Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 19:43
  • Data zakończenia: 19 grudnia 2025 19:52

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Ruter otrzymał pakiet, który jest adresowany do komputera w innej sieci. Adres IP, który jest celem pakietu, nie znajduje się w sieci bezpośrednio podłączonej do rutera, a tablica routingu nie zawiera informacji na jego temat. Brama ostateczna nie została skonfigurowana. Jaką decyzję podejmie ruter?

A. Przekaże do hosta w lokalnej sieci
B. Wyśle na interfejs wyjściowy do kolejnego skoku
C. Zwróci pakiet do nadawcy
D. Odrzuci pakiet
Zwracanie pakietów do źródła może wyglądać na sensowne, ale w rzeczywistości to nie działa w przypadku routerów. Ruter nie ma opcji, żeby oddać pakiet, jeśli nie wie, jak dotrzeć do docelowego adresu IP. Jeżeli mówimy o przesyłaniu pakietu do hosta w lokalnej sieci, to tu też jest problem – ruter nie zna lokalnych adresów IP dla danego pakietu. Próba wysłania pakietu do następnego skoku też nie wypali, bo ruter nie ma pojęcia, gdzie go skierować. Kiedy pakiet nie wpasowuje się w żadną z tras w tablicy routingu, a brama ostatniej szansy nie istnieje, kończy się na odrzuceniu pakietu. Takie myślenie może prowadzić do złego zarządzania siecią, bo administratorzy mogą myśleć, że ruter poradzi sobie z każdą sytuacją, co jest błędne. Na dłuższą metę, zła analiza ruchu w sieci może powodować poważne problemy z dostępnością i bezpieczeństwem.

Pytanie 2

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN 50310
B. PN-EN 50174
C. PN-EN 55022
D. PN-EN50173
Wybór innych norm, takich jak PN-EN 50310, PN-EN 50173 lub PN-EN 55022, może wynikać z niepełnego zrozumienia zakresu ich zastosowania. Norma PN-EN 50310 dotyczy wymagań dotyczących systemów okablowania w kontekście instalacji elektrycznych i sieciowych, jednak nie odnosi się bezpośrednio do standardów instalacji okablowania strukturalnego. Natomiast PN-EN 50173 określa wymagania dotyczące systemów okablowania strukturalnego, ale skupia się głównie na jego projektowaniu i nie obejmuje kompleksowych wytycznych dotyczących instalacji, co jest kluczowe w kontekście efektywnego układania kabli. Z kolei norma PN-EN 55022 koncentruje się na wymaganiach dotyczących emisji elektromagnetycznej urządzeń elektronicznych, co jest całkowicie inną dziedziną i nie ma zastosowania w kontekście instalacji okablowania. Wybierając niewłaściwe normy, można wprowadzić nieefektywne praktyki instalacyjne, które mogą prowadzić do problemów z wydajnością systemu, takich jak straty sygnału, zakłócenia elektromagnetyczne oraz problemy z serwisowaniem. Zrozumienie różnic między tymi normami oraz ich rzeczywistymi zastosowaniami jest kluczowe dla prawidłowego projektowania i instalacji systemów okablowania, co w dłuższej perspektywie wpływa na niezawodność i efektywność instalacji telekomunikacyjnych.

Pytanie 3

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. koncentratorem
B. przełącznikiem
C. serwerem
D. routerem
Serwer, jako urządzenie, pełni zupełnie inną rolę niż router. Jest to system komputerowy, który dostarcza różnorodne usługi i zasoby innym komputerom w sieci, nie zajmując się bezpośrednim zarządzaniem przepływem informacji między sieciami. Serwery mogą obsługiwać aplikacje, przechowywać dane czy oferować usługi takie jak hosting stron internetowych, ale nie mają zdolności do trasowania pakietów danych jak routery. Przełącznik natomiast działa na warstwie drugiej modelu OSI, czyli zajmuje się przekazywaniem ramek między urządzeniami w tej samej sieci lokalnej. Jego główną funkcją jest przełączanie ramek w oparciu o adresy MAC, co sprawia, że nie jest on w stanie łączyć różnych sieci. Koncentratory, które są urządzeniami starszej generacji, również nie mają zdolności do zarządzania ruchem między sieciami; działają na poziomie fizycznym, po prostu przekazując sygnały do wszystkich podłączonych urządzeń bez inteligentnego kierowania nimi. Te mylne pojęcia mogą prowadzić do nieefektywnego projektowania sieci, ponieważ zrozumienie specyfiki każdego z tych urządzeń jest kluczowe dla ich prawidłowego zastosowania. Warto zwrócić uwagę, że wybór odpowiedniego urządzenia sieciowego powinien być oparty na konkretnej funkcjonalności i wymaganiach sieci.

Pytanie 4

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m²?

A. 2
B. 1
C. 3
D. 4
Analizując odpowiedzi, można zauważyć, że pominięcie normy PN-EN 50174 prowadzi do błędnych wniosków. W przypadku niepoprawnych odpowiedzi, istnieją różne mity i nieporozumienia dotyczące zasadności liczby punktów rozdzielczych. Wybór zbyt małej liczby punktów, jak 1 lub 2, może wynikać z przekonania, że centralizacja systemów telekomunikacyjnych jest wystarczająca. Tego rodzaju myślenie ignoruje fakt, że w miarę wzrostu liczby kondygnacji i powierzchni użytkowej, rośnie także złożoność infrastruktury. Niezbędne jest zapewnienie punktów rozdzielczych w każdym poziomie budynku, aby zminimalizować ryzyko przeciążeń sieci oraz ułatwić dostęp do urządzeń i systemów. Dodatkowo, odpowiednia liczba punktów rozdzielczych może obniżyć koszty związane z eksploatacją i konserwacją infrastruktury telekomunikacyjnej. Pamiętajmy, że w sytuacji awaryjnej, rozległe sieci z centralnym punktem mogą napotykać poważne problemy z dostępem do usług. W praktyce, ignorowanie standardów dotyczących rozmieszczenia punktów rozdzielczych może prowadzić do utraty efektywności operacyjnej oraz zwiększenia kosztów związanych z przyszłymi rozbudowami lub modernizacjami infrastruktury. Zrozumienie roli punktów rozdzielczych w kontekście normy PN-EN 50174 jest kluczowe dla prawidłowego projektowania i funkcjonowania sieci telekomunikacyjnych w budynkach.

