyjną oraz zapewnić odpowiednią wytrzymałość połączenia. W standardach projektowych, jak normy DIN czy ISO, uwzględnia się ten sposób montażu ze względu na jego skuteczność oraz łatwość implementacji. Dobrze zamocowane ucho minimalizuje ryzyko uszkodzeń i zwiększa trwałość całego systemu, co jest niezwykle ważne w długoterminowej eksploatacji. Przy projektowaniu takich połączeń inżynierowie zwracają uwagę na odpowiednie materiały oraz wytrzymałość na obciążenia dynamiczne.

Pytanie 23

Na schemacie przedstawiono

Ilustracja do pytania
A. regulowany wzmacniacz napięć lub prądów zmiennych.
B. konwerter łącza szeregowego na łącze światłowodowe.
C. przetwornik pomiarowy prądu lub napięcia AC
D. przetwornik napięcia AC na prąd AC
Twój wybór wskazuje na pewne nieporozumienia w zrozumieniu funkcji przedstawionego schematu. Przetwornik napięcia AC na prąd AC oraz przetwornik pomiarowy prądu lub napięcia AC to urządzenia, które znajdują zastosowanie w konwersji i pomiarach parametrów elektrycznych, ale nie mają związku z konwersją sygnału z RS232 na światłowód. To, co widzisz na schemacie, to typowe zastosowanie w transmisji danych, a nie w przesyłaniu energii elektrycznej. Regulowany wzmacniacz napięć lub prądów zmiennych również odbiega od funkcji konwertera sygnału szeregowego na światłowodowy, gdyż jego zadaniem jest wzmacnianie sygnałów o określonych częstotliwościach. Często można spotkać się z błędem polegającym na myleniu funkcji wzmacniania i konwersji sygnału, co prowadzi do nieporozumień, zwłaszcza w kontekście skomplikowanych schematów elektrycznych. Warto zrozumieć, że światłowody, ze względu na swoje unikalne właściwości, wymagają specyficznej technologii konwersji sygnału, co odróżnia je od tradycyjnych metod przesyłu sygnału w systemach elektrycznych. Konwertery te są zaprojektowane do radzenia sobie z sygnałami cyfrowymi, a nie analogowymi, co czyni je nieodpowiednimi dla aplikacji wymagających wzmacniania czy przetwarzania sygnałów AC.

Pytanie 24

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. manometr.
B. filtr.
C. zawór.
D. smarownicę.
Manometr to urządzenie służące do pomiaru ciśnienia w systemach pneumatycznych. Na schemacie oznaczony symbolem przypominającym zegar, jest kluczowym elementem w diagnostyce i utrzymaniu systemów. Bez dokładnego pomiaru ciśnienia trudno ocenić, czy system działa poprawnie – zbyt wysokie ciśnienie może prowadzić do awarii, a zbyt niskie wpływa na efektywność pracy. W praktyce manometry są umieszczane w strategicznych miejscach, aby zapewnić stały nadzór nad parametrami systemu. Istnieją różne typy manometrów, w tym analogowe oraz cyfrowe – każde z nich ma swoje zastosowania, ale zasada działania pozostaje taka sama. Dobre praktyki branżowe wskazują na regularną kalibrację tych urządzeń, co zapewnia dokładność pomiarów, a tym samym bezpieczeństwo i wydajność pracy całego układu pneumatycznego. Warto również pamiętać, że manometry mogą być wyposażone w różne rodzaje przyłączy, co pozwala na ich elastyczne stosowanie w różnych konfiguracjach systemowych.

Pytanie 25

Który blok czasowy należy zastosować w programie, by realizował on bezpośrednio zależności czasowe przedstawione na rysunku?

