Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 grudnia 2025 02:53
  • Data zakończenia: 16 grudnia 2025 03:00

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Ciśnienie o wartości 1 N/m2 to

A. 1 mmHg
B. 1 bar
C. 1 at
D. 1 Pa
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 4

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. adsorpcją
B. konwekcją
C. desorpcją
D. absorpcją
Proces osuszania sprężonego powietrza, określany jako adsorpcja, jest kluczowym elementem w wielu zastosowaniach przemysłowych. W pierwszym etapie, węgiel aktywowany działa jako filtr, eliminując parę wodną oraz olej, co jest istotne dla zachowania jakości sprężonego powietrza. Węgiel aktywowany ma dużą powierzchnię oraz porowatą strukturę, co umożliwia efektywne wchłanianie substancji lotnych, a zatem jest powszechnie stosowany w systemach klimatyzacyjnych i wentylacyjnych. Następnie w drugim etapie, żel krzemionkowy, który również charakteryzuje się dużą powierzchnią adsorpcyjną, skutecznie absorbuje pozostałą parę wodną, co pozwala na uzyskanie wysokiej jakości powietrza o niskiej wilgotności. Przykładem zastosowania adsorpcji w przemyśle może być produkcja elektroniki, gdzie sucha atmosfera jest kluczowa dla uniknięcia uszkodzeń komponentów. Stosowanie systemów opartych na adsorpcji jest zgodne z normami, takimi jak ISO 8573, które definiują wymagania dotyczące czystości sprężonego powietrza.

Pytanie 5

Na którym rysunku przedstawiono muskuł pneumatyczny?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Muskuł pneumatyczny, znany również jako siłownik pneumatyczny, jest kluczowym elementem w wielu aplikacjach automatyki przemysłowej. Odpowiedź B jest poprawna, ponieważ przedstawia typowy siłownik pneumatyczny, który składa się z cylindra oraz tłoka. Działa on na zasadzie sprężania powietrza, co pozwala na uzyskanie dużych sił w stosunkowo kompaktowym wymiarze. Przykłady zastosowania muskułów pneumatycznych obejmują automatyzację procesów produkcyjnych, gdzie siłowniki te są używane do przesuwania, podnoszenia lub zaciskania obiektów. W przemyśle spożywczym, siłowniki pneumatyczne są często wykorzystywane do transportu produktów i materiałów. Warto zaznaczyć, że zgodnie z najlepszymi praktykami branżowymi, muskuły pneumatyczne powinny być dobrane zgodnie z wymaganiami aplikacji, takimi jak ciśnienie robocze, siła wymagająca do wykonania zadania oraz cykle pracy. Dodatkowo, regularne przeglądy i konserwacja tych urządzeń są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy.

Pytanie 6

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. LD
C. FBD
D. STL
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 7

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. odłamki rozrywanych maszyn
B. nadmierny hałas generowany przez pracujące urządzenia
C. iskra prowadząca do pożaru lub wybuchu
D. przenoszenie wibracji na pracownika
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 24
C. 75
D. 30
Odpowiedź 60 działek jest prawidłowa, ponieważ w celu obliczenia, ile działek wskaże woltomierz przy napięciu 24 V, należy najpierw ustalić, na ile jednostek odpowiada zakres 30 V woltomierza o 75 działkach. Każda działka na skali woltomierza odpowiada napięciu równemu 30 V / 75 działek = 0,4 V na działkę. Następnie, aby obliczyć, ile działek odpowiada napięciu 24 V, dzielimy 24 V przez wartość jednej działki: 24 V / 0,4 V/działkę = 60 działek. Takie podejście jest zgodne z praktykami stosowanymi w pomiarach elektrotechnicznych, gdzie dokładność i znajomość charakterystyki używanego sprzętu są kluczowe. Woltomierz analogowy jest przydatnym narzędziem w diagnostyce układów elektronicznych, a jego prawidłowe odczytywanie skali pozwala na szybką ocenę stanu urządzeń oraz systemów. Przykładem zastosowania jest kontrola elementów w instalacjach automatyki przemysłowej, gdzie precyzyjne pomiary napięcia mogą zapobiegać uszkodzeniom sprzętu oraz zapewniać ich efektywność operacyjną.

