Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 11:35
  • Data zakończenia: 9 grudnia 2025 11:53

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Określ, który blok funkcjonalny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Licznik jednokierunkowy.
B. Regulator PID
C. Timer TON
D. Multiplekser analogowy.
Wybór licznika jednokierunkowego do sterowania urządzeniem pakującym zabawki jest trafny, ponieważ liczniki świetnie nadają się do zliczania określonej liczby zdarzeń, takich jak pakowanie zabawek do kartonu. Licznik jednokierunkowy, często określany jako licznik up, zwiększa swoją wartość za każdym razem, gdy otrzymuje impuls. W kontekście urządzenia pakującego może to być impuls z czujnika, który rejestruje każdą wrzuconą zabawkę. Po osiągnięciu zaprogramowanej liczby zabawek licznik może wysłać sygnał, który inicjuje kolejne działania, takie jak zamknięcie i przeniesienie kartonu. To podejście jest zgodne z praktycznym zastosowaniem w automatyce przemysłowej, gdzie liczniki są często wykorzystywane do zadań związanych z kontrolą ilościową. W branży automatyki standardem jest stosowanie liczników w przypadku, gdy wymagane jest precyzyjne śledzenie liczby operacji. Takie rozwiązanie zapewnia zarówno dokładność, jak i prostotę implementacji, co jest kluczowe w środowiskach produkcyjnych, gdzie niezawodność i łatwość obsługi są na wagę złota. Warto zauważyć, że w przypadku bardziej złożonych operacji, licznik jednokierunkowy może być częścią systemu zawierającego również inne typy liczników lub komponenty logiczne.

Pytanie 2

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RJ-45
B. HDMI
C. RS-232
D. USB
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 3

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. A
C. T
D. B
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 4

Którą funkcję logiczną realizuje element przedstawiony na rysunku?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Analizując różne możliwości, można zauważyć, że często jest trudno odróżnić funkcje logiczne tylko na podstawie tabelki prawdy. Źle dobrana odpowiedź mogła wynikać z błędnej interpretacji tabeli prawdy, która jest kluczowa w zrozumieniu logiki systemu. Tabela prawdy dla funkcji OR pokazuje, że wynik jest prawdziwy, gdy przynajmniej jedno wejście jest prawdziwe. W przeciwnym razie, jak w funkcji AND, wynik byłby prawdziwy tylko wtedy, gdy oba wejścia są prawdziwe, co w kontekście zaworów pneumatycznych oznaczałoby brak przepływu przy zasilaniu tylko jednego wejścia. Błędne wybranie funkcji NOT, sugerowałoby, że przy jednym zasileniu występuje brak przepływu, co nie odpowiada rzeczywistości w tym przypadku. Typowym błędem jest mieszanie funkcji XOR z OR, gdzie XOR wymaga tylko jednego aktywnego sygnału dla wyniku prawdziwego, ale nie obu jednocześnie. Zrozumienie tych różnic jest fundamentalne w projektowaniu niezawodnych systemów logicznych i ma kluczowe znaczenie w automatyzacji procesów.

Pytanie 5

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 6

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Do testowania okablowania strukturalnego należy użyć specjalistycznego miernika sieciowego Fluke Networks CableIQ. To urządzenie zostało zaprojektowane właśnie do kwalifikacji i diagnostyki kabli miedzianych w instalacjach komputerowych i teleinformatycznych. Pozwala sprawdzić, czy dany odcinek przewodu spełnia wymagania dla transmisji 10BASE-T, 100BASE-TX, 1000BASE-T lub VoIP. Miernik ten wykonuje testy ciągłości, mapy połączeń, długości żył, a także wykrywa błędy takie jak zwarcia, przerwy, zamiany par czy przesłuchy. Co więcej, potrafi określić jakość toru transmisyjnego – czyli tzw. kwalifikację kabla – bez potrzeby używania certyfikatora. W praktyce Fluke Networks to standard w branży telekomunikacyjnej i instalatorskiej; dzięki prostemu interfejsowi i automatycznym raportom jest niezastąpiony przy odbiorach sieci LAN. Moim zdaniem to najlepsze rozwiązanie do pracy w terenie – szybkie, dokładne i odporne na błędy użytkownika.