Pytanie 5

Na rysunku jest przedstawiony symbol graficzny

Ilustracja do pytania
A. koncentratora.
B. mostu.
C. przełącznika.
D. rutera.
Symbol graficzny przedstawiony na rysunku jest charakterystyczny dla mostu sieciowego, który odgrywa kluczową rolę w architekturze sieci komputerowych. Mosty sieciowe są używane do łączenia dwóch segmentów sieci, co pozwala na efektywniejsze zarządzanie ruchem danych. Działają one na poziomie warstwy łącza danych modelu OSI, co oznacza, że operują na ramkach danych, a ich głównym zadaniem jest filtrowanie i przekazywanie pakietów w oparciu o adresy MAC. Przykładem zastosowania mostu może być sytuacja, w której organizacja ma dwa oddzielne segmenty sieciowe, które muszą współpracować. Most sieciowy pozwala na ich połączenie, co zwiększa przepustowość i redukuje kolizje. Dodatkowo, mosty mogą być używane do segregacji ruchu w dużych sieciach, co przyczynia się do lepszej wydajności oraz bezpieczeństwa. Znajomość tych mechanizmów jest kluczowa dla administratorów sieci, którzy chcą optymalizować infrastrukturę i zapewniać sprawne działanie usług sieciowych.

Pytanie 6

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Punkt dostępowy (Access Point)
B. Switch
C. Repeater (regenerator sygnału)
D. Router
Wiele osób myli funkcje podstawowych urządzeń sieciowych, co prowadzi do błędnych założeń dotyczących segmentacji. <strong>Switch</strong> działa głównie w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Jego głównym zadaniem jest przełączanie ramek w obrębie jednej sieci lokalnej (VLAN), a nie segmentacja na poziomie IP. Co prawda, istnieją switche warstwy trzeciej, które potrafią segmentować ruch na poziomie sieciowym, ale standardowo przyjmuje się, że switch nie jest urządzeniem do segmentacji warstwy trzeciej. <strong>Repeater</strong> to urządzenie jeszcze prostsze – działa w warstwie pierwszej i służy tylko do wzmacniania sygnału, bez jakiejkolwiek analizy czy rozdzielania ruchu. Nie wprowadza żadnej segmentacji ani logiki sieciowej. <strong>Punkt dostępowy</strong> (Access Point) odpowiada za umożliwienie urządzeniom bezprzewodowym dołączenie do sieci lokalnej, również operuje na niższych warstwach (głównie warstwa druga i warstwa fizyczna). Nie segmentuje ruchu IP, przekazuje jedynie sygnał dalej do sieci przewodowej. Typowym błędem jest mylenie funkcji tych urządzeń, zwłaszcza gdy w praktyce wiele z nich bywa zintegrowanych w jednym sprzęcie domowym (np. router Wi-Fi z wbudowanym switchem i access pointem). Jednak w kontekście profesjonalnych sieci, każde z tych urządzeń ma jasno określoną rolę i tylko router (lub zaawansowany switch L3) umożliwia segmentację na poziomie warstwy trzeciej. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe przy projektowaniu wydajnej i bezpiecznej infrastruktury sieciowej, bo pomyłki na tym etapie mogą prowadzić do poważnych problemów z bezpieczeństwem, wydajnością czy zarządzaniem ruchem.

Pytanie 7

Urządzenie sieciowe typu most (ang. Bridge) działa w:

A. nie ocenia ramki pod względem adresu MAC
B. pierwszej warstwie modelu OSI
C. jest urządzeniem klasy store and forward
D. osiemnej warstwie modelu OSI
Praca w zerowej warstwie modelu OSI odnosi się do warstwy fizycznej, która zajmuje się przesyłaniem bitów przez medium transmisyjne. Mosty, jako urządzenia warstwy łącza danych, operują na ramkach, które zawierają adresy MAC, co oznacza, że nie mogą funkcjonować na poziomie zerowym. Przypisywanie mostów do ósmej warstwy modelu OSI jest błędne, ponieważ model OSI definiuje jedynie siedem warstw, a wszelkie odniesienia do ósmej warstwy byłyby niepoprawne z punktu widzenia standardów sieciowych. Warto również zauważyć, że mosty w rzeczywistości analizują ramki pod kątem adresów MAC, co jest kluczowym elementem ich funkcjonalności. To umożliwia im podejmowanie decyzji o przesyłaniu danych do odpowiednich segmentów sieci, w zależności od ich adresacji. Ignorowanie analizy adresów MAC w kontekście pracy mostów prowadzi do nieporozumień co do ich roli w architekturze sieci. Typowym błędem jest mylenie mostów z urządzeniami, które nie analizują danych na poziomie warstwy łącza, co może prowadzić do nieefektywnego zarządzania ruchem i spadku wydajności sieci. Zrozumienie prawidłowych funkcji mostów jest kluczowe dla skutecznego projektowania i zarządzania nowoczesnymi sieciami.

Pytanie 8

Przed przystąpieniem do podłączania urządzeń do sieci komputerowej należy wykonać pomiar długości przewodów. Dlaczego jest to istotne?

A. Aby zapobiec przegrzewaniu się okablowania w trakcie pracy sieci.
B. Aby ustalić parametry zasilania zasilacza awaryjnego (UPS) dla stanowisk sieciowych.
C. Aby określić, ile urządzeń można podłączyć do jednego portu switcha.
D. Aby nie przekroczyć maksymalnej długości przewodu zalecanej dla danego medium transmisyjnego, co zapewnia prawidłowe działanie sieci i minimalizuje ryzyko zakłóceń.
Pomiar długości przewodów sieciowych to naprawdę kluczowy etap przy planowaniu i montażu sieci. Chodzi przede wszystkim o to, żeby nie przekraczać zalecanej długości dla wybranego medium transmisyjnego, np. skrętki czy światłowodu. Standardy, takie jak TIA/EIA-568, jasno określają, że dla skrętki UTP Cat.5e/Cat.6 maksymalna długość jednego odcinka to 100 metrów – wliczając w to patchcordy. Gdy przewód jest dłuższy, sygnał potrafi się mocno osłabić, pojawiają się opóźnienia, błędy transmisji, a nawet całkowite zerwanie połączenia. W praktyce, jeśli ktoś o tym zapomni, sieć potrafi działać bardzo niestabilnie – szczególnie przy wyższych przepływnościach lub w środowiskach o dużych zakłóceniach elektromagnetycznych. Z mojego doświadczenia wynika, że nieprzemyślane prowadzenie kabli to jeden z najczęstszych powodów reklamacji u klientów. Prawidłowy pomiar i stosowanie się do limitów to po prostu podstawa profesjonalnego podejścia i gwarancja, że sieć będzie działać zgodnie z założeniami projektowymi. Branżowe dobre praktyki zawsze zakładają uwzględnienie tych długości już na etapie projektowania, żeby uniknąć problemów w przyszłości.

Pytanie 9

Jak można zidentyfikować przeciążenie w sieci lokalnej LAN?