Pytanie 10

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. autotransformator.
B. transformator separacyjny.
C. transformator rozdzielczy.
D. transformator bezpieczeństwa.
Wybór innych typów transformatorów, takich jak autotransformator, transformator rozdzielczy czy transformator bezpieczeństwa, jest wynikiem braku zrozumienia podstawowych zasad funkcjonowania tych urządzeń. Autotransformator, który łączy obwody pierwotne i wtórne, nie izoluje ich od siebie, co jest kluczowym aspektem funkcji transformatora separacyjnego. Przykładem zastosowania autotransformatora jest regulacja napięcia w aplikacjach, gdzie niezbędne jest jedynie przekształcanie napięcia bez separacji obwodów, co może prowadzić do zagrożenia w przypadku awarii. Transformator rozdzielczy, z drugiej strony, jest używany w systemach energetycznych do rozdzielania mocy na różne linie, ale jego działanie również nie obejmuje izolacji obwodów, co jest niezbędne w kontekście bezpieczeństwa. Transformator bezpieczeństwa ma na celu ochronę przed porażeniem prądem, jednak różni się od transformatora separacyjnego szczegółami konstrukcyjnymi i przeznaczeniem. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i implementacji systemów elektroenergetycznych, gdzie bezpieczeństwo i niezawodność są priorytetami. Każda z tych pomyłek wskazuje na nieprzemyślane podejście do tematu i potrzebę głębszej analizy oraz przyswojenia wiedzy na temat funkcji i zastosowań różnych typów transformatorów w praktyce.

Pytanie 11

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. przerwą w jednej z faz.
B. zwarciem dwóch faz.
C. błędną sekwencją faz.
D. zwarciem jednej fazy z obudową.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 12

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
B. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
D. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 13

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Osuszacz powietrza.
B. Smarownica.
C. Zawór spustowy.
D. Filtr.
Symbol graficzny przedstawiony na rysunku jednoznacznie wskazuje na smarownicę, która odgrywa kluczową rolę w utrzymaniu sprawności mechanizmów. Smarownice są stosowane w wielu branżach, w tym w motoryzacji, produkcji maszyn oraz w przemyśle lotniczym. Użycie smarów zmniejsza tarcie między ruchomymi elementami, co skutkuje zmniejszeniem zużycia, a tym samym wydłużeniem żywotności urządzeń. W praktyce, smarownice mogą być zintegrowane z systemami automatycznego smarowania, co pozwala na precyzyjne dawkowanie smaru, minimalizując ryzyko zarówno niedosmarowania, jak i przesmarowania. Zastosowanie symboli graficznych w dokumentacji technicznej jest zgodne z normami ISO, co ułatwia identyfikację urządzeń i ich funkcji. Przykłady zastosowań smarownic obejmują smarowanie łożysk, przekładni oraz innych elementów mechanicznych, gdzie kluczowe jest utrzymanie niskiego poziomu tarcia i zapobieganie uszkodzeniom.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Dokładność pozycjonowania.
B. Najwyższa prędkość ruchu dla poszczególnych osi.
C. Liczba wrzecion.
D. Gramatura wtrysku.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 18

Jaką rolę pełni multiplekser?

A. Przesyłanie danych z jednego wejścia do wybranego wyjścia
B. Przesyłanie danych z wybranego wejścia na jedno wyjście
C. Kodowanie sygnałów na wejściach
D. Porównywanie sygnałów podawanych na wejścia
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 19

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. Ku=230/12
B. Ku=12/230
C. Ku=12/0,83
D. Ku=80/0,83
Wybór nieprawidłowej odpowiedzi opiera się na błędnym zastosowaniu zasad dotyczących przekładni napięciowej transformatora. Odpowiedzi takie jak Ku=12/0,83, Ku=12/230 oraz Ku=80/0,83 nie uwzględniają prawidłowego stosunku napięcia na uzwojeniu pierwotnym do napięcia na uzwojeniu wtórnym. Wartości te mogą sugerować, że napięcie wtórne zostało pomylone z pierwotnym lub, w przypadku odpowiedzi Ku=80/0,83, wprowadzają do obliczeń niewłaściwe napięcia, co prowadzi do błędnych wniosków. Przykładowo, odpowiedź Ku=12/230 błędnie interpretuje napięcie wtórne jako wyższe od napięcia pierwotnego, co narusza fundamentalne zasady funkcjonowania transformatorów. W praktyce, należy pamiętać, że transformator jest używany w celu zwiększenia lub zmniejszenia napięcia, a przekładnia napięciowa powinna zawsze oddawać stosunek napięcia pierwotnego do wtórnego. Ignorowanie tych zasad prowadzi do niewłaściwego doboru transformatorów w systemach energetycznych, co z kolei może skutkować uszkodzeniem urządzeń oraz niemożnością osiągnięcia zakładanych parametrów pracy instalacji. Zrozumienie właściwego zdefiniowania przekładni napięciowej jest kluczowe dla projektowania i zastosowania transformatorów w różnych aplikacjach inżynieryjnych.

