Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 stycznia 2026 15:57
  • Data zakończenia: 20 stycznia 2026 16:10

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką średnicę powinien mieć siłownik jednostronnego działania o działaniu pchającym, by przy ciśnieniu 6 barów działał z siłą 1120 N?

WARTOŚCI SIŁ DZIAŁANIA SIŁOWNIKÓW KOMPAKTOWYCH
Średnica siłownika [mm]Siłowniki dwustronnego działania z jednostronnym tłoczyskiemSiłowniki dwustronnego działania z dwustronnym tłoczyskiemSiłowniki jednostronnego działania pchająceSiłowniki jednostronnego działania ciągnące
Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca Sprężyny [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca Sprężyny [N]
121219191911106816
161219191911106816
2018814214214217471287
252952482482482701222412
324824154154154501638416
407546876876877082364223
501178105810581058112030100230
631869175017501750180035168235
803014282928292829295060271560
100471044204420442045201004231100
A. 63 mm
B. 100 mm
C. 80 mm
D. 50 mm
Poprawna odpowiedź to 50 mm, co oznacza, że siłownik jednostronnego działania o takim rozmiarze jest w stanie generować wystarczającą siłę przy ciśnieniu 6 barów. Aby to zrozumieć, warto przyjrzeć się wzorowi na siłę: F = P * A, gdzie F to siła, P to ciśnienie, a A to pole przekroju tłoka. Pole przekroju tłoka obliczamy ze wzoru A = π * (d/2)², gdzie d to średnica tłoka. Po przekształceniu wzoru, możemy obliczyć średnicę tłoka wymagającą dla konkretnych parametrów. Przy średnicy 50 mm, pole przekroju wynosi około 1,963 cm², co przy ciśnieniu 6 barów (co odpowiada 600 kPa) daje siłę równą 1178 N. Taka siła jest wystarczająca do osiągnięcia zamierzonego wyniku 1120 N, co czyni siłownik o średnicy 50 mm idealnym rozwiązaniem. W praktyce, dobór odpowiedniego siłownika jest kluczowy w aplikacjach takich jak automatyka przemysłowa, gdzie precyzja i moc są istotnymi czynnikami.

Pytanie 2

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. utlenianie
B. smarność
C. lepkość
D. gęstość
Utlenianie to proces chemiczny, który może prowadzić do degradacji oleju, ale nie jest miarą tarcia wewnętrznego cieczy. Utlenione oleje mogą tracić swoje właściwości smarne, co na dłuższą metę wpływa negatywnie na ich zdolność do ochrony mechanizmów. Smarność z kolei odnosi się do zdolności substancji do zmniejszania tarcia, lecz nie jest to miara samego tarcia wewnętrznego. Gęstość jest właściwością fizyczną, która określa masę substancji w danej objętości, ale nie ma bezpośredniego związku z oporem, jaki ciecz stawia podczas przepływu. Zrozumienie tych pojęć jest istotne, aby uniknąć mylnych wniosków dotyczących właściwości olejów smarowych. Typowym błędem myślowym jest utożsamianie smarności z lepkością, co prowadzi do nieuzasadnionych wyborów olejów do zastosowań przemysłowych czy motoryzacyjnych. Kluczowe dla efektywnego smarowania jest zrozumienie nie tylko samej lepkości, ale również jej wpływu na działanie mechanizmów. Dobre praktyki w branży smarów uwzględniają analizę lepkości w kontekście temperatury i warunków eksploatacji, co pozwala na precyzyjny dobór materiałów smarnych do specyficznych aplikacji.

Pytanie 3

Izolacja w kolorze niebieskim jest używana dla kabli

A. neutralnych
B. sygnałowych
C. fazowych
D. ochronnych
Izolacja niebieska w instalacjach elektrycznych jest standardowo stosowana dla przewodów neutralnych. W praktyce oznaczenie kolorystyczne przewodów ma na celu zabezpieczenie przed błędami w podłączeniach i zwiększenie bezpieczeństwa użytkowników. Przewód neutralny, zazwyczaj oznaczony kolorem niebieskim, pełni kluczową rolę w obwodach elektrycznych, umożliwiając powrót prądu do źródła zasilania. Zgodnie z normami międzynarodowymi, takimi jak IEC 60446, stosowanie jednolitych kolorów dla przewodów ma na celu ułatwienie identyfikacji ich funkcji oraz minimalizację ryzyka nieprawidłowego podłączenia. W praktyce, w przypadku domowych instalacji elektrycznych, przewody neutralne są często wykorzystywane w obwodach oświetleniowych i gniazdkowych, co sprawia, że ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa oraz zgodności z przepisami budowlanymi. Właściwe stosowanie kolorów w identyfikacji przewodów jest istotnym elementem w pracy elektryków i instalatorów, co podkreśla znaczenie standardów w tej dziedzinie.