A. diodowego testera okablowania
B. miernika uniwersalnego
C. reflektometru optycznego OTDR
D. analizatora protokołów sieciowych
Analizator protokołów sieciowych to kluczowe narzędzie w monitorowaniu i diagnostyce sieci lokalnych (LAN). Dzięki możliwości rejestrowania i analizy ruchu sieciowego, może on wykryć przeciążenie poprzez identyfikację spadków wydajności oraz zatorów w przesyłaniu danych. Na przykład, jeśli analizator wskazuje, że określony port jest mocno obciążony, administrator sieci może podjąć działania, takie jak optymalizacja trasowania pakietów czy zarządzanie przepustowością. W kontekście dobrych praktyk, wykorzystanie takich narzędzi pozwala na proaktywne zarządzanie siecią, zgodnie z zasadami ITIL (Information Technology Infrastructure Library), co zwiększa niezawodność i stabilność usług sieciowych. Warto również podkreślić, że analizatory protokołów, takie jak Wireshark, są standardem w branży, umożliwiając dogłębną analizę zarówno warstwy aplikacji, jak i transportowej, co jest niezbędne do zrozumienia i rozwiązania problemów z przeciążeniem.

Pytanie 10

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Drzewo.
B. Gwiazda.
C. Siatka.
D. Pierścień.
Topologia drzewa, w odróżnieniu od pierścienia, opiera się na hierarchicznej strukturze, gdzie węzły są powiązane w formie gałęzi. Każde urządzenie sieciowe, z reguły, ma połączenie z jednym rodzicem oraz wieloma potomkami, co skutkuje tym, że nie każde urządzenie ma po dwa połączenia. Takie rozmieszczenie prowadzi do silnie zdefiniowanej struktury, ale nie przekłada się na możliwość bezpośredniego przesyłania danych w sposób, w jaki odbywa się to w topologii pierścienia. Topologia gwiazdy z kolei polega na tym, że wszystkie urządzenia są podłączone do centralnego punktu, co również nie spełnia warunków zadania. W modelu gwiazdy, w przypadku awarii centralnego węzła, cała sieć może przestać działać, co jest istotnym ograniczeniem w kontekście niezawodności. Natomiast topologia siatki charakteryzuje się dużą liczbą połączeń między urządzeniami, co zwiększa odporność na awarie, ale również komplikuje strukturę i może generować nadmiarowe koszty związane z instalacją. Kluczowym błędem myślowym przy wyborze nieprawidłowych odpowiedzi jest pomylenie charakterystyki układu połączeń oraz sposobu transmisji danych, co prowadzi do mylnych wniosków na temat funkcjonalności różnych topologii sieciowych. Zrozumienie tych różnic jest niezbędne dla projektowania efektywnych i niezawodnych sieci.

Pytanie 11

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia sieciowe są połączone z jednym centralnym urządzeniem?

A. siatki
B. pierścienia
C. gwiazdy
D. drzewa
Topologia gwiazdy to jedna z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia, takie jak komputery i drukarki, są połączone z centralnym urządzeniem, zazwyczaj przełącznikiem lub hubem. Taki układ zapewnia łatwą konserwację i diagnozowanie problemów, gdyż ewentualne awarie jednego z węzłów nie wpływają na funkcjonowanie pozostałych urządzeń. Przykładem zastosowania topologii gwiazdy może być lokalna sieć komputerowa w biurze, gdzie wszystkie stacje robocze są podłączone do jednego przełącznika. Standardy takie jak Ethernet oraz protokoły sieciowe, takie jak TCP/IP, zostały zaprojektowane z myślą o pracy w takich strukturach. Zastosowanie topologii gwiazdy ułatwia także skalowanie sieci – wystarczy dodać nowe urządzenie do centralnego przełącznika, co czyni ją elastyczną i odpowiednią dla rozwijających się środowisk biurowych.

Pytanie 12

Parametr NEXT wskazuje na zakłócenie wywołane oddziaływaniem pola elektromagnetycznego

A. jednej pary kabla oddziałującej na inne pary kabla
B. wszystkich par kabla nawzajem na siebie oddziałujących
C. pozostałych trzech par kabla wpływających na badaną parę
D. jednej pary kabla wpływającej na drugą parę kabla
Nieprawidłowe odpowiedzi często wynikają z niepełnego zrozumienia zagadnienia crosstalk, który jest kluczowym tematem w inżynierii telekomunikacyjnej. Wiele osób może mylnie utożsamiać zakłócenia między różnymi parami kabli z wpływem pozostałych par w instalacji, co prowadzi do błędnych wniosków. Odpowiedzi, które sugerują, że NEXT dotyczy wpływu wszystkich par kabli wzajemnie na siebie, ignorują specyfikę tego zjawiska. Zakłócenia typu NEXT koncentrują się na interakcji sygnałów między dwiema konkretnymi parami, podczas gdy inne rodzaje zakłóceń, takie jak FEXT (Far-End Crosstalk), dotyczą wpływu sygnału na końcu kabla. Prawidłowe zrozumienie tych terminów jest niezbędne dla zapewnienia efektywności instalacji kablowych. W praktyce, aby zmniejszyć NEXT, inżynierowie często wykorzystują pary skręcone, które są projektowane tak, aby ich pole elektromagnetyczne wzajemnie się znosiło. Innymi słowy, pary kabli powinny być odpowiednio rozmieszczone i ekranowane, aby zmniejszyć zakłócenia. Ostatecznie, każda pomyłka w zrozumieniu NEXT może prowadzić do spadku jakości sygnału, co jest nieakceptowalne w nowoczesnych instalacjach komunikacyjnych, zwłaszcza w kontekście rosnących wymagań dotyczących przepustowości i niezawodności sieci.

Pytanie 13

Jakie oznaczenie według normy ISO/IEC 11801:2002 definiuje skrętkę foliowaną, przy czym wszystkie pary żył są ekranowane folią?

A. U/UTP
B. F/FTP
C. S/FTP
D. F/UTP
Odpowiedź F/UTP jest poprawna, ponieważ oznaczenie to odnosi się do skrętki, w której wszystkie pary żył są ekranowane folią, co zapewnia skuteczną ochronę przed zakłóceniami elektromagnetycznymi oraz interferencjami zewnętrznymi. W standardzie ISO/IEC 11801:2002, F/UTP wskazuje na strukturę kabli, gdzie 'F' oznacza folię, a 'UTP' oznacza nieekranowane przewody, co w kontekście F/UTP sugeruje, że ekranowanie dotyczy jedynie par żył, a nie całego kabla. Stosowanie F/UTP jest szczególnie popularne w instalacjach sieciowych w biurach i budynkach komercyjnych, gdzie wymagane są wysokie prędkości transmisji danych przy jednoczesnym zminimalizowaniu zakłóceń. Przykładowo, w środowisku o dużym natężeniu sygnałów elektromagnetycznych, takich jak bliskość urządzeń elektronicznych, ekranowanie folią znacznie zwiększa niezawodność i stabilność przesyłu danych. Ponadto, zgodność z omawianymi normami jest kluczowa dla zapewnienia jakości oraz certyfikacji infrastruktury sieciowej, co jest niezbędne w profesjonalnych środowiskach IT.