Pytanie 20

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. nieprawidłowo zamocowanym przewodem pneumatycznym
C. przerwanym przewodem pneumatycznym
D. siłownikiem
Wybór odpowiedzi dotyczącej "rozerwanego przewodu pneumatycznego" nie jest właściwy, ponieważ chociaż uszkodzony przewód może prowadzić do niebezpiecznych sytuacji, nie jest on bezpośrednią przyczyną uderzenia. W praktyce takie przypadki są zazwyczaj wynikiem wcześniejszych problemów z instalacją i konserwacją, a nie bezpośrednio związane z eksploatacją układu. Z kolei siłownik jako element wykonawczy, mimo że może generować znaczne siły, stanowi bardziej kontrolowany element układu, który w odpowiednio zaprojektowanych systemach nie powinien stwarzać zagrożenia dla użytkowników. Tłoczysko siłownika również nie jest przyczyną zagrożenia, o ile system jest odpowiednio zabezpieczony. Zastosowanie standardów takich jak ISO 12100, dotyczących bezpieczeństwa maszyn, podkreśla znaczenie analizy ryzyka oraz dostosowania środków ochronnych, aby zapobiec sytuacjom, w których elementy ruchome mogłyby stać się zagrożeniem dla osób w ich otoczeniu. Wiele osób mylnie utożsamia ogólne ryzyko związane z uszkodzeniem elementów układu z bezpośrednim zagrożeniem, co prowadzi do niewłaściwych wniosków. Kluczowe jest zrozumienie, że to zazwyczaj niewłaściwe działania związane z instalacją i konserwacją, a nie same elementy, stają się źródłem zagrożeń.

Pytanie 21

Zamieniając stycznikowy system sterowania silnikiem elektrycznym na system oparty na sterowniku PLC, należy

A. odłączyć stycznik z układu i w jego miejsce wstawić sterownik
B. rozłączyć główny obwód i obwód sterujący silnikiem, a następnie podłączyć wszystkie elementy do sterownika
C. rozłączyć jedynie obwód sterujący silnikiem i podłączyć jego elementy do sterownika PLC
D. usunąć przyciski sterujące i zastąpić je sterownikiem
Rozłączenie wyłącznie obwodu sterowania silnika i podłączenie jego elementów do sterownika PLC jest prawidłowym podejściem, ponieważ zapewnia pełną funkcjonalność układu, jednocześnie umożliwiając integrację z nowoczesnymi systemami automatyki. W praktyce oznacza to, że istniejący obwód sterowania, który może składać się z przycisków, przekaźników i innych komponentów, zostanie podłączony do PLC, co umożliwi programowanie i zdalne sterowanie. Zastosowanie PLC w miejsce tradycyjnego stycznika zwiększa elastyczność i możliwości modyfikacji układu, co jest zgodne z aktualnymi trendami w automatyce przemysłowej. Ponadto, standardy takie jak IEC 61131-3 definiują zasady programowania dla urządzeń PLC i zapewniają, że systemy te są kompatybilne z różnorodnymi komponentami automatyki. Wymiana i modernizacja obwodów sterowania za pomocą PLC to praktyka, która pozwala na bardziej zaawansowane funkcje, takie jak monitorowanie stanu maszyny czy zdalne zarządzanie, co jest kluczowe w dzisiejszym przemyśle.