Pytanie 4

Praska do zaciskania końcówek tulejkowych może być użyta do montażu końcówki przedstawionej na rysunku

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Praska do zaciskania końcówek tulejkowych to narzędzie kluczowe w procesie montażu połączeń przewodów elektrycznych. Odpowiedź C jest poprawna, ponieważ przedstawiona na rysunku końcówka jest tulejką z izolacją, co czyni ją idealną do użycia z prasą. Tulejki kablowe z izolacją stosuje się, aby zapewnić bezpieczne i trwałe połączenie, a ich zaciskanie przy użyciu pras zapewnia odpowiednią siłę i kontrolę, co jest zgodne z najlepszymi praktykami w elektrotechnice. Dzięki zastosowaniu tego narzędzia, użytkownik minimalizuje ryzyko uszkodzeń przewodów oraz zwiększa jakość połączenia. Ważne jest również, aby stosować odpowiednie tulejki do konkretnego przekroju przewodu, co zapewnia optymalne działanie instalacji. Dodanie smaru izolacyjnego lub zastosowanie komponentów zgodnych z normami IEC 60947-1 i IEC 60364 może dodatkowo poprawić bezpieczeństwo i efektywność elektrycznego połączenia.

Pytanie 5

Zastosowany w podsystemie pneumatycznym zespół, którego wygląd i symbole graficzne przedstawiono na rysunkach, umożliwia

Ilustracja do pytania
A. płynną regulację temperatury sprężonego powietrza zasilającego układ.
B. zasilanie układu pneumatycznego sprężonym powietrzem o stałym ciśnieniu.
C. zasilanie układu pneumatycznego sprężonym powietrzem o stałej wartości przepływu.
D. płynną regulację wilgotności sprężonego powietrza zasilającego układ.
Poprawna odpowiedź to zasilanie układu pneumatycznego sprężonym powietrzem o stałym ciśnieniu. Zespół przygotowania powietrza, który został przedstawiony na zdjęciu, składa się z filtru, regulatora ciśnienia oraz smarownicy. Filtr ma na celu usunięcie zanieczyszczeń z powietrza, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania urządzeń pneumatycznych. Regulator ciśnienia jest odpowiedzialny za ustawienie i utrzymanie stałego ciśnienia w układzie, co pozwala na precyzyjne sterowanie działaniem urządzeń pneumatycznych. Smarownica, z kolei, dostarcza olej do sprężonego powietrza, co zmniejsza tarcie i zużycie elementów roboczych. Umożliwienie zasilania układu sprężonym powietrzem o stałym ciśnieniu jest kluczowe w kontekście efektywności operacyjnej i bezpieczeństwa pracy systemów pneumatycznych. W zastosowaniach przemysłowych, gdzie precyzyjne ciśnienie jest niezbędne do prawidłowego działania maszyn, ten zespół przygotowania powietrza stanowi standardową praktykę.

Pytanie 6

W układzie nawrotnym sterowania stycznikowego silnika indukcyjnego klatkowego stwierdzono, że po wciśnięciu przycisku S1 a następnie S2, zadziałają zabezpieczenia w obwodzie siłowym silnika. Przyczyną zadziałania jest

Ilustracja do pytania
A. brak blokady w obwodzie sterowania.
B. źle podłączone przyciski S1 i S2.
C. zwarcie w obwodzie sterowania.
D. źle dobrane zabezpieczenia.
Zrozumienie przyczyn zadziałania zabezpieczeń w obwodzie siłowym silnika indukcyjnego klatkowego jest kluczowe dla wszelkich działań w obszarze automatyki przemysłowej. Odpowiedzi, które wskazują na błędne podłączenie przycisków lub niewłaściwy dobór zabezpieczeń, nie uwzględniają istotnych aspektów działania układów sterowniczych. Zwykle bloki zabezpieczeń są projektowane tak, aby mogły zareagować na różne nieprawidłowości, w tym zwarcia, jednak same w sobie nie są przyczyną zadziałania, lecz efektem działania. W kontekście układu stycznikowego, brak blokady w obwodzie sterowania jest podstawowym problemem, który może prowadzić do nieprawidłowego działania całego systemu. Odpowiadając na pytanie, warto zrozumieć, że każda konstrukcja elektryczna powinna być zaprojektowana z myślą o minimalizacji ryzyka powstania zwarć i zapewnienia odpowiednich ścieżek zabezpieczających. W praktyce, źle dobrane zabezpieczenia mogą prowadzić do ich zbyt wczesnego zadziałania lub, co gorsza, do sytuacji, w której ich zadziałanie nie następuje w ogóle, co daje fałszywe poczucie bezpieczeństwa. Dobór zabezpieczeń powinien być zawsze zgodny z normami oraz wymaganiami danego projektu, a ich prawidłowa konfiguracja jest kluczowym elementem, który nie może być bagatelizowany.