Pytanie 7

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na ilustracji to

Ilustracja do pytania
A. ETHERNET
B. USB
C. OBD II
D. RS-232
Wybór nieprawidłowej odpowiedzi może wynikać z niepełnego zrozumienia, jak różne interfejsy komunikacyjne są stosowane w sterownikach PLC. USB, choć popularny w wielu urządzeniach, nie jest standardem w komunikacji przemysłowej, ponieważ nie zapewnia odpowiedniej niezawodności i szybkości przesyłu danych na duże odległości. USB jest raczej stosowany do lokalnego programowania urządzeń, ale nie do ich integracji z siecią przemysłową. OBD II to interfejs diagnostyczny stosowany w pojazdach samochodowych, zupełnie nieodpowiedni dla przemysłowych sterowników PLC. Jest to powszechne nieporozumienie, wynikające z zamieszania wokół różnych standardów komunikacyjnych. RS-232 jest starszym standardem, który choć kiedyś był szeroko używany, teraz jest zbyt wolny i ograniczony do połączeń punkt-punkt. Współczesne systemy automatyki wymagają szybszej i bardziej elastycznej komunikacji, stąd preferencja dla Ethernetu. Typowy błąd myślowy to założenie, że RS-232 wystarczy do wszystkich zastosowań, co w nowoczesnych sieciach przemysłowych nie jest prawdą. Wybór Ethernetu jest zgodny z aktualnymi standardami i najlepszymi praktykami w branży automatyki.

Pytanie 8

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. kołków rozprężnych.
C. pierścieni Segera.
D. podkładek dystansowych.
Choć na pierwszy rzut oka mogą się mylić, narzędzie przedstawione na ilustracjach nie służy do montażu pierścieni Segera. Pierścienie te, znane również jako pierścienie zabezpieczające, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Bez odpowiedniego narzędzia, montaż i demontaż takich pierścieni jest nie tylko trudny, ale i ryzykowny dla mechanizmów. Podobnie, narzędzie to nie jest przeznaczone do montażu kołków rozprężnych, które działają na zasadzie sił rozszerzających, a ich montaż wymaga najczęściej młotka lub prasy. Podkładki dystansowe z kolei nie wymagają użycia tego rodzaju narzędzi, ponieważ są to płaskie elementy mające na celu regulację odległości pomiędzy częściami, a ich montaż jest manualny. Typowym błędem jest mylenie szczypiec do E-ring z innymi narzędziami z powodu ich zewnętrznego podobieństwa. Jednak funkcja i konstrukcja są specjalnie dostosowane do konkretnego zastosowania. W przypadku E-ringów, kluczowe jest odpowiednie dopasowanie narzędzia, aby zapewnić właściwe działanie zabezpieczenia i uniknąć uszkodzeń mechanicznych. Dlatego zawsze warto dokładnie sprawdzić specyfikację techniczną narzędzia przed jego użyciem.

Pytanie 9

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 2 oraz L
B. O oraz L
C. 5 oraz L
D. H oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 10

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 9°C
B. 19°C
C. 18°C
D. 8°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 11

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 30 mm
B. 10 mm
C. 20 mm
D. 60 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 12

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 2 i 4.
B. 2 i 3.
C. 1 i 4.
D. 3 i 4.
Dobrze, że zauważyłeś, że piny 2 i 4 są kluczowe w tym układzie. Pin 2 oznaczony jest jako NC (normally closed), a pin 4 jako NO (normally open). To typowe oznaczenia w technice przekaźników i czujników, gdzie NC oznacza, że obwód jest zamknięty w stanie nieaktywnym, a NO że jest otwarty. W praktyce, wiele przetworników, szczególnie w automatyce przemysłowej, wykorzystuje te piny do przesyłania sygnałów do odbiorników. Podłączając piny 2 i 4 do odbiorników, zapewniasz prawidłowe działanie zarówno w trybie normalnie zamkniętym, jak i otwartym, co jest często wymogiem w systemach zabezpieczeń i automatyki. To podejście jest zgodne z wieloma normami, takimi jak IEC 60947 dotyczących aparatury rozdzielczej i sterowniczej. Warto pamiętać, że takie połączenia zwiększają niezawodność systemu i pozwalają na szybką reakcję w przypadku zmiany stanu czujnika.

Pytanie 13

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. cięcia przewodów.
C. ściągania izolacji.
D. zaciskania wtyków RJ45.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 14

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. NOR
B. NAND
C. XOR
D. OR
Program przedstawiony na rysunku realizuje funkcję logiczną NOR, co jest skrótem od „NOT OR”. W logice oznacza to, że wyjście będzie aktywne tylko wtedy, gdy wszystkie wejścia są nieaktywne. W przypadku sterowników PLC, funkcja NOR jest często używana w sytuacjach, gdy chcemy, aby określone wyjście działało tylko wtedy, gdy żaden z czujników lub przełączników nie jest aktywowany. Na rysunku widzimy dwie szeregowo połączone cewki, co oznacza, że wyjście zostanie aktywowane tylko wtedy, gdy oba wejścia są w stanie niskim (czyli logiczne 0). To typowe w aplikacjach bezpieczeństwa, gdzie z różnych powodów potrzebujemy gwarancji, że coś się nie wydarzy, dopóki wszystkie warunki nie są spełnione. Moim zdaniem, zastosowanie funkcji NOR jest niezwykle praktyczne, szczególnie w automatyce przemysłowej, gdzie niezawodność jest kluczowa. Warto pamiętać, że użycie tej funkcji jest zgodne z normami IEC dotyczących projektowania systemów sterowania, co gwarantuje wysoką jakość i bezpieczeństwo działania systemu.