Pytanie 14

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 100Base–FX
B. 100Base–T
C. 1000Base–TX
D. 10Base2
Wybór 1000Base-TX, 100Base-T oraz 10Base2 jako standardów do zastosowania w środowisku z silnymi zakłóceniami elektromagnetycznymi jest niewłaściwy z kilku kluczowych powodów. 1000Base-TX, mimo że obsługuje prędkości do 1 Gb/s, korzysta z miedzi, co czyni go podatnym na zakłócenia elektromagnetyczne, szczególnie na dłuższych dystansach. W przypadku instalacji na 200 m w otoczeniu o dużych zakłóceniach, jakość sygnału może ulec pogorszeniu, co prowadzi do problemów z niezawodnością połączenia. 100Base-T również oparty jest na skrętce miedzianej i oferuje jedynie prędkość do 100 Mb/s, co w obliczu zakłóceń nie jest wystarczające do efektywnego przesyłania danych. 10Base2, z kolei, jest technologią opartą na koncentrycznej, cienkiej miedzi, która ma ograniczony zasięg do 200 m i nie jest w stanie wykrywać i eliminować zakłóceń, co czyni ją nieodpowiednią dla nowoczesnych aplikacji sieciowych. Warto zauważyć, że wybierając standardy sieciowe, należy kierować się nie tylko prędkością, ale także odpornością na zakłócenia oraz możliwościami transmisyjnymi, co pojawia się w przypadku światłowodów. Niezrozumienie tych zasad może prowadzić do wyboru niewłaściwych technologii, a tym samym do nieefektywnego funkcjonowania sieci.

Pytanie 15

Jaką prędkość transmisji określa standard Ethernet IEEE 802.3z?

A. 100 GB
B. 1 Gb
C. 10 Mb
D. 100 Mb
Standard sieci Ethernet IEEE 802.3z definiuje przepływność 1 Gb/s, co odpowiada technologii Gigabit Ethernet. Ta technologia, wprowadzona w latach 90. XX wieku, stała się standardem w sieciach lokalnych, umożliwiając szybki transfer danych na odległość do 100 metrów przy użyciu standardowego okablowania kategorii 5. Zastosowanie Gigabit Ethernet w biurach, centrach danych oraz w sieciach rozległych znacznie zwiększyło efektywność przesyłania danych, co jest kluczowe w dzisiejszych wymagających aplikacjach, takich jak wirtualizacja, przesyłanie strumieniowe wideo oraz szerokopasmowe usługi internetowe. Warto również zauważyć, że standard ten jest kompatybilny z wcześniejszymi wersjami Ethernet, co pozwala na łatwą migrację oraz integrację z istniejącą infrastrukturą sieciową. Dodatkowo, Gigabit Ethernet oferuje zaawansowane funkcje, takie jak QoS (Quality of Service) oraz możliwość wielodostępu. W kontekście rozwoju technologii, standard IEEE 802.3z otworzył drzwi do dalszych innowacji, takich jak 10GbE i 100GbE.

Pytanie 16

Dokument PN-EN 50173 wskazuje na konieczność zainstalowania minimum

A. 1 punktu rozdzielczego na każde 250 m2 powierzchni.
B. 1 punktu rozdzielczego na każde piętro.
C. 1 punktu rozdzielczego na cały wielopiętrowy budynek.
D. 1 punktu rozdzielczego na każde 100 m2 powierzchni.
Odpowiedzi, które sugerują instalację jednego punktu rozdzielczego na każde 100 m2 powierzchni, na każde piętro lub na cały budynek, bazują na błędnych założeniach dotyczących standardów telekomunikacyjnych. W przypadku pierwszej z tych propozycji, warto zauważyć, że norma PN-EN 50173 koncentruje się nie tylko na powierzchni, ale także na potrzebach dostępu do mediów i elastyczności systemu rozdzielczego. Propozycja dotycząca punktów rozdzielczych na każdym piętrze jest również nieadekwatna, ponieważ nie uwzględnia specyfiki budynków wielokondygnacyjnych, gdzie położenie punktów rozdzielczych powinno być strategiczne, aby spełniać wymagania użytkowników w różnych lokalizacjach. W przypadku wskazania jednego punktu na cały budynek, to podejście zaniedbuje potrzebę lokalizacji punktów w zależności od wielkości i przeznaczenia przestrzeni. Istotnym błędem myślowym w tych odpowiedziach jest ignorowanie zróżnicowanych potrzeb w kontekście różnorodności budynków oraz specyfiki ich użytkowania. Warto pamiętać, że odpowiednie planowanie punktów rozdzielczych ma kluczowe znaczenie dla funkcjonalności i efektywności całego systemu telekomunikacyjnego, a błędne założenia mogą prowadzić do problemów z dostępnością usług oraz zwiększonymi kosztami eksploatacyjnymi. Zachowanie standardów, takich jak PN-EN 50173, jest kluczowe dla zapewnienia wysokiej jakości i niezawodności infrastruktury telekomunikacyjnej.

Pytanie 17

Podłączając wszystkie elementy sieciowe do switcha, wykorzystuje się topologię fizyczną

A. magistrali
B. siatki
C. pierścienia
D. gwiazdy
Topologie siatki, pierścienia i magistrali to różne struktury organizacyjne sieci komputerowych, każda z własnymi zaletami i wadami. Siatka charakteryzuje się wieloma połączeniami między urządzeniami, co zapewnia redundancję, ale może być kosztowna i skomplikowana w implementacji. W przypadku topologii pierścienia dane krążą w jednym kierunku, co sprawia, że awaria jednego z urządzeń może zablokować całą sieć. Takie podejście wymaga dodatkowych mechanizmów, by zapewnić ciągłość działania, co często prowadzi do złożoności systemu. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest tania, ale jej wydajność spada z liczbą urządzeń, a awaria kabla oznacza przerwanie komunikacji dla wszystkich podłączonych do niego urządzeń. Wybór niewłaściwej topologii prowadzi do problemów z wydajnością, bezpieczeństwem i zarządzaniem siecią. Właściwe podejście do projektowania sieci powinno uwzględniać specyfikę zastosowania, wymagania dotyczące niezawodności oraz łatwości w utrzymaniu, co czyni topologię gwiazdy najbardziej odpowiednią w wielu współczesnych zastosowaniach.

Pytanie 18

Jakie urządzenie powinno być użyte do połączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Regeneratora
B. Mostu
C. Koncentratora
D. Rutera
Ruter jest urządzeniem, które odgrywa kluczową rolę w łączeniu różnych domen rozgłoszeniowych, co pozwala na efektywną komunikację między różnymi sieciami. W przeciwieństwie do mostu czy koncentratora, które operują na warstwie drugiej modelu OSI (warstwie łącza danych), ruter funkcjonuje na warstwie trzeciej (warstwa sieci). Jego zadaniem jest zarządzanie ruchem danych pomiędzy różnymi sieciami, co oznacza, że pakiety danych mogą być kierowane do odpowiednich adresów IP, co jest istotne w przypadku, gdy komputery są w różnych podsieciach. Dzięki temu, ruter potrafi zrozumieć, kiedy dane powinny zostać wysłane do innej sieci, a kiedy pozostają w obrębie tej samej. Przykładowo, w dużych organizacjach, które mają różne lokalizacje geograficzne, rutery umożliwiają komunikację między nimi poprzez sieci WAN. Praktyczne zastosowanie ruterów obejmuje nie tylko łączenie lokalnych sieci, ale także umożliwiają one stosowanie zaawansowanych funkcji, takich jak QoS (Quality of Service), które pomagają w zarządzaniu ruchem sieciowym, co jest kluczowe w przypadku aplikacji wymagających niskich opóźnień, jak np. wideokonferencje. W kontekście standardów, rutery muszą być zgodne z protokołami, takimi jak IP (Internet Protocol) oraz muszą wspierać różnorodne protokoły routingu, co czyni je nieodzownym elementem nowoczesnych infrastruktur sieciowych.