Pytanie 7

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. pokrycie klejem
B. rozdzielenie folią aluminiową
C. rozdzielenie papierem
D. pokrycie pastą termoprzewodzącą
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 8

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HT - ester syntetyczny, najlepiej ulegający biodegradacji
B. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
C. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
D. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
Wybór odpowiedzi związanych z HT, HTG oraz HV nie odpowiada wymaganiom stawianym cieczy hydraulicznej pracującej w warunkach zagrożenia pożarowego. Ciekłe estry, takie jak HT, mimo że są bardziej ekologiczne i biodegradowalne, nie zapewniają wystarczającej ochrony przed ryzykiem pożaru, gdyż ich palność, choć obniżona, wciąż może stwarzać zagrożenie. Cieczy HTG, wytwarzane na bazie olejów roślinnych, oferują pewne korzyści ekologiczne, jednak ich nierozpuszczalność w wodzie sprawia, że w przypadku wycieku nie można liczyć na efekt chłodzący, co w warunkach kontaktu z ogniem jest niezwykle istotne. Z kolei ciecz HV, przeznaczona dla urządzeń pracujących w zróżnicowanych temperaturach, nie spełnia wymagań dla środowisk, gdzie kluczowe jest zachowanie niskiej palności. W kontekście bezpieczeństwa pożarowego, wybór niewłaściwej cieczy hydraulicznej może prowadzić do niebezpiecznych sytuacji, w których wycieki mogą zapalić się, narażając na straty materialne oraz zdrowotne. Zatem kluczowym błędem w myśleniu jest brak uwzględnienia aspektów związanych z palnością i bezpieczeństwem cieczy hydraulicznych w kontekście pracy w warunkach zagrożenia pożarowego.

Pytanie 9

Sprężarka przepracowała w ciągu 3 miesięcy 500 godzin od początku jej zainstalowania w systemie. Na podstawie tabeli czynności konserwacyjnych wskaż rodzaj pracy konserwacyjnej, którą należy wykonać, aby utrzymać właściwą sprawność urządzenia.

Tabela czynności konserwacyjnych
Rodzaje prac konserwacyjnychHarmonogram konserwacji
Godziny pracyCo najmniej
ZWYKŁE CZYNNOŚCI KONSERWACYJNEDwa razy w miesiącu
Odprowadzenie kondensatu50Raz w tygodniu
Czyszczenie wstępnego filtra powietrza500Raz w miesiącu
Sprawdzenie poziomu leju, uzupełnienie oleju500
Czyszczenie filtra oleju500
Sprawdzenie pasa transmisyjnego1000Raz w roku
Sprawdzenie zapchania i czyszczenie chłodnicy2000Raz w roku
Wymiana filtra powietrza4000Raz w roku
Wymiana filtra oleju4000Raz w roku
Wymiana filtra na wylocie oleju4000Raz w roku
Wymiana jednokierunkowego zaworu zlewowego4000Raz w roku
A. Wymiana całego oleju.
B. Sprawdzenie pasa transmisyjnego.
C. Czyszczenie filtra oleju.
D. Wymiana filtra oleju.
Czyszczenie filtra oleju to naprawdę ważna sprawa, jeśli chodzi o konserwację sprężarek. Powinno to być robione zgodnie z tym, co mówi producent i co jest uznawane za dobry standard w branży. Jak sprężarka ma za sobą 500 godzin pracy, to czyszczenie filtra ma na celu pozbycie się zanieczyszczeń i brudu, które mogą wpłynąć na jakość oleju. Utrzymanie filtra w czystości to dobra rzecz, bo to nie tylko poprawia wydajność silnika, ale też przedłuża jego trwałość, co jest zgodne z normami jakości. Gdybyśmy tego nie robili, sprężarka mogłaby się przegrzewać, a jej efektywność mogłaby spadać. Przykładem tego może być regularne serwisowanie sprzętu w fabrykach, gdzie niezawodność sprężarek jest kluczowa dla całej produkcji.

Pytanie 10

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. okulary ochronne
B. kask ochronny
C. fartuch ochronny
D. buty na gumowej podeszwie
Buty na gumowej podeszwie stanowią kluczowy element ochrony w środowisku pracy z urządzeniami pneumatycznymi, które mogą generować drgania. Te drgania mogą przenikać przez podłogę, co w dłuższym czasie może prowadzić do uszkodzenia stóp oraz stawów pracownika. Obuwie o gumowej podeszwie zapewnia lepszą przyczepność i amortyzację, co jest istotne w pracy z maszynami wytwarzającymi drgania. Przykładem zastosowania takiego obuwia może być praca w magazynach, gdzie używa się wózków widłowych – gumowe podeszwy pomagają w stabilności oraz redukują ryzyko poślizgnięcia. Zgodnie z normą PN-EN ISO 20345, obuwie robocze powinno być dostosowane do specyficznych warunków pracy, a wybór odpowiedniego obuwia może znacząco wpłynąć na bezpieczeństwo oraz komfort pracy. Dlatego istotne jest, aby pracownicy byli świadomi znaczenia odpowiedniego obuwia.