Pytanie 15

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. rdzeń.
B. styki.
C. zworę.
D. cewkę.
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.

Pytanie 16

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. AND
B. OR
C. NAND
D. NOT
W tym układzie uszkodzona nie jest ani bramka OR, ani NOT, ani NAND – tylko AND. Warto to prześledzić logicznie. Pierwsza bramka (OR) ma na wejściach dwa sygnały 1, więc poprawnie daje 1 na wyjściu. Dolna część układu zawiera inwerter (NOT), który z wejścia 1 tworzy 0 – i to także działa prawidłowo. Te dwa sygnały (1 z OR i 0 z NOT) trafiają następnie do bramki AND. Zgodnie z tablicą prawdy dla bramki AND, wynik powinien być 0, ponieważ jedno z wejść ma wartość 0. Na rysunku jednak wyjście tej bramki ma stan 1 – co jest logicznie niemożliwe, jeśli bramka działa poprawnie. Wskazuje to na jej uszkodzenie, np. zwarcie wewnętrzne powodujące utrzymanie stałego poziomu wysokiego niezależnie od wejść. Ostatnia bramka w układzie ma oznaczenie NAND, ale w tym przypadku działa poprawnie – jej wyjście 1 odpowiada wejściom 1 i 0, bo NAND daje 1, gdy nie wszystkie wejścia są jednocześnie 1. Typowy błąd przy analizie takich schematów to nieuwzględnienie, że jedna z bramek może być zrealizowana w technologii negującej (z kółkiem na wyjściu). W praktyce napraw układów logicznych bramka AND jest często pierwszym podejrzanym elementem, jeśli mimo wejść 0 i 1 na wyjściu pojawia się stała jedynka logiczna – to oznacza awarię toru wyjściowego lub zwarcie z zasilaniem. Poprawna diagnoza wymaga zrozumienia podstaw algebry Boole’a i tabel prawdy dla poszczególnych typów bramek.

Pytanie 17

Do pomiaru średnicy otworu φ 50 z dokładnością do 0,01 mm należy użyć

A. przymiaru kreskowego.
B. czujnika zegarowego.
C. średnicówki mikrometrycznej.
D. głębokościomierza.
Średnicówka mikrometryczna to narzędzie, które idealnie nadaje się do pomiaru średnicy otworu z wysoką precyzją, nawet do 0,01 mm. Dlaczego właśnie ten przyrząd? Średnicówki mikrometryczne są zaprojektowane do wykonywania niezwykle dokładnych pomiarów wewnętrznych, co czyni je nieocenionymi w przemyśle maszynowym, gdzie precyzja jest kluczowa. Dzięki swojej budowie, która obejmuje śrubę mikrometryczną, można uzyskać dokładność i powtarzalność pomiarów, co jest niezbędne w produkcji seryjnej czy przy kontroli jakości. Przykłady zastosowania średnicówki mikrometrycznej to choćby kontrola jakości otworów w elementach silników spalinowych czy w produkcji elementów hydraulicznych, gdzie każda odchyłka od normy może prowadzić do awarii całego systemu. Z mojego doświadczenia, posługiwanie się średnicówką wymaga pewnej wprawy, ale kiedy już opanujesz tę umiejętność, otwierają się przed tobą szerokie możliwości. Ważne jest również, by pamiętać o regularnej kalibracji tego instrumentu, zgodnie z wymaganiami norm ISO, co zapewnia zachowanie dokładności i niezawodności pomiarów.

Pytanie 18

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku?

Ilustracja do pytania
A. FBD
B. SFC
C. IL
D. LD
Wybrałeś odpowiedź LD, co oznacza język drabinkowy (Ladder Diagram). Jest to najbardziej zrozumiały i popularny język programowania PLC, przypominający schematy elektryczne. Moim zdaniem, to bardzo intuicyjny sposób przedstawiania logiki sterowania, szczególnie dla osób z doświadczeniem w elektrotechnice. LD pozwala na łatwe odwzorowanie działania przekaźników i styczników, co jest niezwykle przydatne w aplikacjach przemysłowych, takich jak sterowanie maszynami lub procesami produkcyjnymi. W standardach IEC 61131-3, LD jest jednym z pięciu akceptowanych języków programowania, co potwierdza jego znaczenie w branży. Praktycznym przykładem może być sterowanie taśmą produkcyjną, gdzie różne czujniki i silniki są zintegrowane za pomocą logicznych warunków przedstawionych w formie drabinki. Dzięki LD możliwe jest szybkie diagnozowanie i modyfikowanie programu, co w środowisku przemysłowym jest kluczowe dla utrzymania ciągłości produkcji. Język ten pozwala także na symulację działania systemu przed jego rzeczywistym uruchomieniem, co jest zgodne z najlepszymi praktykami w zakresie testowania i walidacji systemów sterowania.