Pytanie 19

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. bardziej zaawansowane szyfrowanie
B. strefę o ograniczonym dostępie
C. filtrację adresów MAC
D. firewall
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.

Pytanie 20

Switch pełni rolę głównego elementu w sieci o topologii

A. pierścienia
B. gwiazdy
C. magistrali
D. pełnej siatki
Wybór odpowiedzi wskazującej na inne topologie, takie jak pełna siatka, magistrala czy pierścień, wynika często z niepełnego zrozumienia zasad działania poszczególnych struktur sieciowych. W topologii pełnej siatki, każde urządzenie jest bezpośrednio połączone z każdym innym, co prowadzi do ogromnej liczby połączeń oraz wysokich kosztów utrzymania, ale nie zapewnia centralizacji w zarządzaniu ruchem, co jest kluczowe dla funkcji switcha. Z kolei magistrala polega na komunikacji poprzez wspólny kabel, gdzie urządzenia są podłączone równolegle, co zwiększa ryzyko kolizji i zmniejsza wydajność, a także czyni trudniejszym zarządzanie ruchem. Pierścień, w którym pakiety danych krążą w jednym kierunku, również nie obsługuje centralnego punktu, co ogranicza możliwość efektywnego routingowania i zarządzania siecią, co jest fundamentalne dla architektury topologii gwiazdy. Takie nieprawidłowe wybory mogą wynikać z mylnego przekonania, że wszystkie topologie są równie funkcjonalne, co jest błędnym założeniem. W rzeczywistości, topologia gwiazdy zapewnia lepsze zarządzanie, wysoką wydajność oraz większą elastyczność, co czyni ją preferowaną strukturą w nowoczesnych aplikacjach sieciowych.

Pytanie 21

Którego z elementów dokumentacji lokalnej sieci komputerowej nie uwzględnia dokumentacja powykonawcza?

A. Opisu systemu okablowania
B. Norm i wytycznych technicznych
C. Kosztorysu wstępnego
D. Wyników pomiarów oraz testów
Dokumentacja powykonawcza lokalnej sieci komputerowej ma na celu przedstawienie rzeczywistych parametrów oraz stanu zrealizowanej instalacji, które mogą różnić się od planowanych. Kosztorys wstępny nie jest częścią tej dokumentacji, ponieważ dotyczy on fazy projektowej i szacowania kosztów, a nie rzeczywistego stanu inwestycji. W dokumentacji powykonawczej znajdują się wyniki pomiarów i testów, które potwierdzają zgodność z normami oraz wymaganiami technicznymi. Opis okablowania również jest ważnym elementem, gdyż dostarcza szczegółowych informacji o użytych komponentach i ich rozmieszczeniu. Normy i zalecenia techniczne są istotne, aby zapewnić, że instalacja została wykonana zgodnie z obowiązującymi standardami, co gwarantuje jej efektywność i bezpieczeństwo. Przykładem zastosowania dokumentacji powykonawczej może być przygotowanie raportu dla klienta, wskazującego na zgodność instalacji z projektem, co jest istotne przy odbiorze technicznym.

Pytanie 22

Ile domen rozgłoszeniowych istnieje w sieci o schemacie przedstawionym na rysunku, jeżeli przełączniki pracują w drugiej warstwie modelu ISO/OSI z konfiguracją domyślną?

Ilustracja do pytania
A. 7
B. 11
C. 5
D. 9
Poprawna odpowiedź na pytanie to 7, ponieważ w sieci opartej na przełącznikach działających w drugiej warstwie modelu ISO/OSI każda jednostka (przełącznik) tworzy własną domenę rozgłoszeniową. Przełączniki te nie mają zdolności do ograniczania rozgłoszeń, co oznacza, że każde urządzenie podłączone do przełącznika otrzymuje ramki rozgłoszeniowe. W przedstawionym schemacie widzimy 7 przełączników, co przekłada się bezpośrednio na 7 oddzielnych domen rozgłoszeniowych. W praktyce oznacza to, że jeśli na jednym z przełączników dojdzie do wysłania ramki rozgłoszeniowej, tylko urządzenia podłączone do tego konkretnego przełącznika będą ją odbierały. To zjawisko ma kluczowe znaczenie w projektowaniu sieci, ponieważ odpowiednie zarządzanie domenami rozgłoszeniowymi pozwala na minimalizowanie ruchu w sieci oraz zwiększenie jej wydajności. W kontekście dobrych praktyk branżowych, ważne jest, aby administratorzy sieci rozumieli, jak liczba przełączników wpływa na segmentację ruchu oraz jakie korzyści można osiągnąć dzięki odpowiedniemu zarządzaniu rozgłoszeniami.

Pytanie 23

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. zaciskarka.
B. nóż monterski.
C. ściągacz izolacji.
D. narzędzie uderzeniowe.
Odpowiedź "ściągacz izolacji" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu ma oznaczenia "CABLE STRIPPER/CUTTER", co w tłumaczeniu na język polski oznacza "ściągacz izolacji/przecinak". Narzędzia te są kluczowe w pracy z instalacjami elektrycznymi, gdyż umożliwiają sprawne usuwanie izolacji z przewodów. W praktyce, ściągacz izolacji jest niezbędny przy przygotowywaniu przewodów do połączeń, co jest istotne w kontekście zgodności z normami bezpieczeństwa. Poprawne zdjęcie izolacji zapobiega zwarciom oraz innym problemom związanym z niewłaściwym połączeniem. Użycie ściągacza izolacji minimalizuje ryzyko uszkodzenia żył przewodu, co jest kluczowe dla zapewnienia trwałości połączeń elektrycznych. W wielu krajach, w tym w Polsce, stosowanie odpowiednich narzędzi do obróbki przewodów jest regulowane standardami, które nakładają obowiązek stosowania narzędzi przystosowanych do danej aplikacji, co podkreśla znaczenie tego narzędzia w branży elektrycznej.