Ilustracja do pytania
A. TONR
B. TOF
C. TP
D. TON
Wybór odpowiedniego bloku czasowego w programowaniu jest kluczowy dla poprawnego działania systemów automatyki. Często popełnianym błędem jest mylenie różnych typów timerów, takich jak TP, TOF i TONR, z ich specyficznymi zastosowaniami. Timer TP, czyli Timer Pulse, generuje impuls o określonym czasie po wykryciu sygnału wejściowego. Nie jest odpowiedni do zastosowań, gdzie wymagane jest opóźnienie przed aktywacją sygnału, ponieważ TP natychmiast generuje impuls, co jest sprzeczne z wymogami opóźnienia na rysunku. Natomiast TOF, Timer Off-Delay, działa odwrotnie do TON - po odłączeniu sygnału wejściowego odlicza czas do wyłączenia sygnału wyjściowego. Jest to użyteczne w sytuacjach, gdzie potrzebujemy, aby urządzenie działało jeszcze przez chwilę po zaniku sygnału, co jednak nie ma zastosowania w przykładzie z rysunku. TONR, czyli Timer On-Delay Retentive, zachowuje odliczany czas w przypadku chwilowej utraty zasilania, co jest przydatne w systemach o niestabilnym zasilaniu. Jednak w tym przypadku, gdzie opóźnienie ma być zastosowane przy stabilnym sygnale, nie jest to konieczne. Typowym błędem myślowym jest założenie, że każdy timer można zastosować zamiennie, co prowadzi do nieprawidłowego działania programów i błędów operacyjnych. Zrozumienie specyfiki każdego z tych bloków jest kluczowe dla projektowania niezawodnych systemów automatyki. Ostatecznie, wybór niewłaściwego bloku czasowego może prowadzić do nieoczekiwanych zachowań systemu, co może być kosztowne i czasochłonne do naprawy.

Pytanie 26

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. wkrętaka gwiazdkowego.
B. klucza hydraulicznego nastawnego.
C. klucza „francuskiego”.
D. klucza imbusowego.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 27

Na ilustracji przedstawiono

Ilustracja do pytania
A. stycznik.
B. dławik.
C. bezpiecznik.
D. przekaźnik.
Stycznik to urządzenie elektryczne, które umożliwia zdalne sterowanie obwodami elektrycznymi. Zasadniczo działa na zasadzie elektromagnesu – po podaniu napięcia na cewkę, styki ruchome są przyciągane do styków stałych, co zamyka obwód. Styczniki są kluczowe w automatyce przemysłowej, służą do załączania i wyłączania obwodów o wysokim napięciu i prądzie. Często stosuje się je w aplikacjach takich jak sterowanie silnikami, gdzie mogą pracować w trudnych warunkach środowiskowych i mechanicznych. Istnieją standardy, jak IEC 60947, które definiują parametry i wymagania dotyczące styczników. Z mojego doświadczenia, to jeden z najczęściej używanych elementów w szafach sterowniczych. Warto zauważyć, że jakość stycznika wpływa na niezawodność całego systemu, dlatego wybór odpowiedniego modelu i producenta jest istotny. Zmiana na stycznik o wyższej mocy może być konieczna, jeśli system zacznie wymagać większych prądów.

Pytanie 28

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Wizualizacja przebiegu procesu.
B. Programowanie układu.
C. Zasilanie układu sterowania.
D. Pomiar wielkości procesowych.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 29