Pytanie 11

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż, który element należy zamontować na płytce drukowanej w miejscu oznaczonym C3.

Ilustracja do pytania
A. Element 1.
B. Element 3.
C. Element 2.
D. Element 4.
Zgadza się, że element 2 to kondensator elektrolityczny o pojemności 100uF. To pasuje do tego, co widzimy w schemacie na miejscu oznaczonym C3. Wiesz, dobór odpowiednich komponentów w obwodach jest naprawdę ważny, bo od tego zależy, jak całość będzie działać. Kondensatory mają do odegrania sporo ról, zwłaszcza w filtracji sygnałów i stabilizacji napięcia. Gdybyśmy użyli kondensatora o innej pojemności, to mogłoby to wprowadzać jakieś zakłócenia w pracy urządzenia. Dlatego warto być dokładnym w projektowaniu i trzymać się specyfikacji, które podają producenci. Używanie komponentów zgodnych z normami, takimi jak IPC-2221, to dobry pomysł, bo to pomaga uniknąć problemów. No i pamiętajmy o montażu kondensatorów – jeśli podłączymy je źle, to możemy stracić ich wydajność. Dlatego warto mieć pod ręką dobrą dokumentację i umieć czytać schematy.

Pytanie 12

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Zastępować przewody pneumatyczne
B. Dostosowywać ciśnienie powietrza
C. Wymieniać szybkozłączki
D. Usuwać kondensat
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 13

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. przerzutników
B. zegarów czasowych
C. rejestrów licznikowych
D. filtrów komparatorowych
Funkcje czasowe, komparatory i liczniki są ważnymi elementami w automatyce, ale nie pełnią one funkcji związanych z zapamiętywaniem i przetwarzaniem sygnałów impulsowych w sposób, w jaki robią to przerzutniki. Funkcje czasowe, takie jak timery, są wykorzystywane do wprowadzenia opóźnień w działaniu systemów, ale nie mogą same w sobie utrzymywać stanu bez ciągłego sygnału wejściowego. Z kolei komparatory służą do porównywania wartości napięcia lub sygnałów, co jest istotne w kontekście regulacji, ale nie odnoszą się do przechowywania stanów. Liczniki, z drugiej strony, mają zastosowanie głównie do zliczania impulsów, co jest przydatne w zastosowaniach takich jak monitorowanie liczby cykli produkcyjnych, ale również nie mogą same w sobie przechowywać stanu w długim okresie. Typowym błędem myślowym jest mylenie funkcji liczników i przerzutników, ponieważ oba te elementy operują na sygnałach, ale różnią się zasadniczo w sposobie ich działania oraz zastosowania. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych systemów automatyki i sterowania. Właściwy dobór elementów w zależności od wymagań aplikacji jest niezbędny do osiągnięcia niezawodności i efektywności systemów sterujących.

Pytanie 14

Połączenia nitowe metalowej obudowy urządzenia należy wykonać przy użyciu narzędzia przedstawionego na rysunku

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedzi A, C i D nie są odpowiednie w kontekście zadania, ponieważ każde z tych narzędzi ma inne przeznaczenie i zastosowanie. Szczypce do pierścieni osadczych, oznaczone literą A, służą do montażu i demontażu pierścieni osadczych, a nie do tworzenia połączeń nitowych. Ich ergonomiczna konstrukcja pozwala na łatwe manipulowanie małymi elementami, jednak nie mają one zastosowania w procesie nitowania, co jest kluczowe w kontekście łączenia metalowych komponentów. Z kolei pistolet do klejenia, oznaczony literą C, jest narzędziem, które wykorzystuje kleje termotopliwe do łączenia materiałów, co nie jest metodą połączeń mechanicznych, jak w przypadku nitów. To podejście jest stosowane głównie w sytuacjach, gdzie wymagana jest elastyczność połączeń oraz możliwość ich łatwego demontażu, co nie spełnia wymagań dla solidnych połączeń mechanicznych. Szlifierka kątowa, oznaczona literą D, jest narzędziem do obróbki materiałów, a jej główną funkcją jest cięcie lub szlifowanie metalu, co nie ma żadnego związku z procesem nitowania. Użycie niewłaściwych narzędzi do wykonywania połączeń nitowych może prowadzić do osłabienia konstrukcji oraz zwiększenia ryzyka awarii, co jest niezgodne z dobrymi praktykami inżynieryjnymi oraz normami bezpieczeństwa w przemyśle. Zrozumienie różnicy między tymi narzędziami jest kluczowe dla każdego, kto pracuje w branży zajmującej się obróbką metali.