Pytanie 19

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. kluczy oczkowych.
B. kluczy imbusowych.
C. wkrętaków krzyżowych.
D. wkrętaków płaskich.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 20

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 21

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. ADD
B. DIV
C. SUB
D. MUL
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 22

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. ADD
B. MUL
C. SUB
D. DIV
Odpowiedź SUB jest poprawna, ponieważ w programowaniu sterowników PLC jest to instrukcja służąca do odejmowania. W praktyce, podczas projektowania systemów automatyki, często spotykamy się z sytuacjami, w których wymagane jest zmniejszenie wartości sygnału, np. podczas obliczania różnicy między wartością zadana a rzeczywistą. Instrukcja SUB jest tutaj kluczowa. W językach programowania PLC, takich jak Ladder Logic czy język strukturalny tekst, SUB jest standardowym poleceniem. Działa podobnie jak operator odejmowania w matematyce, umożliwiając programiście manipulację danymi w czasie rzeczywistym. To jest szczególnie przydatne w systemach sterowania procesami przemysłowymi, gdzie od dokładnych obliczeń zależy bezpieczeństwo i efektywność operacji. Warto również zauważyć, że odejmowanie, jako operacja arytmetyczna, jest jedną z podstawowych funkcji każdego języka programowania, także tych używanych w PLC. Dlatego umiejętność korzystania z SUB to podstawa dla każdego inżyniera automatyki. Moim zdaniem, zrozumienie tych podstawowych funkcji pozwala na budowanie bardziej skomplikowanych algorytmów sterujących, które mogą w znaczący sposób poprawić funkcjonowanie całego systemu.

Pytanie 23

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. OR
B. NOR
C. Ex-OR
D. Ex-NOR
Funkcja Ex-OR, znana także jako XOR, jest jedną z podstawowych operacji logicznych wykorzystywanych w systemach cyfrowych i automatyce. Charakteryzuje się tym, że zwraca wartość prawdziwą tylko wtedy, gdy dokładnie jedno z wejść jest prawdziwe. W kontekście drabinki logicznej przedstawionej na rysunku, widzimy, że układ realizuje sumę logiczną wykluczającej lub (o czym świadczy połączenie szeregowe i równoległe styczników). Praktycznie, Ex-OR jest szeroko stosowany w aplikacjach, gdzie istotne jest wykrycie różnicy pomiędzy sygnałami, np. w układach zabezpieczeń, gdzie różne stany wejściowe mogą odpowiadać za różne tryby pracy. W standardach automatyki przemysłowej, takich jak IEC 61131, Ex-OR jest często używany do realizacji zaawansowanych funkcji kontrolnych. Moim zdaniem, zrozumienie tej funkcji jest kluczowe dla każdego automatyka, ponieważ pozwala na projektowanie elastycznych i funkcjonalnych systemów sterowania.

Pytanie 24

W sterowniku PLC wejścia analogowe oznaczane są symbolem literowym

A. I
B. Q
C. AQ
D. AI
W sterownikach PLC wejścia analogowe oznacza się symbolem AI, co jest skrótem od 'Analog Input'. To standard w branży, który ułatwia jednoznaczną identyfikację typu sygnału na wejściu. Wejścia analogowe są niezwykle ważne, ponieważ umożliwiają przetwarzanie sygnałów zmieniających się w czasie – na przykład sygnałów z czujników temperatury, ciśnienia czy poziomu cieczy. W praktyce spotkasz się z różnymi typami wejść, które mogą odbierać sygnały prądowe (np. 4-20 mA) lub napięciowe (np. 0-10 V), co daje dużą elastyczność w łączeniu różnych urządzeń pomiarowych. Branża automatyki przemysłowej często wykorzystuje te standardy, aby uprościć integrację systemów od różnych producentów. Ważne jest, aby prawidłowo skonfigurować wejścia analogowe, biorąc pod uwagę parametry sygnału i jego źródło, co pozwala uniknąć błędów w odczycie danych. Z mojego doświadczenia, dobrze działające wejścia analogowe mogą znacznie poprawić efektywność całego systemu, a co za tym idzie – wpływać na optymalizację procesów produkcyjnych.