Określ, który blok funkcyjny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Timer TON.
B. Regulator PID.
C. Licznik dwukierunkowy.
D. Multiplekser analogowy.
Wybór licznika dwukierunkowego jako odpowiedniego bloku funkcyjnego do sterowania urządzeniem pakującym zabawki do kartonu jest jak najbardziej trafiony. Licznik dwukierunkowy to rodzaj licznika, który potrafi zarówno zwiększać, jak i zmniejszać swoją wartość, w zależności od sygnałów wejściowych. Jest to niezwykle przydatne w sytuacjach, gdzie musimy kontrolować precyzyjne ilości - na przykład liczbę zabawek, które mają zostać zapakowane do jednego kartonu. W praktyce, licznik dwukierunkowy można skonfigurować tak, aby zwiększał swoją wartość o jeden za każdym razem, gdy zabawka jest umieszczana w kartonie, a zmniejszał, gdy coś idzie nie tak i trzeba zabawkę usunąć. Dzięki temu mamy pełną kontrolę nad procesem pakowania i zapewniamy, że w każdym kartonie znajdzie się dokładnie tyle zabawek, ile potrzeba. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, gdzie dąży się do dokładności i precyzji w procesach produkcyjnych. Warto także podkreślić, że liczniki tego typu są szeroko stosowane w automatyce przemysłowej i stanowią podstawowy element wielu systemów kontrolnych, szczególnie tam, gdzie istotna jest możliwość reagowania na zmieniające się warunki procesu.

Pytanie 30

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. położenie przełącznika trybu pracy sterownika PLC.
B. prawidłowość podłączeń przewodów ochronnych w układzie.
C. kolejność podłączeń elementów wyjściowych do sterownika.
D. kolejność podłączeń elementów wejściowych do sterownika.
Wybór niewłaściwej odpowiedzi może wynikać z niepełnego zrozumienia procedury uruchomieniowej. Zaczynając od położenia przełącznika trybu pracy sterownika PLC, jego prawidłowe ustawienie jest oczywiście ważne, ale nie stanowi pierwszego kroku w kontekście bezpieczeństwa całego układu. Przełącznik trybu pracy wpływa na działanie sterownika, ale nie ma bezpośredniego związku z bezpieczeństwem elektrycznym. Jeśli chodzi o kolejność podłączeń elementów wejściowych i wyjściowych do sterownika, to są to kroki ważne dla poprawnego działania funkcji sterownika, ale nie dla bezpieczeństwa użytkownika. Prawidłowa kolejność podłączeń zapewnia, że sygnały są właściwie odbierane i wysyłane, lecz nie chroni przed zagrożeniem porażenia prądem. Typowe błędy myślowe mogą wynikać z przekonania, że techniczna poprawność funkcjonowania systemu automatycznie zapewnia bezpieczeństwo, co nie zawsze jest prawdą. Bezpieczeństwo musi być weryfikowane na poziomie fundamentów, jakimi są przewody ochronne. Dlatego tak ważne jest, by na samym początku upewnić się, że fundamenty tego bezpieczeństwa są prawidłowo ustanowione.

Pytanie 31

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 19°C
B. 8°C
C. 9°C
D. 18°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 32

Na podstawie tabeli określ, jak często należy czyścić filtr ssawny.

Lp.Zakres pracTermin wykonania
1Śruby mocująceSprawdzenie momentu dokręceniaPo pierwszej godzinie pracy
2ZbiornikOpróżnianie zbiornikaPo każdej pracy dłuższej niż 1 h
3Filtr ssawnyCzyszczenieCo 100 h
WymianaW razie konieczności
4OlejWymianaPo pierwszych 100 h
Co 300 h
Sprawdzanie stanuRaz w tygodniu
A. Raz w tygodniu.
B. Co godzinę.
C. Co 100 godzin.
D. Co 300 godzin.
To, że wybrałeś odpowiedź 'Co 100 godzin' jako prawidłową, świadczy o twojej umiejętności prawidłowego analizowania harmonogramów konserwacyjnych. W tabeli wyraźnie podano, że czyszczenie filtra ssawnego powinno się odbywać co 100 godzin pracy. To nie jest przypadkowy wybór; jest to część standardowych procedur konserwacyjnych, które pomagają w utrzymaniu optymalnej wydajności maszyn. Regularne czyszczenie filtra ssawnego co 100 godzin pozwala na uniknięcie problemów związanych z zanieczyszczeniem systemu, takich jak zmniejszenie mocy ssania czy awarie pompy. Z mojego doświadczenia wynika, że takie podejście znacząco wydłuża żywotność sprzętu i zmniejsza koszty związane z naprawami. W branży powszechnie stosuje się zasadę, że regularna konserwacja jest tańsza i bardziej efektywna niż naprawy awaryjne. Dlatego warto zawsze pamiętać o harmonogramie konserwacji i nie pomijać żadnych jego punktów. Filtry są kluczowym elementem systemów ssawnych i ich stan ma bezpośredni wpływ na wydajność całego układu. Stąd też, takie regularne czyszczenie jest nie tylko zalecane, ale wręcz konieczne dla zachowania pełnej funkcjonalności urządzeń. Odpowiednia konserwacja to również dbałość o bezpieczeństwo eksploatacji, co w dłuższej perspektywie przekłada się na lepsze wyniki finansowe i operacyjne.