Pytanie 24

Symbol graficzny przedstawiony na rysunku oznacza

Ilustracja do pytania
A. otwarty kanał kablowy.
B. gniazdo telekomunikacyjne.
C. główny punkt dystrybucyjny.
D. zamknięty kanał kablowy.
Wybór zamkniętego kanału kablowego czy głównego punktu dystrybucyjnego jako odpowiedzi w tym pytaniu może być nieco mylący, bo te elementy są różne. Zamknięty kanał kablowy służy głównie do ochrony kabli, a nie do podłączania urządzeń. Otwarte kanały też mają swoje zastosowanie, ale nie podłączysz tam nic na stałe. Główny punkt dystrybucyjny to ważny element, ale jeszcze bardziej związany z zarządzaniem sygnałem niż z gniazdami. Często ludzie mylą te funkcje i przez to mogą popełnić błędy w dokumentacji. Dobrze jest rozumieć różnice, żeby uniknąć problemów z komunikacją w projekcie. Takie niewłaściwe symbole mogą prowadzić do sporych kłopotów przy instalacjach telekomunikacyjnych.

Pytanie 25

Jakie urządzenie należy użyć, aby połączyć sieć lokalną z Internetem?

A. przełącznik.
B. ruter.
C. koncentrator.
D. most.
Ruter to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy siecią lokalną a Internetem. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co pozwala na wymianę informacji pomiędzy urządzeniami wewnątrz sieci lokalnej a użytkownikami zewnętrznymi. Ruter wykonuje funkcje takie jak kierowanie pakietów, NAT (Network Address Translation) oraz zarządzanie adresami IP. Przykładem zastosowania rutera w praktyce jest sytuacja, gdy mamy w domu kilka urządzeń (komputery, smartfony, tablety), które łączą się z Internetem. Ruter pozwala tym urządzeniom na korzystanie z jednego, publicznego adresu IP, co jest zgodne z praktykami oszczędzania przestrzeni adresowej. Ruter może również zapewniać dodatkowe funkcje, takie jak zapora sieciowa (firewall) oraz obsługa sieci bezprzewodowych (Wi-Fi), co zwiększa bezpieczeństwo i komfort użytkowania. To urządzenie jest zatem niezbędne w każdej sieci, która chce mieć dostęp do globalnej sieci Internet.

Pytanie 26

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Przełącznik warstwy 3
B. Ruter ADSL
C. Konwerter mediów
D. Punkt dostępu
Punkt dostępu, choć użyteczny w kontekście rozbudowy sieci lokalnej, nie jest urządzeniem, które łączy lokalną sieć z Internetem. Jego główną funkcją jest umożliwienie bezprzewodowego dostępu do sieci, jednak nie ma zdolności do bezpośredniego integrowania połączenia internetowego z operatorem telekomunikacyjnym. Z kolei przełącznik warstwy 3, który może kierować ruch pomiędzy różnymi podsieciami, również nie jest zaprojektowany do nawiązywania połączeń z Internetem, a raczej do zarządzania ruchem wewnątrz lokalnej sieci. Takie urządzenie działa na podstawie adresacji IP, ale aby nawiązać połączenie z Internetem, potrzebuje innego urządzenia, takiego jak ruter. Konwerter mediów, który używany jest do konwersji sygnałów pomiędzy różnymi rodzajami mediów transmisyjnych, także nie ma zdolności do zarządzania połączeniami z Internetem. W praktyce, korzystając z tych urządzeń, można popełnić błąd polegający na myleniu ich funkcji z rolą rutera ADSL w kontekście dostępu do Internetu. To prowadzi do nieefektywnego projektowania sieci, co w dłuższej perspektywie może skutkować problemami z łącznością oraz wydajnością. Aby zapewnić prawidłowe połączenie z Internetem, kluczowe jest użycie rutera ADSL, który jest dedykowanym urządzeniem do tej funkcji.

Pytanie 27

Aby funkcja rutingu mogła prawidłowo funkcjonować na serwerze, musi być on wyposażony

A. w szybszy procesor
B. w dodatkową pamięć RAM
C. w dodatkowy dysk twardy
D. w drugą kartę sieciową
Fajnie, że zauważyłeś, że żeby funkcja rutingu działała jak należy na serwerze, potrzebujesz drugiej karty sieciowej. Ta karta to taki kluczowy element, jeśli chodzi o komunikację z innymi urządzeniami w sieci. Kiedy masz dwie karty, zwiększasz przepustowość i redundancję, co jest mega ważne, gdy jedna z kart przestaje działać. W praktyce, to rozwiązanie działa świetnie w różnych konfiguracjach, na przykład przy równoważeniu obciążenia czy w systemach wysokiej dostępności. Może być tak, że jedna karta przejmuje funkcję drugiej, gdy ta pierwsza już nie chce działać. Dodatkowo, z dodatkową kartą da się skonfigurować różne sieci, co pomaga w separacji ruchu lokalnego oraz administracyjnego, a także wspiera wirtualizację, gdzie wirtualne maszyny korzystają z dedykowanych interfejsów. No i nie zapominaj, że według dobrych praktyk w IT, ważne jest, żeby serwer miał odpowiednie karty sieciowe – to klucz do bezproblemowego działania usług sieciowych.

Pytanie 28

Które urządzenie w sieci lokalnej nie segreguje obszaru sieci komputerowej na domeny kolizyjne?

A. Most.
B. Przełącznik.
C. Koncentrator.
D. Ruter.
Mosty, przełączniki i routery mają różne funkcje w sieciach i pomagają zarządzać ruchem, w tym dzielić sieć na różne domeny kolizyjne. Most działa na drugiej warstwie OSI, a jego zadaniem jest segmentowanie ruchu, co zmniejsza liczbę kolizji, bo tworzy oddzielne segmenty. Przełączniki, które też działają na tej samej warstwie, są jeszcze bardziej zaawansowane, bo używają MAC adresów do wysyłania danych tylko do właściwego urządzenia, co zmniejsza ryzyko kolizji. Z kolei routery działają na trzeciej warstwie i zarządzają ruchem między różnymi sieciami, co czyni je bardzo ważnymi w sieciach IP. Często ludzie myślą, że wszystkie te urządzenia są podobne do koncentratorów, ale tak nie jest. Koncentrator przesyła dane do wszystkich urządzeń, a mosty, przełączniki i routery robią to znacznie lepiej, co poprawia wydajność sieci. Dlatego, wybierając urządzenia do sieci, warto mieć na uwadze te zasady segmentacji ruchu i efektywności według nowoczesnych standardów.

Pytanie 29

Z powodu uszkodzenia kabla typu skrętka zanikło połączenie pomiędzy przełącznikiem a komputerem stacjonarnym. Jakie urządzenie pomiarowe powinno zostać wykorzystane do identyfikacji i naprawy usterki, aby nie było konieczne wymienianie całego kabla?