Pytanie 22

Po przesunięciu suwaka potencjometru z pozycji "c" do pozycji "a" wartość prądu płynącego w obwodzie

Ilustracja do pytania
A. zmaleje i będzie równa 4 mA
B. wzrośnie i będzie równa 6 mA
C. wzrośnie i będzie równa 4 mA
D. zmaleje i będzie równa 6 mA
Wybierając odpowiedzi, które sugerują spadek prądu lub błędne wartości, można zauważyć typowe błędy w myśleniu o obwodach elektrycznych. Przykładowo, odpowiedzi sugerujące zmniejszenie prądu nie uwzględniają faktu, że mniejsza rezystancja obwodu przy stałym napięciu automatycznie prowadzi do zwiększenia wartości prądu. Zrozumienie relacji między napięciem, prądem i rezystancją jest kluczowe. Zgodnie z prawem Ohma, wzrost rezystancji przy stałym napięciu prowadzi do obniżenia natężenia prądu, jednak w tej konkretnej sytuacji, przesunięcie suwaka powoduje usunięcie dodatkowej rezystancji i tym samym zwiększenie całkowitego prądu płynącego przez obwód. W praktyce, takie błędne rozumienie może prowadzić do niewłaściwego projektowania układów elektronicznych, co może skutkować nieprawidłowym działaniem urządzeń. Kluczowe jest zrozumienie, że zmiany w rezystancji wpływają na prąd w sposób bezpośredni i proporcjonalny, co jest fundamentalnym aspektem zarówno w edukacji, jak i w praktyce inżynieryjnej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Cyfrowy tachometr jest narzędziem do mierzenia

A. naprężeń w metalach
B. natężenia przepływu powietrza
C. lepkości cieczy
D. prędkości obrotowej wału silnika
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 26

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. przepływomierz
B. tensometr
C. zawór nadążny
D. manometr
Manometr to urządzenie pomiarowe, które służy do określania ciśnienia w cieczy lub gazie w systemach hydraulicznych. Działa na zasadzie przetwarzania ciśnienia na przemieszczenie mechaniczne, które jest następnie odczytywane na skali. Manometry są kluczowe w wielu zastosowaniach przemysłowych, w tym w hydraulice, gdzie precyzyjne pomiary ciśnienia są niezbędne dla zapewnienia prawidłowego funkcjonowania maszyn i urządzeń. Przykładowo, w hydraulicznych systemach roboczych, takich jak prasy czy podnośniki, manometry pozwalają na monitorowanie ciśnienia roboczego, co jest istotne dla bezpieczeństwa oraz efektywności pracy. Ponadto, stosowanie manometrów zgodnych z normami, takimi jak PN-EN 837, zapewnia ich niezawodność oraz dokładność pomiarów, co jest zgodne z najlepszymi praktykami w branży. Właściwe użycie manometrów przyczynia się do optymalizacji procesów produkcyjnych oraz minimalizacji ryzyka awarii związanych z nieprawidłowym ciśnieniem w układzie hydraulicznym.

Pytanie 27

W jaki sposób należy podłączyć przewody do złącz przedstawionych na fotografii?

Ilustracja do pytania
A. Za pomocą lutowania.
B. Poprzez skręcenie kluczem oczkowym.
C. Wtykowo bez użycia narzędzi.
D. Za pomocą klejenia.
Wybór odpowiedzi dotyczący klejenia, skręcania kluczem czy lutowania jest po prostu nietrafiony. W tych metodach nie rozumiesz, że nie zapewniają one dobrej przewodności ani nie są stabilne, co może prowadzić do zwarć lub przegrzewania. Klejenie nadaje się raczej do izolacji, a nie do trwałego połączenia elektrycznego. Skręcanie kluczem, mimo że wydaje się sensowne, łamie normy bezpieczeństwa i może uszkodzić złącza, które są zaprojektowane bez dodatkowych narzędzi. Lutowanie, owszem, jest techniką, ale wymaga odpowiednich umiejętności i sprzętu, co czyni to mniej dostępnym do codziennych zastosowań. Te błędne podejścia wynikają z mylnego przekonania, że zawsze trzeba używać narzędzi, co nie jest zgodne z nowoczesnymi metodami instalacji.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. amplitudy impulsu
B. fazy sygnału
C. szerokości impulsu
D. częstotliwości sygnału
W poprzednich odpowiedziach pojawiły się koncepcje, które nie odpowiadają zasadom działania modulatorów PWM. Zmiana częstotliwości sygnału nie jest głównym sposobem działania PWM, ale może wpływać na wydajność w pewnych kontekstach. W rzeczywistości, w PWM częstotliwość pozostaje stała, a zmienia się szerokość impulsów. Amplituda impulsu również nie odgrywa kluczowej roli w PWM, gdyż sygnał PWM zazwyczaj operuje na stałym poziomie napięcia, a jego moc modyfikowana jest przez szerokość impulsu, a nie jego wysokość. W kontekście fazy sygnału, jest to zupełnie inna technika modulacji, która nie ma zastosowania w PWM. Zmiana fazy może wprowadzać inne zjawiska, takie jak interferencja w falach sinusoidalnych, ale nie ma związku z modulacją szerokości impulsu. Typowym błędem myślowym jest mylenie tych różnych technik, co prowadzi do nieporozumień dotyczących ich zastosowań i skuteczności. Zrozumienie, że PWM koncentruje się na szerokości impulsu, jest kluczowe dla prawidłowego zastosowania tej technologii w praktycznych aplikacjach, takich jak sterowanie silnikami czy regulacja jasności światła.