Pytanie 33

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe
B. bimetalowe.
C. rezystancyjne półprzewodnikowe.
D. termoelektryczne.
Kiedy mówimy o czujnikach do pomiaru temperatury w systemach automatyki, kluczowe jest zrozumienie ich zasady działania. Rezystancyjne czujniki półprzewodnikowe, choć również mierzą temperaturę przez zmianę rezystancji, mają inne zastosowania. Są bardziej czułe na zmiany temperatury, ale mniej dokładne i stabilne w porównaniu do metalowych jak Pt100. Często można je spotkać w prostych i tańszych aplikacjach, gdzie precyzja nie jest kluczowa. Termoelektryczne czujniki, inaczej termopary, działają na zasadzie zjawiska Seebecka – generują sygnał napięciowy w odpowiedzi na różnicę temperatur pomiędzy dwoma złączami. Choć są używane w szerokim zakresie temperatur, ich dokładność jest mniejsza bez stosowania dodatkowych układów kompensacyjnych. Bimetalowe czujniki opierają się na różnicy rozszerzalności cieplnej dwóch złączonych metali i są bardziej mechaniczne niż elektroniczne w działaniu. Znajdują zastosowanie w prostych termostatach i zabezpieczeniach przed przegrzaniem, ale nie w precyzyjnych systemach pomiarowych z sygnałem 4-20 mA. Często myli się te rodzaje czujników z powodu podobieństw w nazwach, ale ich zastosowanie i działanie są zupełnie odmienne. Wybór niewłaściwego czujnika może prowadzić do błędnych pomiarów i problemów w aplikacji przemysłowej. Dlatego tak ważne jest, aby znać różnice i stosować się do wytycznych branżowych oraz dobrych praktyk przy ich wyborze i implementacji.

Pytanie 34

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 1
Ilustracja do odpowiedzi A
B. Narzędzie 4
Ilustracja do odpowiedzi B
C. Narzędzie 3
Ilustracja do odpowiedzi C
D. Narzędzie 2
Ilustracja do odpowiedzi D
Pierwsze narzędzie widoczne na zdjęciu to obcinak do rur, najczęściej używany przy pracach hydraulicznych – do cięcia rur z tworzyw sztucznych, miedzi lub aluminium. Nie nadaje się do zdejmowania izolacji z przewodów elektrycznych, ponieważ jego ostrze jest zaprojektowane do przecinania grubych, sztywnych materiałów, a nie do precyzyjnego nacinania powłoki przewodów. Gdyby ktoś próbował użyć go do kabli, bardzo łatwo mógłby uszkodzić żyły przewodzące. W przeciwieństwie do niego, pozostałe narzędzia (2, 3 i 4) to ściągacze izolacji, zaprojektowane właśnie do pracy z przewodami jedno- i wielożyłowymi. Mają regulację średnicy, ograniczniki głębokości cięcia i specjalne szczęki zapobiegające przecięciu miedzi. Moim zdaniem to bardzo dobre pytanie praktyczne – w warsztacie czy na budowie zdarza się, że ktoś myli obcinak do rur z ściągaczem, bo oba mają podobny kształt uchwytu. W rzeczywistości jednak to zupełnie inne narzędzia – jedno tnie, drugie tylko usuwa cienką warstwę izolacji, zachowując nienaruszony przewodnik. Profesjonalny elektryk zawsze użyje dedykowanego ściągacza, aby uniknąć ryzyka przegrzania lub zwarcia w przewodzie.