Pytanie 25

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 2.
B. w pozycji 3.
C. w pozycji 1.
D. w pozycji 4.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 26

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 2, P2 – 1, P3 – B10
B. P1 – 2, P2 – 2, P3 – A0,1
C. P1 – 1, P2 – 1, P3 – A10
D. P1 – 1, P2 – 2, P3 – B0,1
Ustawienie przekaźnika czasowego wymaga zrozumienia, jak działa mechanizm nastawienia czasu oraz funkcji. Pierwsza niepoprawna kombinacja (P1 – 1, P2 – 1, P3 – A10) zakłada niewłaściwy tryb operacyjny (A), który nie jest odpowiedni dla opóźnionego załączenia, a także błędnie ustawia jednostki czasu. Tryb A jest dla natychmiastowego załączenia, co nie spełnia wymagania opóźnienia. Druga konfiguracja (P1 – 2, P2 – 2, P3 – A0,1) również błędnie wybiera tryb A i dodatkowo ustala zbyt krótki czas mnożnika 0,1 sekundy, co prowadzi do niepoprawnego czasu całkowitego. Kolejna odpowiedź (P1 – 1, P2 – 2, P3 – B0,1) używa poprawnego trybu B, ale błędnie ustawia mnożnik na 0,1 sekundy, co ponownie skutkuje nieodpowiednim czasem opóźnienia. Aby uniknąć takich błędów, należy dokładnie przestudiować funkcje każdego pokrętła oraz jak wpływają one na całościowe działanie przekaźnika. Z mojego doświadczenia, kluczem do poprawnej konfiguracji jest dokładne rozumienie instrukcji i zastosowania właściwych jednostek czasu, co często jest pomijane w praktyce, prowadząc do nieefektywnego działania systemu.

Pytanie 27

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. środkowego na 100
B. dolnego i górnego na 1
C. górnego na 1
D. dolnego na 1
Poprawne jest ustawienie dolnego pokrętła (oznaczonego jako t-Stop) na wartość 1 sekundy. Na przedstawionym panelu widoczne są trzy potencjometry: t-Start, U-Start i t-Stop. Pierwszy odpowiada za czas łagodnego rozruchu, drugi za napięcie początkowe przy starcie silnika, a trzeci – dolny – za czas łagodnego zatrzymania. W zadaniu chodzi o uzyskanie zatrzymania w czasie 1 sekundy, więc należy wyregulować właśnie t-Stop. W praktyce przemysłowej taki układ softstartu pozwala uniknąć gwałtownych zmian momentu i obciążeń mechanicznych przy zatrzymywaniu taśmociągu. Ustawienie t-Stop = 1 s oznacza, że napięcie na wyjściu będzie płynnie redukowane do zera w ciągu jednej sekundy, co zapobiega szarpnięciom i luzom w układzie przeniesienia napędu. Moim zdaniem to jedno z najważniejszych ustawień przy układach transportowych – zbyt krótki czas powoduje zbyt szybkie hamowanie i naprężenia w taśmie, a zbyt długi wydłuża cykl produkcyjny. Warto też pamiętać, że t-Start i t-Stop powinny być ustawione proporcjonalnie do masy i bezwładności całego układu, aby zachować płynność pracy.

Pytanie 28

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 2,2 m
B. 6,4 m
C. 8,5 m
D. 4,2 m
Odpowiedź 4,2 m jest prawidłowa, ponieważ wykres charakterystyki pompy PS 200 pokazuje, jak zmienia się wysokość podnoszenia cieczy w zależności od wydajności i prędkości obrotowej pompy. Przy prędkości obrotowej n = 1850 obr/min i wydajności 550 m³/h, wykres wskazuje na wysokość podnoszenia około 4,2 m. W praktyce takie podejście do analizy wykresów charakterystyk pomp jest kluczowe podczas projektowania systemów pompowych. Dzięki temu można dobrać odpowiednią pompę do konkretnego zastosowania, zapewniając jej optymalną wydajność. Dobrze dobrana pompa nie tylko spełnia wymagania wydajnościowe, ale także działa efektywnie, co przekłada się na niższe koszty eksploatacyjne i dłuższą żywotność. W branży wodociągowej czy przemysłowej, dobór pompy na podstawie dokładnych danych z wykresów jest standardem, co zapewnia bezpieczeństwo i niezawodność systemu. Warto pamiętać, że błędny dobór pompy może prowadzić do problemów z przepływem, a nawet awarii całego systemu.