Pytanie 31

Watomierz jest urządzeniem do pomiaru mocy

A. chwilowej
B. pozornej
C. biernej
D. czynnej
Pomiar mocy w systemach elektrycznych może być mylący, zwłaszcza gdy chodzi o różne rodzaje mocy, takie jak moc bierna, moc pozorna czy moc chwilowa. Nieprawidłowe zrozumienie tych pojęć prowadzi do błędnych wniosków na temat funkcji watomierza. Moc bierna, mierzona w warunkach przemysłowych, to moc, która nie wykonuje pracy, ale jest niezbędna do utrzymania pola elektromagnetycznego w elementach takich jak silniki czy transformatory. To rodzaj energii, która krąży w systemie, ale nie przyczynia się do wytwarzania użytecznej pracy, co wyklucza ją z pomiarów watomierzy, które skupiają się na mocy czynnej. Kolejną koncepcją jest moc pozorna, będąca wektorem mocy biernej i czynnej, wyrażana w woltoamperach (VA). Moc chwilowa, z kolei, jest mocą zmieniającą się w czasie, stanowiącą natychmiastowy pomiar energii, ale nie odpowiada pełnemu zużyciu energii w dłuższym okresie. Typowe błędy w rozumieniu pomiaru mocy często wynikają z braku znajomości tych pojęć, co może prowadzić do nieefektywnego zarządzania energią oraz nieprawidłowych analiz zużycia, które nie uwzględniają rzeczywistego wykorzystania energii. W związku z tym kluczowe jest rozróżnienie tych typów mocy, aby móc prawidłowo interpretować wyniki pomiarów i podejmować świadome decyzje dotyczące zarządzania energią.

Pytanie 32

Którą metodę kontroli temperatury pracy silnika przedstawiono na rysunku?

Ilustracja do pytania
A. Termowizyjną.
B. Termometryczną.
C. Segera.
D. Ultradźwiękową.
Odpowiedź "Termowizyjna" jest poprawna, ponieważ na zdjęciu przedstawiony jest aparat termowizyjny, który jest wykorzystywany do pomiaru temperatury w sposób bezkontaktowy. Technologia ta polega na detekcji promieniowania podczerwonego emitowanego przez obiekty, co pozwala na uzyskanie obrazu termicznego. Dzięki temu rozwiązaniu można w szybki sposób ocenić temperaturę różnych części silnika, co jest niezwykle istotne dla zapewnienia jego prawidłowego funkcjonowania oraz zapobiegania awariom. Metoda ta jest szczególnie przydatna w zastosowaniach przemysłowych, gdzie monitorowanie temperatury w czasie rzeczywistym pozwala na wczesne wykrywanie problemów, takich jak przegrzewanie się komponentów. Użycie kamer termograficznych jest zgodne z najlepszymi praktykami w dziedzinie diagnostyki maszyn, co czyni ją standardem w przemyśle wytwórczym i eksploatacyjnym. Przykłady zastosowań obejmują inspekcje w zakładach energetycznych, motoryzacyjnych czy w przemyśle lotniczym.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Na rysunku przedstawiono