Pytanie 35

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

Ilustracja do pytania
A. 1
B. 4
C. 3
D. 2
Odpowiedź jest prawidłowa, ponieważ na schemacie zespołu przygotowania powietrza, manometr jest oznaczony cyfrą 2. Manometr to instrument pomiarowy służący do mierzenia ciśnienia płynów i gazów. W przypadku systemów pneumatycznych, takich jak zespoły przygotowania powietrza, manometry pełnią kluczową rolę w monitorowaniu ciśnienia roboczego, co jest niezbędne do prawidłowego działania całego układu. Poprawne odczytywanie i interpretacja danych z manometru pozwala na szybkie reagowanie na wszelkie odchylenia od normy, co może zapobiec awariom i zwiększyć efektywność systemu. Standardy w branży pneumatycznej, takie jak ISO 1219, precyzują oznaczanie urządzeń na schematach, co ułatwia identyfikację i obsługę. Moim zdaniem, umiejętność czytania takich schematów jest fundamentalna dla każdego technika pracującego w dziedzinie automatyki i pneumatyki. Dobrze jest także znać różne typy manometrów, jak te z rurką Bourdona, które są popularne ze względu na swoją niezawodność i precyzję.

Pytanie 36

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. zdwojenia.
B. propagacji.
C. wyprzedzenia.
D. proporcjonalności.
Używanie niewłaściwych terminów w kontekście regulatora PID może prowadzić do poważnych nieporozumień. Współczynnik Kₚ odnosi się do członu proporcjonalnego, a nie jest związany z żadnym ze wskazanych terminów jak zdwojenie, propagacja czy wyprzedzenie. Pojęcie zdwojenia mogłoby się kojarzyć z podwajaniem wartości, ale nie ma związku z logiką regulacji PID. Propagacja to termin często używany w kontekście fal elektromagnetycznych czy rozprzestrzeniania się sygnałów, i choć istotny w elektronice, nie odnosi się bezpośrednio do działania regulatora PID. Wyprzedzenie kojarzone jest z przewidywaniem czy kompensowaniem przyszłych zmian, co raczej odnosi się do zaawansowanych metod sterowania opartych na modelach predykcyjnych. Często spotykanym błędem jest myślenie, że każdy z członów regulatora PID odpowiada za coś zupełnie innego niż w rzeczywistości. Moim zdaniem, zrozumienie właściwych definicji i ich zastosowań praktycznych jest kluczem do efektywnego używania regulatorów PID, szczególnie gdy potrzeba dostroić układ do odpowiedzi na dynamiczne zmiany. Wiedza o tym, co robi każdy z członów PID, jest niezbędna dla każdego inżyniera automatyka i wymaga solidnych podstaw teoretycznych oraz praktycznych, co jest też dobrze opisane w literaturze fachowej i standardach branżowych.

Pytanie 37

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawna jest odpowiedź przedstawiająca symbol przekładni zębatej. Na rysunku technicznym taki symbol oznacza dwa współpracujące koła zębate, które przenoszą moment obrotowy z jednego wału na drugi. Linie prostopadłe i krótkie poprzeczne kreski pokazują położenie osi i zazębienie. W praktyce konstrukcyjnej stosuje się ten zapis w schematach kinematycznych, gdzie nie pokazuje się kształtu zębów, tylko sposób przeniesienia napędu. Przekładnie zębate są bardzo powszechne – można je spotkać w skrzyniach biegów, mechanizmach obrabiarek, napędach bram czy robotach przemysłowych. Ich główną zaletą jest duża sprawność i możliwość przenoszenia dużych momentów przy niewielkich stratach energii. W dokumentacji technicznej obowiązują normy PN-EN ISO, które określają dokładnie wygląd symboli, dzięki czemu każdy inżynier lub technik może zrozumieć rysunek niezależnie od kraju. Moim zdaniem dobrze jest zapamiętać ten symbol, bo pojawia się on w większości schematów maszynowych.