Pytanie 15

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na odczyt wartości zmierzonych parametrów
B. na załączanie i wyłączanie pracy prasy
C. na pomiar parametrów procesowych prasy
D. na wizualizację przebiegu pracy prasy
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 16

Symbolem K1 oznaczono

Ilustracja do pytania
A. pompę próżniową.
B. pompę hydrauliczną.
C. silnik pneumatyczny.
D. sprężarkę.
Pompa hydrauliczna z symbolem K1 to naprawdę ważny element w systemach hydraulicznych. Działa tak, że zamienia energię mechaniczną na hydrauliczną, co jest mega istotne przy zasilaniu różnych mechanizmów. Widziałem to na różnych budowach czy w maszynach do podnoszenia, gdzie pompy hydrauliczne są w użyciu. Warto też zwrócić uwagę, że najczęściej pompa jest zasilana przez silnik elektryczny (symbol M), co sprawia, że wszystko działa sprawnie i niezawodnie. Jak patrzymy na schematy, to umiejętność rozpoznawania tych symboli jest kluczowa, zwłaszcza dla inżynierów. Ostatnio czytałem, że nowoczesne systemy hydrauliczne mogą być zintegrowane z elektronicznym sterowaniem, co dodatkowo zwiększa ich precyzję. Bez znajomości tych symboli i ich funkcji trudno byłoby pracować w tej branży.

Pytanie 17

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. dwukrotnie
B. sześciokrotnie
C. dziewięciokrotnie
D. trzykrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 18

Który z przedstawionych na rysunkach podzespołów zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania urządzenia pneumatycznego powietrzem?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Podzespół oznaczony literą D to filtr z regulatorem ciśnienia, który pełni kluczową rolę w układach pneumatycznych. Jego funkcja polega na oczyszczaniu powietrza z cząstek stałych oraz regulacji ciśnienia, co jest niezbędne dla zapewnienia prawidłowego działania urządzeń pneumatycznych. Zastosowanie takiego podzespołu jest szczególnie istotne w systemach, gdzie jakość powietrza ma bezpośredni wpływ na efektywność i trwałość urządzeń. Filtry z regulatorami ciśnienia są często stosowane w przemyśle, na przykład w systemach automatyki przemysłowej, gdzie wymagana jest stabilizacja ciśnienia dostarczanego powietrza oraz eliminacja zanieczyszczeń. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają stosowanie filtrów w celu zminimalizowania ryzyka uszkodzeń sprzętu i poprawy efektywności procesów. Użycie podzespołu D zapewnia nie tylko bezpieczeństwo, ale również optymalizację pracy całego układu pneumatycznego.

Pytanie 19

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. bmp
B. ini
C. exe
D. sys
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 20

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. kształtu
B. kolejności montażu
C. poziomu złożoności
D. wielkości
Wydaje mi się, że organizowanie podzespołów według ich wielkości, kształtu czy skomplikowania to nie jest najlepszy pomysł. Może to wyglądać na sensowne, ale w praktyce jest to dość mylące, bo nie bierze pod uwagę procesu montażu. Na przykład, mniejsze części czasem są kluczowe w konkretnych etapach i jak je poukładamy według wielkości, to można się pomylić. A jeśli chodzi o formy czy kształty, to też nie za bardzo to działa, bo to nie pokazuje, w jakiej kolejności te rzeczy powinny być składane. A klasyfikowanie według złożoności to już w ogóle może wprowadzać dodatkowy bałagan, zwłaszcza jak te trudniejsze elementy składa się w prostszy sposób. Takie nieprawidłowe podejścia mogą wynikać z braku pełnego zrozumienia zasad organizacji w pracy, co jest naprawdę kluczowe w produkcji. Warto by było spojrzeć na różne narzędzia i metody, jak diagramy pracy czy wizualne instrukcje, bo one naprawdę pomagają lepiej zorganizować proces montażu, w przeciwieństwie do innych kryteriów.

Pytanie 21

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. wydajności siłownika
B. powierzchni roboczej tłoka
C. efektywności siłownika
D. natężenia przepływu medium roboczego do siłownika
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 22

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. różnicowy.
B. jednostronnej pracy.
C. dwustronnej pracy.
D. dwustronnej pracy, bez amortyzacji.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 23

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
B. iloczyn prędkości cieczy oraz czasu jej przepływu.
C. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
D. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.

Pytanie 24

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. luźnego osadzenia nitu
B. pęknięcia powierzchni łba i zakuwki nitu
C. nieprawidłowego kształtu zakuwki
D. odkształcenia nitu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Luźne osadzenie nitu jest kluczowym problemem, którego identyfikacja jest niezbędna dla zapewnienia trwałości i bezpieczeństwa połączeń nitowanych. Kontrola połączeń nitowanych, przeprowadzona poprzez ostukiwanie młotkiem nitu, pozwala na ocenę jego stabilności w obrębie materiału, z którym jest połączony. Jeśli nit jest luźny, może to prowadzić do osłabienia całej struktury, co jest szczególnie niebezpieczne w konstrukcjach lotniczych oraz budowlanych, gdzie wymagana jest wysoka niezawodność. Przykładem zastosowania tej metody kontroli może być ocena połączeń w kadłubach samolotów, gdzie każda wada może prowadzić do katastrofalnych skutków. W praktyce, jeśli po uderzeniu młotkiem następuje wyraźny dźwięk, może to sugerować luźne osadzenie nitu. Standardy takie jak ISO 13920 definiują wymagania dla jakości i kontroli połączeń, co podkreśla znaczenie skutecznych metod diagnostycznych, jak ta opisana.