Ilustracja do pytania
A. transoptor szczelinowy.
B. fotorezystor.
C. mostek prostowniczy.
D. tranzystor unipolarny.
Wybranie innej odpowiedzi niż transoptor szczelinowy pokazuje, że można mieć pewne nieporozumienia odnośnie funkcji i budowy różnych elementów elektronicznych. Na przykład, tranzystor unipolarny to zupełnie coś innego, bo działa na zasadzie jednego typu nośników ładunku. Nie ma za bardzo związku z optycznym przesyłaniem sygnałów. Transoptory szczelinowe, w przeciwieństwie do tranzystorów, są robione z myślą o izolacji galwanicznej i przesyłaniu sygnałów optycznych. Dlatego są mega potrzebne w wielu miejscach, gdzie bezpieczeństwo elektryczne ma znaczenie. Wybór mostka prostowniczego, który zmienia prąd zmienny na stały, też nie jest dobry, bo nie ma to nic wspólnego z optycznym przesyłaniem sygnałów i nie przypomina budowy transoptora. Fotorezystor z kolei to element pasywny, którego oporność zmienia się w zależności od światła, co również nie jest tym, co robi transoptor. Z mojego doświadczenia wynika, że często mylenie tych elementów bierze się z braku zrozumienia ich zastosowań i konstrukcji, a także z nieodpowiedniego kojarzenia ich z ogólnym pojęciem optoelektroniki. Kluczowe jest zrozumienie, że transoptory to połączenie optyki i elektroniki, co czyni je unikalnymi w dzisiejszych technologiach.

Pytanie 36

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. smarownica, filtr powietrza, reduktor
B. reduktor, smarownica, filtr powietrza
C. reduktor, filtr powietrza, smarownica
D. filtr powietrza, reduktor, smarownica
Kolejność montażu elementów w systemie sprężonego powietrza jest krytyczna dla jego prawidłowego funkcjonowania. Odpowiedzi, które proponują instalację reduktora przed filtra powietrza, ignorują podstawową zasadę ochrony komponentów systemu przed zanieczyszczeniami. Reduktor powinien być umieszczony za filtrem, aby zapobiec osadzaniu się zanieczyszczeń w mechanizmach reduktora, co mogłoby prowadzić do jego uszkodzenia oraz niewłaściwej regulacji ciśnienia. Instalacja smarownicy przed filtrem powietrza wprowadza również ryzyko, że zanieczyszczenia dostaną się do układu smarowania, co z kolei może prowadzić do uszkodzenia narzędzi pneumatycznych. Odpowiedzi sugerujące montaż smarownicy przed innymi elementami nie uwzględniają także, iż smarownica musi operować na już oczyszczonym i odpowiednio uregulowanym ciśnieniu powietrza. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują brak zrozumienia funkcji poszczególnych elementów oraz ich interakcji w systemie. Dlatego tak ważne jest, aby przy projektowaniu i montażu systemów sprężonego powietrza przestrzegać odpowiednich norm i procedur, co pozwoli na efektywne i bezawaryjne działanie urządzeń.

Pytanie 37

Produkcja sprężonego powietrza w systemach pneumatycznych obejmuje przynajmniej jego

A. sprężanie, osuszanie i filtrowanie
B. osuszanie, filtrowanie i smarowanie
C. sprężanie, filtrowanie i smarowanie
D. sprężanie, osuszanie i smarowanie
Wybór odpowiedzi, w której pojawiają się procesy jak sprężanie, filtrowanie i smarowanie, albo osuszanie, filtrowanie i smarowanie, pokazuje, że nie wszystko jeszcze jest jasne w temacie przygotowania sprężonego powietrza. Smarowanie, chociaż ważne w niektórych zastosowaniach pneumatycznych, nie jest bezpośrednio związane z przygotowaniem powietrza. Większość czasu smarowanie dotyczy cylindrów i zaworów, gdzie właściwy smar może pomóc, ale nie ma wpływu na jakość samego powietrza. Osuszanie i filtrowanie są za to kluczowe, bo gdy do systemu dostaje się woda lub zanieczyszczenia, może to doprowadzić do uszkodzeń. Dodatkowo, sprężanie bez wcześniejszego osuchania może powodować kondensację, co jest dość powszechnym błędem. Ważne, żeby pamiętać, że te procesy są powiązane, bo tylko wtedy można optymalnie zarządzać układami pneumatycznymi i zapewnić ich sprawne działanie. Eliminacja wilgoci i zanieczyszczeń to podstawa, żeby systemy pneumatyczne działały długo i bezawaryjnie.