Pytanie 29

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4 ÷ 20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. rezystancyjne półprzewodnikowe.
C. rezystancyjne metalowe.
D. bimetalowe.
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia typu czujników. Termoelektryczne czujniki, zwane również termoparami, wykorzystują efekt Seebecka, gdzie różnica temperatur między dwoma punktami w obwodzie elektrycznym generuje napięcie. Nie mają one jednak charakteru rezystancyjnego, a ich sygnał wyjściowy to napięcie, nie prąd 4 ÷ 20 mA. Bimetalowe czujniki z kolei działają na zasadzie różnej rozszerzalności dwóch połączonych metali, co powoduje ich wyginanie wraz ze zmianą temperatury. Są one jednak stosowane bardziej w termostatach mechanicznych niż w zaawansowanych systemach automatyki. Rezystancyjne półprzewodnikowe czujniki, takie jak termistory, zmieniają rezystancję z temperaturą, ale w inny sposób niż Pt100, a ich charakterystyki są bardziej nieliniowe. Typowe błędy to mylenie zasady działania czujników oraz brak zrozumienia, jak te technologie pracują w praktycznych aplikacjach. Dzięki zrozumieniu działania i aplikacji różnych typów czujników, możemy właściwie dobrać komponenty do specyficznych wymagań systemu, co jest kluczowe dla niezawodności i precyzji pomiarów w automatyce przemysłowej. Ważne jest, aby znać specyfikacje i ograniczenia każdego typu czujnika, co ułatwi wybór odpowiedniego rozwiązania i uniknięcie problemów w przyszłości.

Pytanie 30

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. układów ochronnych.
B. styków rozwiernych.
C. styków zwiernych.
D. cewki przekaźnika.
W przekaźnikach elektromagnetycznych symbole A1 i A2 to oznaczenia zacisków cewki przekaźnika, która jest kluczowym elementem tego urządzenia. Cewka jest odpowiedzialna za generowanie pola magnetycznego, które w efekcie przyciąga kotwicę przekaźnika, zmieniając jego stan. Jest to mechanizm podstawowy, lecz niezmiernie istotny w automatyce i elektronice. Dzięki cewce, przekaźniki mogą sterować sygnałami w obwodach elektrycznych, umożliwiając kontrolę nad różnymi urządzeniami. W praktyce, cewki są stosowane w układach zabezpieczeń, automatyce budynkowej czy w przemyśle, gdzie wymagana jest precyzyjna kontrola przepływu prądu elektrycznego. Standardy, takie jak IEC 61810, określają szczegółowe wymagania dotyczące konstrukcji i działania przekaźników, w tym oznaczeń zacisków, co ułatwia identyfikację i podłączanie urządzeń. Znajomość tych zasad jest kluczowa dla każdego, kto chce efektywnie i bezpiecznie korzystać z przekaźników w praktycznych zastosowaniach. Moim zdaniem, zrozumienie roli cewki w przekaźniku to fundament, który otwiera drzwi do świata bardziej zaawansowanej elektroniki.

Pytanie 31

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 1.
B. I2 = 1, I3 = 0.
C. I2 = 0, I3 = 0.
D. I2 = 1, I3 = 1.
Odpowiedź, że I2 = 1, I3 = 0, jest prawidłowa z kilku powodów. W układach automatyki pneumatycznej, czujniki takie jak B1 i B2 monitorują położenie elementów wykonawczych, tutaj siłownika. Przy wsuniętym tłoczysku, czujnik B1 powinien być aktywowany, co oznacza, że na wejściu I2 pojawia się stan wysoki (1). Czujnik B2, z kolei, monitoruje położenie wysuniętego tłoczyska, a ponieważ tłoczysko jest wsunięte, B2 pozostaje nieaktywny, co oznacza stan niski (0) na wejściu I3. Praktycznym zastosowaniem takiego układu jest kontrolowanie sekwencji pracy maszyny, gdzie kluczowe jest, aby kolejne kroki były podejmowane tylko wtedy, gdy poprzednie zostały prawidłowo zakończone. Standardy branżowe, takie jak IEC 61131 dotyczące programowania sterowników PLC, zalecają precyzyjne monitorowanie stanów wejść i wyjść, aby zapewnić bezpieczną i efektywną pracę systemu. Moim zdaniem, zrozumienie, jak działa taka logika, jest fundamentem w projektowaniu stabilnych i niezawodnych systemów automatyki. Warto także zwrócić uwagę na to, że stan czujnika B1 jako aktywny przy wsuniętym tłoczysku to dobra praktyka, która pomaga w łatwym diagnozowaniu ewentualnych problemów.

Pytanie 32

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ-11.
B. ściągania izolacji.
C. zaciskania wtyków RJ-45.
D. zaciskania tulejek.
To narzędzie, które widzisz na rysunku, to klasyczna szczypce do ściągania izolacji. Działa na zasadzie automatycznego zacisku, co pozwala na precyzyjne usunięcie izolacji z przewodów bez uszkadzania samego rdzenia. W praktyce, narzędzia tego typu są nieocenione przy przygotowywaniu przewodów do lutowania czy montażu w złączach elektrycznych. W branży elektroinstalacyjnej, szczególnie przy pracy z okablowaniem elektrycznym, standardem jest używanie właśnie takich ściągaczy. Moim zdaniem, to niezastąpiona pomoc przy większych projektach, gdzie liczy się zarówno czas, jak i precyzja. Z mojego doświadczenia, odpowiednie ściąganie izolacji to klucz do bezpiecznego i efektywnego połączenia elektrycznego. Warto znać różne typy takich narzędzi, ponieważ niektóre przystosowane są do specyficznych rodzajów przewodów. Pamiętaj, by zawsze dobierać narzędzie do średnicy i rodzaju przewodu, aby uniknąć uszkodzeń i zapewnić trwałość połączeń.