Pytanie 25

Który z podanych czujników nie nadaje się do detekcji położenia stanowiska napełniania butelek przedstawionego na ilustracji?

Ilustracja do pytania
A. Indukcyjny.
B. Optyczny.
C. Pojemnościowy.
D. Magnetyczny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik magnetyczny nie nadaje się do wykrywania położenia stanowiska napełniania butelek, ponieważ jego działanie opiera się na detekcji obiektów metalowych. W przypadku, gdy butelki są wykonane z materiałów nieprzewodzących, takich jak plastik lub szkło, czujnik ten nie będzie skuteczny. W praktyce, czujniki pojemnościowe są doskonałym wyborem do wykrywania nie-metalowych obiektów, gdyż potrafią wykrywać zmiany w pojemności elektrycznej w obrębie swojego pola działania. Czujniki indukcyjne, z kolei, są idealne do detekcji metali i mogą być wykorzystywane w systemach automatyzacji przemysłowej, gdzie wykrywanie pozycji metalowych elementów jest kluczowe. Czujniki optyczne, wykorzystujące światło do wykrywania obecności obiektów, również dobrze sprawdzają się w kontekście napełniania butelek, zwłaszcza gdy są one przezroczyste. W zależności od zastosowania, wybór odpowiedniego czujnika jest kluczowy dla optymalizacji procesu produkcji.

Pytanie 26

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Nastawić staw i zabandażować kostkę
B. Podać leki przeciwbólowe
C. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
D. Zabandażować kostkę i przewieźć pacjenta do lekarza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.

Pytanie 27

Jaką wartość rezystancji powinien mieć rezystor Rl ograniczający prąd diody w obwodzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 1,2 kΩ
B. 12,0 kΩ
C. 120,0 kΩ
D. 1 200,0 kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,2 kΩ jest prawidłowa, ponieważ rezystor Rl jest odpowiedzialny za ograniczenie prądu do wartości 0,01 A, co jest kluczowe dla prawidłowego działania diody. Przykładowo, w przypadku diod LED, ich maksymalne natężenie prądu powinno być ściśle kontrolowane, aby uniknąć ich uszkodzenia. W obwodach elektronicznych stosujemy prawo Ohma, które definiuje związek między napięciem (V), natężeniem prądu (I) i rezystancją (R). Wzór V = I * R pozwala obliczyć, że przy napięciu zasilania wynoszącym 12 V, odpowiedni rezystor Rl o wartości 1,2 kΩ jest w stanie ograniczyć prąd do żądanej wartości. Zastosowanie odpowiedniego rezystora jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych, gdzie precyzyjne ograniczenie prądu jest kluczowe dla niezawodności i trwałości komponentów. Dodatkowo, warto znać metody obliczania rezystancji w obwodach szeregowych i równoległych, co może być przydatne w bardziej złożonych projektach.

Pytanie 28

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. zmniejszenie luzów łożyska
B. wymiana osłony łożyska
C. zmniejszenie nadmiaru smaru w łożysku
D. wymiana całego łożyska

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 29

Ilustracja przedstawia łożysko

Ilustracja do pytania
A. kulkowe.
B. przegubowe.
C. igiełkowe.
D. walcowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ ilustracja przedstawia łożysko przegubowe, które charakteryzuje się unikalną budową kulistych powierzchni wewnętrznej i zewnętrznej. Ta konstrukcja pozwala na swobodny ruch przegubowy, co czyni je idealnym rozwiązaniem w miejscach, gdzie występują złożone ruchy, takie jak w zawieszeniach pojazdów, robotyce czy mechanizmach przemysłowych. Łożyska przegubowe są szczególnie cenione w aplikacjach wymagających dużych obciążeń oraz kompensacji niewspółosiowości, co jest kluczowe w wielu zastosowaniach inżynieryjnych. W przeciwieństwie do łożysk walcowych, które są ograniczone do ruchów liniowych, łożyska przegubowe oferują większą elastyczność i możliwość dostosowania się do zmieniających się warunków pracy. W standardach branżowych, takich jak ISO 12240, podkreśla się znaczenie wyboru odpowiedniego typu łożyska w zależności od specyfiki ruchu i obciążenia. Wiedza na temat budowy i zastosowań łożysk przegubowych jest kluczowa dla inżynierów mechaników, którzy projektują i optymalizują systemy mechaniczne dla różnych dziedzin przemysłu.