Pytanie 38

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. krzemowo-manganowych
B. chromowych
C. krzemowych
D. chromowo-krzemowych
Rdzenie maszyn elektrycznych wykonuje się głównie ze stali krzemowej, ponieważ jej właściwości ferromagnetyczne zapewniają efektywność energetyczną oraz minimalizują straty energii w postaci ciepła. Stal krzemowa charakteryzuje się niskim współczynnikiem strat magnetycznych, co jest kluczowe w zastosowaniach takich jak silniki elektryczne czy transformatory. Dodatkowo, dzięki swojej strukturze krystalicznej, stal krzemowa ma dużą przewodność magnetyczną. W praktyce oznacza to, że rdzenie wykonane z tego materiału są bardziej kompaktowe i lżejsze, co przyczynia się do zmniejszenia wymiarów urządzeń elektrycznych. Standardy branżowe, takie jak IEC 60404, określają wymagania dotyczące rodzajów stali używanej w rdzeniach, podkreślając znaczenie stali krzemowej w produkcji zaawansowanych technologicznie maszyn elektrycznych. W związku z tym, stosowanie stali krzemowej jest zgodne z najlepszymi praktykami w zakresie projektowania i produkcji maszyn elektrycznych.

Pytanie 39

Który element należy zastosować do zabezpieczenia nakrętki koronowej przed samoodkręceniem?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór niewłaściwego elementu do zabezpieczenia nakrętki koronowej prowadzi do zwiększonego ryzyka jej samoodkręcenia, co w praktyce może skutkować poważnymi awariami lub wypadkami. Zastosowanie nieodpowiednich rozwiązań, jak na przykład brak zabezpieczeń lub niewłaściwy dobór materiałów, może prowadzić do błędów konstrukcyjnych. Często zdarza się, że inżynierowie nie zdają sobie sprawy z konieczności stosowania dodatkowych elementów zabezpieczających, co jest wynikiem niedostatecznej wiedzy na temat właściwych praktyk inżynieryjnych. Ważne jest, aby przy każdym połączeniu, zwłaszcza w aplikacjach narażonych na wibracje, wybierać odpowiednie metody zabezpieczające. W przeciwnym razie, może to prowadzić do sytuacji, w których nakrętki ulegają luzowaniu, co z kolei wpływa na integralność całej konstrukcji. Konsekwencje takich błędów mogą być daleko idące, łącznie z koniecznością przeprowadzenia kosztownych napraw oraz wprowadzenia przestojów w pracy maszyn czy linii produkcyjnych. Dobrych praktyk inżynieryjnych należy przestrzegać, aby uniknąć takich sytuacji, a szpilka zabezpieczająca jest jednym z najprostszych i najskuteczniejszych rozwiązań, które mogą zminimalizować ryzyko samoodkręcenia się nakrętek, zapewniając jednocześnie bezpieczeństwo i trwałość połączeń.

Pytanie 40

Na rysunku siłownika pneumatycznego litera X wskazuje

Ilustracja do pytania
A. tuleję.
B. tłok.
C. tłoczysko.
D. tłumik.
Wybór odpowiedzi wskazujących na inne elementy siłownika pneumatycznego, takie jak tuleja, tłumik czy tłok, jest powszechnym błędem wynikającym z mylenia funkcji i lokalizacji tych komponentów. Tuleja, będąca obudową siłownika, służy do prowadzenia tłoczyska, ale sama nie przenosi ruchu. Tłumik natomiast ma na celu redukcję hałasu i drgań, a jego zadaniem jest kontrolowanie tempa ruchu tłoka w końcowej fazie pracy siłownika, co również nie odpowiada na pytanie o element przenoszący ruch. Zrozumienie różnicy między tłokiem a tłoczyskiem jest kluczowe; tłok generuje ruch w odpowiedzi na różnicę ciśnień, natomiast tłoczysko ten ruch przenosi. Wiele osób popełnia błąd utożsamiając te dwa elementy, co prowadzi do niepoprawnych odpowiedzi na pytania dotyczące ich funkcji. Aby uniknąć tego rodzaju pomyłek, warto zapoznać się z rysunkami technicznymi oraz dokumentacją producentów, które dokładnie opisują każdy element siłownika pneumatycznego i jego funkcję. Zrozumienie tych podstawowych różnic jest kluczowe dla osób pracujących w branży pneumatycznej, ponieważ niewłaściwe zrozumienie roli poszczególnych komponentów może prowadzić do błędów w projektowaniu systemów oraz ich eksploatacji, co w konsekwencji wpływa na efektywność całego układu pneumatycznego.