A. Wielofunkcyjny miernik.
B. Urządzenie do pomiaru mocy.
C. Reflektometr TDR
D. Spektrum analizer.
Multimetr, mimo że jest to wszechstronne narzędzie pomiarowe, nie jest optymalnym wyborem do lokalizacji uszkodzeń w kablach sieciowych typu skrętka. Jego główną funkcją jest pomiar napięcia, prądu oraz oporu, co może być użyteczne w diagnostyce obwodów elektronicznych, ale nie dostarcza informacji na temat lokalizacji wad w kablu. W przypadku uszkodzenia kabla typu skrętka multimetr może jedynie pomóc w potwierdzeniu braku ciągłości, co jest zbyt ogólnym podejściem do problemu, zwłaszcza gdy nie znamy dokładnej lokalizacji usterki. Miernik mocy również nie jest odpowiednim narzędziem do tego celu, gdyż jego funkcja ogranicza się do oceny jakości sygnału oraz mocy w danym obwodzie. Miernik mocy może wskazać, że sygnał jest osłabiony, jednak nie wskaże miejsca uszkodzenia ani nie umożliwi dokładnej diagnostyki. Analizator widma, choć użyteczny w kontekście analizy częstotliwości sygnałów, również nie jest narzędziem do lokalizacji uszkodzeń kablowych. Jego stosowanie skupia się na ocenie jakości sygnału w danym zakresie częstotliwości, co nie odpowiada na pytanie o konkretne uszkodzenie kabla. Te narzędzia, mimo że mają swoje zastosowanie w diagnostyce, nie są wystarczające do rozwiązywania problemów z uszkodzonymi kablami skrętkowymi i mogą prowadzić do błędnych wniosków, co z kolei wydłuża czas naprawy oraz zwiększa koszty operacyjne.

Pytanie 30

W celu zagwarantowania jakości usług QoS, w przełącznikach warstwy dostępu wdraża się mechanizm

A. pozwalający na używanie wielu portów jako jednego łącza logicznego
B. który zapobiega tworzeniu się pętli w sieci
C. przydzielania wyższego priorytetu wybranym typom danych
D. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
Odpowiedzi, które odnoszą się do zapobiegania powstawaniu pętli w sieci, liczby urządzeń mogących łączyć się z przełącznikiem oraz wykorzystywania kilku portów jako jednego łącza logicznego, nie dotyczą bezpośrednio mechanizmu QoS w przełącznikach warstwy dostępu. Zapobieganie powstawaniu pętli, realizowane na przykład przez protokoły STP (Spanning Tree Protocol), ma na celu utrzymanie stabilności i niezawodności sieci, jednak nie wpływa na jakość usług w kontekście priorytetyzacji ruchu. Podobnie, regulowanie liczby urządzeń łączących się z przełącznikiem nie jest metodą poprawy jakości usług, lecz ma bardziej związek z zarządzaniem zasobami sieciowymi i bezpieczeństwem. Przykładowe techniki zarządzania dostępem do sieci, takie jak MAC filtering, nie rozwiążą problemów związanych z ruchem o różnym poziomie krytyczności. Co więcej, łączenie kilku portów w jedno logiczne, zazwyczaj realizowane poprzez LACP (Link Aggregation Control Protocol), służy zwiększeniu przepustowości, lecz nie wpływa na różnicowanie jakości przesyłanych danych. Typowe błędy myślowe prowadzące do takich wniosków mogą obejmować mylenie pojęć związanych z zarządzaniem ruchem oraz nieodróżnianie mechanizmów związanych z bezpieczeństwem i stabilnością sieci od tych, które mają na celu poprawę jakości usług.

Pytanie 31

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. skonfigurować filtrowanie adresów MAC
B. zmienić sposób szyfrowania z WEP na WPA
C. zmienić hasło
D. zmienić kanał radiowy
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 32

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 1 MHz
B. do 100 kHz
C. do 16 MHz
D. do 100 MHZ
Wybierając odpowiedzi wskazujące na niższe pasma częstotliwości, można wpaść w pułapkę błędnych założeń dotyczących standardów skrętek komputerowych. Odpowiedzi do 100 kHz, 1 MHz czy 16 MHz dotyczą przestarzałych technologii, które nie są odpowiednie dla nowoczesnych aplikacji sieciowych. Na przykład, kategoria 5e, która jest standardem dla pasma do 100 MHz, już nie spełnia wymogów wydajnościowych dla standardów Ethernet powyżej 1 Gbps, które są powszechnie używane w nowoczesnych środowiskach biurowych i technologicznych. Wybór parametrów dotyczących pasma częstotliwości jest kluczowy, ponieważ wpływa na przepustowość i jakość transmisji danych. Współczesne zastosowania, takie jak strumieniowanie wideo w wysokiej rozdzielczości, wymagają niezawodnych połączeń, które są możliwe tylko dzięki odpowiedniemu doborowi kabli i ich klas. Używanie przestarzałych standardów może prowadzić do problemów z wydajnością sieci, zakłóceń oraz obniżonej jakości usług, co w dłuższej perspektywie rodzi dodatkowe koszty i frustrację użytkowników.

Pytanie 33

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. kabel S-FTP kategorii 5e lub światłowód
B. światłowód jednomodowy lub kabel U-UTP kategorii 5e
C. światłowód jednomodowy lub fale radiowe 2,4 GHz
D. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
Zastosowanie światłowodu jednomodowego lub fal radiowych 2,4 GHz nie jest najlepszym rozwiązaniem w kontekście budynku produkcyjnego, w którym występują silne zakłócenia elektromagnetyczne. Światłowód jednomodowy, mimo że jest odporny na zakłócenia elektromagnetyczne, jest w praktyce droższy i bardziej skomplikowany w instalacji. Dodatkowo, w przypadku fal radiowych 2,4 GHz, istnieje wiele ograniczeń związanych z zakłóceniami i interferencjami, szczególnie w gęsto zaludnionych obszarach przemysłowych, gdzie wiele urządzeń może współdzielić to samo pasmo. Wybór kabla U-UTP kategorii 6 również nie jest optymalny, ponieważ nie oferuje wystarczającego ekranowania, aby efektywnie chronić przed zakłóceniami elektromagnetycznymi. Kable te są bardziej podatne na zakłócenia, co może prowadzić do spadku wydajności oraz zwiększenia liczby błędów w przesyłanych danych. W praktyce, niewłaściwy dobór medium transmisyjnego w środowisku produkcyjnym może prowadzić do znacznych problemów z niezawodnością i stabilnością systemów komunikacyjnych. Dlatego kluczowe jest, aby stosować kable o odpowiednich właściwościach ekranowania i wykonania, takie jak S-FTP, które są zgodne z wymaganiami standardów branżowych oraz zapewniają efektywną transmisję danych w trudnych warunkach.