Pytanie 30

Którą sprężarkę zalicza się do grupy sprężarek wyporowych?

Ilustracja do pytania
A. Turbosprężarkę.
B. Sprężarkę osiową.
C. Sprężarkę śrubową.
D. Sprężarkę promieniową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężarka osiowa jest klasyfikowana jako sprężarka wyporowa, ponieważ działa na zasadzie przemieszczania objętości gazu w zamkniętej komorze, co pozwala na uzyskanie wysokich ciśnień. W sprężarkach osiowych wirnik obraca się wzdłuż osi, co umożliwia przekazywanie energii kinetycznej na sprężany gaz. W praktyce sprężarki osiowe są często wykorzystywane w dużych zastosowaniach przemysłowych, takich jak w silnikach lotniczych czy w systemach klimatyzacyjnych, gdzie wymagane są duże przepływy powietrza przy stosunkowo niskim ciśnieniu. Zgodnie z najlepszymi praktykami branżowymi, sprężarki osiowe charakteryzują się efektywnością energetyczną i niezawodnością, co czyni je idealnym rozwiązaniem w aplikacjach, gdzie stabilność i wydajność są kluczowe. Dodatkowo, stosowanie sprężarek osiowych w połączeniu z systemami kontroli procesów pozwala na optymalizację zużycia energii oraz zwiększenie ogólnej rentowności operacji przemysłowych.

Pytanie 31

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Kontrola stanu oleju.
B. Wymiana filtra ssącego.
C. Czyszczenie zaworu zwrotnego.
D. Wymiana paska klinowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 32

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. narzędzi do obróbki skrawaniem
B. resorów, sprężyn i drążków skrętnych
C. łożysk tocznych
D. śrub, nakrętek, podkładek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 33

Wskaż tabliczkę znamionową urządzenia napędowego przeznaczonego do pracy przy stałym momencie obciążającym w nieograniczonym czasie.

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tabliczka znamionowa B jest prawidłową odpowiedzią, ponieważ przedstawia silnik elektryczny, który jest przystosowany do pracy w warunkach stałego momentu obciążającego. Silniki tego typu zazwyczaj charakteryzują się zdolnością do pracy przy różnych napięciach oraz prądach, co jest kluczowe w aplikacjach przemysłowych wymagających stabilności i ciągłości działania. Zawiera ona również dane dotyczące prędkości obrotowej oraz momentu obrotowego, które są niezbędne do oceny wydajności silnika w określonych warunkach roboczych. Zastosowanie takiego silnika ma miejsce w wielu branżach, od automatyki po maszyny produkcyjne, gdzie stały moment obciążenia jest istotny dla zachowania integralności procesów. Zgodnie z normami IEC 60034, silniki muszą być projektowane z myślą o specyficznych warunkach pracy, aby zapewnić ich niezawodność i efektywność w długoterminowym użytkowaniu, co czyni wybór tabliczki B odpowiednim dla omawianego zastosowania.

Pytanie 34

Umieszczony na rysunku zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

NOtworzyć zawór 1V1
A. impulsowo.
B. z zapamiętaniem.
C. warunkowo.
D. bez zapamiętania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapis w metodzie Grafcet z literą "N" oznacza działanie "bez zapamiętania", co jest kluczowym pojęciem w automatyzacji procesów. W praktyce oznacza to, że otwarcie zaworu 1V1 następuje natychmiastowo w momencie wystąpienia warunku aktywującego, bez konieczności utrzymywania stanu po wykonaniu akcji. Działania bez zapamiętania są często wykorzystywane w prostych układach sterujących, gdzie istotne jest szybkie reagowanie na zmiany sygnałów. Przykładem może być system nawadniania, gdzie nawadnianie włącza się tylko na czas, gdy wilgotność gleby jest poniżej określonego poziomu. W standardach branżowych, takich jak IEC 61131 dotyczących programowania PLC, koncepcje bez zapamiętania są kluczowe w projektowaniu efektywnych i responsywnych systemów automatyki. Wiedza na temat różnych typów działań w Grafcet ułatwia projektowanie złożonych systemów i zapewnia lepsze zarządzanie procesami przemysłowymi.

Pytanie 35

Jak należy nastawić amperomierz, aby zmierzyć prąd w układzie pokazanym na rysunku?

Ilustracja do pytania
A. DC, zakres 10 A
B. AC, zakres 5 A
C. DC, zakres 5 A
D. AC, zakres 10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo zmierzyć prąd w układzie zasilanym napięciem przemiennym, należy ustawić amperomierz na zakres AC, co oznacza, że mierzymy prąd przemienny. Wybór zakresu 10 A jest kluczowy, ponieważ prąd w gospodarstwach domowych często oscyluje w okolicy kilku amperów, a ustawienie z zapasem pozwala uniknąć uszkodzenia przyrządu. W praktyce, stosowanie amperomierzy do pomiaru prądu przemiennego jest powszechne w instalacjach elektrycznych, w tym w diagnostyce i konserwacji urządzeń. Ważne jest, aby przed pomiarem upewnić się, że amperomierz posiada odpowiednie oznaczenia oraz certyfikaty, które potwierdzają jego zdolność do pomiaru prądu przemiennego. Zrozumienie, jak prawidłowo ustawić przyrząd, jest nie tylko kwestą techniczną, ale także kluczowym elementem bezpieczeństwa, co jest szczególnie istotne w kontekście użytkowania urządzeń elektrycznych w naszych domach.