Pytanie 33

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornica napięcia.
B. analogowo-cyfrowy konwerter USB.
C. przetwornik PWM.
D. zadajnik cyfrowo-analogowy.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 34

Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości zasilającego silnik indukcyjny prądu przemiennego powoduje

A. spadek prędkości obrotowej wału silnika.
B. wzrost prędkości obrotowej wału silnika.
C. spadek rezystancji uzwojeń silnika.
D. wzrost rezystancji uzwojeń silnika.
W kontekście silników indukcyjnych i przemienników częstotliwości, powszechnym błędem jest myślenie, że rezystancja uzwojeń silnika może być bezpośrednio zależna od częstotliwości zasilania. W rzeczywistości, rezystancja jest właściwością materiału i konstrukcji uzwojeń, i nie zmienia się wraz z częstotliwością. Może wystąpić zjawisko zmiany pozornej impedancji z powodu efektów takich jak reaktancja indukcyjna, ale nie dotyczy to samej rezystancji. Kolejny mit dotyczy wpływu częstotliwości na prędkość obrotową wału. Przekonanie, że wzrost częstotliwości obniży prędkość, jest błędne. W silnikach indukcyjnych, które są synchroniczne w swojej naturze, prędkość obrotowa wzrasta wraz ze wzrostem częstotliwości. Tego typu nieporozumienia często wynikają z braku zrozumienia podstawowej zasady działania silników indukcyjnych, które operują w synchronizacji z częstotliwością prądu zasilającego. Błędem jest także ignorowanie wpływu liczby biegunów, która pozostaje stała w danym silniku i nie zmienia się z częstotliwością. W praktyce, przemienniki częstotliwości są kluczowe w aplikacjach, gdzie kontrola prędkości obrotowej jest istotna. Dlatego zrozumienie tych zasad jest niezbędne do efektywnego wykorzystania technologii w przemyśle i uniknięcia kosztownych błędów projektowych. Zaleca się, aby inżynierowie i technicy dokładnie przestudiowali specyfikacje i charakterystyki silników oraz ich kontrolerów, aby uniknąć błędnych założeń i zapewnić optymalne działanie systemów.

Pytanie 35

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 500 Ω
B. 100 Ω
C. 1 000 Ω
D. 0 Ω
Czujnik Pt500 to popularny typ czujnika rezystancyjnego wykonanego z platyny, który ma rezystancję nominalną 500 Ω przy temperaturze 0 °C. Platyna jest stosowana ze względu na jej stabilność chemiczną i liniowy przyrost rezystancji wraz ze wzrostem temperatury, co czyni ją idealnym materiałem do precyzyjnych pomiarów temperatury. W praktyce oznacza to, że czujnik Pt500 będzie miał wartość 500 Ω w temperaturze zera stopni Celsjusza. Dlaczego to takie ważne? W inżynierii i automatyzacji, precyzyjne pomiary temperatury są kluczowe dla utrzymania procesów produkcyjnych w odpowiednich warunkach. Czujniki Pt500 są stosowane w wielu aplikacjach, od kontroli klimatyzacji po zaawansowane procesy przemysłowe, ponieważ oferują wysoką dokładność i stabilność pomiarów. Ich zastosowanie jest szeroko zgodne ze standardami przemysłowymi, gdzie stabilność i niezawodność są priorytetami. Warto pamiętać, że rezystancja czujnika zmienia się zgodnie z wzrostem temperatury, co pozwala na precyzyjne określenie aktualnych warunków termicznych. To sprawia, że są one wyjątkowo przydatne w środowiskach wymagających dokładnego monitorowania temperatury.

Pytanie 36

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wiele osób myli symbol przekładni zębatej z symbolami innych rodzajów napędów, co jest całkiem zrozumiałe na początku nauki rysunku technicznego. Symbole z kołami połączonymi linią oznaczają przekładnie pasowe, w których napęd przenoszony jest przez pas, a nie przez zazębienie. To rozwiązanie pozwala na cichszą pracę i amortyzację drgań, ale ma mniejszą sprawność. Z kolei symbol z przerywaną linią wokół kół przedstawia przekładnię łańcuchową, w której moment obrotowy przenosi łańcuch z ogniwami współpracującymi z zębatkami. Inny symbol z ukośnymi liniami i strzałkami to element związany ze spawalnictwem, nie z mechaniką napędów. Wszystkie te błędne interpretacje wynikają z podobieństwa wizualnego – koła i linie często wyglądają podobnie, lecz zasada działania jest inna. W przekładni zębatej przeniesienie momentu odbywa się przez zazębienie kół, bez poślizgu i z dużą dokładnością. Dlatego poprawny symbol to ten, który pokazuje bezpośredni kontakt osi i zazębienie, a nie pas lub łańcuch.