Pytanie 38

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Klucz nasadowy.
B. Wkrętak krzyżakowy.
C. Wkrętak płaski.
D. Klucz oczkowy.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 39

Na podstawie tabeli, określ ile oleju należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400.

Typ pompyIlość oleju w silniku [l]Ilość oleju w komorze olejowej [l]Całkowita ilość oleju w pompie [l]
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18
A. 1,70 l
B. 0,90 l
C. 0,40 l
D. 1,82 l
Odpowiedź 1,82 l jest prawidłowa, ponieważ to dokładnie tyle oleju potrzeba do całkowitej wymiany w pompie IF1 400, jak wskazuje tabela. Warto zauważyć, że ilość oleju jest sumą oleju w silniku oraz w komorze olejowej, co jest standardowym podejściem do mierzenia całkowitej pojemności olejowej w urządzeniach mechanicznych. Dobre praktyki branżowe sugerują, by regularnie sprawdzać i wymieniać olej w pompach, ponieważ zapewnia to ich optymalne działanie i wydłuża żywotność urządzenia. W tym przypadku, wiedza o możliwości wystąpienia luzów w połączeniach i ich wpływie na przepływ oleju może być kluczowa. Często w zakładach przemysłowych stosuje się oleje o określonych parametrach lepkościowych, co również powinno być brane pod uwagę przy wymianie. Takie detale mogą mieć ogromne znaczenie przy wyborze odpowiednich materiałów eksploatacyjnych w przemyśle mechanicznym. Warto dodać, że prawidłowe utrzymanie poziomu oleju to nie tylko wymiana, ale też monitorowanie jego jakości, co można robić poprzez regularne analizy laboratoryjne. Tego rodzaju podejście do konserwacji jest często zalecane w normach ISO dotyczących zarządzania jakością i utrzymania ruchu.

Pytanie 40

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. silnik prądu stałego.
B. silnik prądu zmiennego.
C. dławik.
D. transformator.
Wiele osób myli ten typ silnika z urządzeniami prądu stałego lub nawet z transformatorem, głównie przez podobny wygląd metalowej obudowy i wyprowadzenia przewodów. Jednak transformator nie ma wału ani części ruchomych – jego zadaniem jest jedynie przekazywanie energii między uzwojeniami poprzez indukcję elektromagnetyczną, bez ruchu mechanicznego. Silnik prądu stałego z kolei posiada szczotki i komutator, które zamieniają prąd stały na wirujące pole magnetyczne – na obudowie takich urządzeń widnieją oznaczenia typu „DC” lub „12 V”, a nie „50 Hz” czy „110 V AC”. Dławik natomiast to element bierny służący do ograniczania prądu w obwodzie lub filtracji zakłóceń, nie ma on żadnych ruchomych części i nie wykonuje pracy mechanicznej. Typowym błędem początkujących jest utożsamianie każdego metalowego cylindra z przewodami z silnikiem DC, bo wiele z nich wygląda podobnie. W rzeczywistości kluczowe jest zwrócenie uwagi na oznaczenia producenta – w tym przypadku „SYNCHRONOUS MOTOR 110 V 50 Hz” jednoznacznie mówi o zasilaniu prądem zmiennym. W technice warsztatowej takie silniki stosuje się np. w napędach zegarowych, zaworach proporcjonalnych, sterownikach czasowych i małych pompach, gdzie nie ma potrzeby regulacji prędkości. Dlatego każda z pozostałych odpowiedzi pomija podstawową cechę widocznego urządzenia – zasilanie prądem przemiennym.