Pytanie 36

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Regulator przepływu
B. Zawór dławiąco-zwrotny
C. Rozdzielacz suwakowy
D. Zawór przelewowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulator przepływu jest kluczowym elementem w układach hydraulicznych, który umożliwia utrzymanie stałej prędkości obrotowej silnika hydraulicznego, niezależnie od zmian momentu obciążenia na wale. Działa on poprzez automatyczne dostosowanie przepływu cieczy hydraulicznej, co pozwala na zachowanie stabilności pracy urządzenia. Przykładem zastosowania regulatorów przepływu są maszyny budowlane, gdzie zmienne obciążenia są powszechne. W takich aplikacjach, regulator przepływu zapewnia, że silnik hydrauliczny działa w optymalnym zakresie prędkości, co prowadzi do efektywnego zużycia energii i minimalizacji zużycia komponentów. Stosowanie regulatorów przepływu jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, ponieważ pozwala na zwiększenie wydajności układów oraz przedłużenie żywotności systemów hydraulicznych poprzez eliminację ryzyka przeciążeń. Dodatkowo, w kontekście norm ISO dotyczących systemów hydraulicznych, regulacja przepływu jest uznawana za niezbędny element, który przyczynia się do bezpieczeństwa i funkcjonalności układów hydraulicznych.

Pytanie 37

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, manometr
B. filtr powietrza, zawór redukcyjny z manometrem, smarownica
C. smarownica, filtr powietrza, zawór redukcyjny, manometr
D. manometr, filtr powietrza, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 38

Cyfrowy tachometr jest narzędziem do mierzenia

A. natężenia przepływu powietrza
B. prędkości obrotowej wału silnika
C. naprężeń w metalach
D. lepkości cieczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 39

Które narzędzia należy zastosować podczas wymiany rezystora R1 przedstawionego na rysunku?

Ilustracja do pytania
A. Lutownicę i odsysacz.
B. Wkrętak i szczypce.
C. Pilnik i zaciskarkę.
D. Szczypce i pilnik.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór lutownicy i odsysacza jest kluczowy przy wymianie rezystora na płytce drukowanej. Lutownica jest niezbędna do rozlutowania końcówek rezystora, co umożliwia jego usunięcie z obwodu. Dobrej jakości lutownica z regulowaną temperaturą pozwala na precyzyjne wykonanie tej operacji, co minimalizuje ryzyko uszkodzenia ścieżek na płytce. Odsysacz, z kolei, służy do efektywnego usunięcia cyny z lutowanych połączeń. To ważne, aby zapewnić czyste miejsce do montażu nowego rezystora, co przyczynia się do poprawności i niezawodności całego układu. Dodatkowo, stosowanie odsysacza cyny jest zgodne z najlepszymi praktykami w elektronice, które zalecają eliminację resztek lutowia przed montażem nowych elementów. Warto również pamiętać, że w sytuacjach, gdzie wymiana elementów elektronicznych jest częsta, takie narzędzia stają się integralną częścią wyposażenia każdego elektronika, a umiejętność ich użycia jest kluczowa dla zachowania wysokiej jakości napraw i modyfikacji.

Pytanie 40

Na rysunku przedstawiono elementy połączenia

Ilustracja do pytania
A. gwintowego.
B. nitowego.
C. sworzniowego.
D. kołkowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca połączenia sworzniowego jest poprawna, ponieważ na zdjęciu przedstawione są typowe elementy montażowe, które są charakterystyczne dla tej metody łączenia. Połączenie sworzniowe składa się z otworu w jednym z elementów oraz sworznia, który pasuje do tego otworu. Zastosowanie pierścieni segera, które zapobiegają wysunięciu się sworznia, jest standardem w wielu zastosowaniach mechanicznych, co zwiększa trwałość i stabilność połączenia. Sworznie są często wykorzystywane w konstrukcjach maszyn, w których wymagana jest możliwość ruchu obrotowego lub przesuwnego elementów, takich jak zawiasy drzwi czy elementy ruchome w maszynach. Przykładem zastosowania połączeń sworzniowych jest przemysł motoryzacyjny, gdzie stosuje się je w układach zawieszenia do łączenia różnych komponentów. Zrozumienie zasad działania połączeń sworzniowych oraz ich zastosowań w praktyce jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i budową maszyn.