Pytanie 37

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 2.
B. Rozrusznik 3.
C. Rozrusznik 1.
D. Rozrusznik 4.
Wybór odpowiedniego rozrusznika softstart to nie tylko kwestia dopasowania mocy, ale też warunków środowiskowych, w jakich będzie on pracował. Rozruszniki 1 i 4, mimo że obsługują odpowiednie napięcie 1x230 V, posiadają obudowy o stopniu ochrony IP 20. Oznacza to, że są one tylko zabezpieczone przed ciałami stałymi większymi niż 12,5 mm, co nie jest wystarczające w środowisku wysokiego zapylenia. Bardzo często zapomina się, że pył może być jednym z najważniejszych czynników wpływających na niezawodność sprzętu elektrycznego. Rozrusznik 2, choć ma wyższy stopień ochrony IP 67, przeznaczony jest do pracy na wyższe napięcia (380-415 V), więc nie nadaje się do silnika jednofazowego na 230 V. Brak zgodności napięcia może prowadzić do nieprawidłowego działania urządzenia lub nawet jego uszkodzenia. Często pojawia się błędne przekonanie, że wyższy stopień ochrony zawsze oznacza lepszy wybór, ale nie można pomijać kwestii dopasowania do specyfikacji technicznej całego systemu. Kluczem do sukcesu jest zawsze pełne zrozumienie wymagań aplikacji i środowiska, w jakim urządzenie będzie pracować, co pozwala unikać niepotrzebnych kosztów i potencjalnych awarii.

Pytanie 38

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 6,80 mm
B. 7,80 mm
C. 7,00 mm
D. 7,25 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 39

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-OFF, 2-OFF, 3-OFF, 4-OFF
B. 1-OFF, 2-ON, 3-OFF, 4-OFF
C. 1-ON, 2-OFF, 3-OFF, 4-OFF
D. 1-ON, 2-ON, 3-ON, 4-ON
Ta odpowiedź jest prawidłowa, ponieważ ustawienie przełącznika przemiennika częstotliwości 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi sterującemu 0-20 mA. W praktyce oznacza to, że przemiennik został skonfigurowany do pracy z urządzeniami, które wysyłają sygnały o natężeniu prądu w tym zakresie. Jest to częsty standard w automatyce przemysłowej, gdzie sygnały 0-20 mA są wykorzystywane do komunikacji pomiędzy czujnikami a urządzeniami wykonawczymi. Dzięki temu można płynnie regulować parametry pracy, jak prędkość obrotową silnika, co jest niezwykle istotne w aplikacjach wymagających precyzyjnego sterowania. Warto też pamiętać, że stosowanie sygnałów prądowych zamiast napięciowych ma tę zaletę, że jest mniej podatne na zakłócenia elektromagnetyczne, co jest szczególnie ważne w środowiskach przemysłowych. Z mojego doświadczenia, dobrze jest pamiętać, aby zawsze sprawdzać specyfikacje urządzeń, z którymi pracujemy, aby uniknąć błędnych konfiguracji, które mogą prowadzić do nieprawidłowej pracy systemu.

Pytanie 40

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ prawidłowo przedstawia początek sekwencji współbieżnej w sieci SFC (Sequential Function Chart). Sekwencja współbieżna to taki typ organizacji procesu, gdzie równocześnie mogą być wykonywane różne zadania, co jest osiągane dzięki odpowiedniemu rozdzieleniu kroków. Na rysunku widzimy, że po kroku 1, sekwencja rozdziela się na dwa równoległe kroki: krok 2 i krok 3, co jest zgodne z zasadami projektowania SFC. W praktyce takie podejście jest niezwykle przydatne w systemach automatyki przemysłowej, gdzie konieczne jest jednoczesne wykonanie kilku niezależnych procesów. Standardy takie jak IEC 61131-3 jasno określają, jak powinny wyglądać diagramy sekwencyjne, a poprawne ich stosowanie zwiększa czytelność i efektywność systemów sterowania. Ważne jest, aby zrozumieć, że każda linia pozioma na diagramie SFC oznacza punkt synchronizacji, zapewniający, że wszystkie równoległe czynności są zakończone przed przejściem do następnego etapu. Dzięki temu możemy utrzymać pełną kontrolę nad sekwencją zdarzeń, co jest kluczowe w środowiskach wymagających wysokiej niezawodności.