Pytanie 34

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 2.
B. 3.
C. 1.
D. 4.
Wybór innej odpowiedzi może sugerować pewne nieporozumienia dotyczące różnych rodzajów topologii sieciowych. Na przykład, topologia magistrali, która jest jedną z najstarszych form architektury sieci, zakłada, że wszystkie urządzenia są podłączone do jednego wspólnego kabla. Ta konstrukcja jest mniej odporna na awarie, ponieważ uszkodzenie kabla prowadzi do całkowitego wyłączenia wszystkich podłączonych urządzeń. Dodatkowo, w topologii pierścienia każde urządzenie jest połączone w sposób cykliczny, co może powodować problemy z wydajnością i awarią, gdy jedno z połączeń ulegnie uszkodzeniu. Kolejnym ważnym zagadnieniem jest topologia siatki, która zapewnia większą redundancję i elastyczność, ale jest również bardziej kosztowna i złożona w implementacji. Dlatego, jeśli ktoś wybiera odpowiedzi, które wskazują na inne rodzaje topologii zamiast gwiazdy, może nie mieć pełnej świadomości różnic między nimi oraz praktycznych konsekwencji wyboru odpowiedniej architektury dla konkretnego przypadku użycia. Warto zatem zapoznać się z podstawowymi zasadami projektowania sieci, aby lepiej zrozumieć, która topologia będzie najbardziej odpowiednia w danym środowisku, biorąc pod uwagę aspekty takie jak niezawodność, prostota zarządzania oraz koszty.

Pytanie 35

Komputer, który automatycznie otrzymuje adres IP, adres bramy oraz adresy serwerów DNS, łączy się z wszystkimi urządzeniami w sieci lokalnej za pośrednictwem adresu IP. Jednakże komputer ten nie ma możliwości nawiązania połączenia z żadnym hostem w sieci rozległej, ani poprzez adres URL, ani przy użyciu adresu IP, co sugeruje, że występuje problem z siecią lub awaria

A. rutera
B. przełącznika
C. serwera DNS
D. serwera DHCP
Wybór przełącznika, serwera DHCP lub serwera DNS jako rozwiązania nie jest trafny, ponieważ każde z tych urządzeń odgrywa inną rolę w infrastrukturze sieciowej. Przełącznik jest urządzeniem, które działa na poziomie warstwy 2 modelu OSI i umożliwia komunikację wewnątrz lokalnej sieci, ale nie ma zdolności do routingu pakietów do sieci rozległej. Jego funkcjonalność ogranicza się do przesyłania danych między urządzeniami w tej samej sieci, co znaczy, że nie jest odpowiedzialny za połączenia z sieciami zewnętrznymi. Serwer DHCP zajmuje się przydzielaniem adresów IP w sieci lokalnej, ale jego rola kończy się na dostarczeniu adresu IP oraz innych informacji konfiguracyjnych – nie wpływa na komunikację z sieciami zewnętrznymi. Z kolei serwer DNS jest odpowiedzialny za tłumaczenie nazw domen na adresy IP, co również nie wpływa na możliwość połączenia z siecią rozległą w przypadku problemów z ruterem. Powszechnym błędem jest mylenie tych urządzeń oraz ich funkcji. W rzeczywistości, jeśli komunikacja z siecią zewnętrzną jest zablokowana, najczęściej źródłem problemu jest ruter, który pełni kluczową rolę w łączeniu lokalnych sieci z internetem.

Pytanie 36

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 50 zł
B. 40 zł
C. 32 zł
D. 45 zł
Przeanalizujmy błędne odpowiedzi i związane z nimi koncepcje. Niektóre osoby mogły nie uwzględnić faktu, że przy obliczaniach należy dodać zapas kabla. Ignorowanie zapasu prowadzi do niedoszacowania całkowitej długości kabla. Na przykład, jeśli ktoś obliczył tylko długość 40 m, nie dodałby zapasu 10 m, co może skutkować brakiem materiału podczas instalacji. Również, niektórzy mogli błędnie oszacować cenę jednostkową kabla lub pomylić liczbę punktów abonenckich, co prowadzi do błędnych kalkulacji. Ważne jest, aby w takich obliczeniach kierować się standardami instalacyjnymi, które zalecają dodawanie zapasu. W kontekście instalacji sieciowych, prawidłowe planowanie długości kabli oraz uwzględnienie zapasu pozwala na elastyczność, minimalizując ryzyko przeróbek czy dodatkowych kosztów na późniejszym etapie. Ponadto, umiejętność dokładnego szacowania potrzebnych materiałów jest kluczowa w profesjonalnej pracy instalacyjnej, co podkreśla znaczenie dbałości o szczegóły i stosowania dobrych praktyk w branży telekomunikacyjnej.

Pytanie 37

Do zakończenia kabla skręcanego wtykiem 8P8C wykorzystuje się

A. narzędzie uderzeniowe
B. zaciskarkę do wtyków RJ-45
C. spawarkę światłowodową
D. zaciskarkę do złączy typu F
Zarówno spawarka światłowodowa, jak i narzędzie uderzeniowe nie są odpowiednimi narzędziami do zakończeń skrętek wtykiem 8P8C. Spawarka światłowodowa jest specjalistycznym urządzeniem przeznaczonym do łączenia włókien światłowodowych poprzez ich spawanie. Używanie tego narzędzia do zakończenia skrętek Ethernet jest nieodpowiednie, ponieważ nie posiada ono mechanizmu ani technologii do obsługi metalowych pinów w wtykach RJ-45. W kontekście sieci Ethernet, spawanie światłowodowe jest stosowane wyłącznie w odniesieniu do światłowodów, które mają zupełnie inne wymagania dotyczące zakończeń i interfejsów. Używanie narzędzia uderzeniowego, które jest przeznaczone do szybkiego kończenia kabli za pomocą bloków rozdzielczych, również nie jest stosowne dla wtyków RJ-45, które wymagają precyzyjnego i bezpiecznego zaciskania. Takie podejście często prowadzi do błędnych połączeń, co w efekcie może skutkować problemami z transmisją danych, zwiększoną ilością zakłóceń i obniżoną jakością sygnału. Typowym błędem myślowym jest przekonanie, że narzędzia przeznaczone do pracy z różnymi rodzajami kabli mogą być stosowane zamiennie, co jest niezgodne z zasadami inżynierii telekomunikacyjnej oraz dobrymi praktykami w instalacjach sieciowych.

Pytanie 38

Jaką funkcję punkt dostępu wykorzystuje do zabezpieczenia sieci bezprzewodowej, aby jedynie urządzenia z określonymi adresami fizycznymi mogły się z nią połączyć?

A. Uwierzytelnianie
B. Nadanie SSID
C. Filtrowanie adresów MAC
D. Radius (Remote Authentication Dial In User Service)
Filtrowanie adresów MAC to technika zabezpieczania sieci bezprzewodowej, która polega na zezwalaniu na dostęp tylko dla urządzeń o określonych adresach MAC, czyli fizycznych adresach sprzętowych. W praktyce, administrator sieci tworzy listę dozwolonych adresów MAC, co pozwala na kontrolowanie, które urządzenia mogą łączyć się z siecią. To podejście jest często stosowane w małych i średnich przedsiębiorstwach, gdzie istnieje potrzeba szybkiego działania i uproszczonego zarządzania dostępem. Należy jednak pamiętać, że mimo iż filtrowanie MAC zwiększa bezpieczeństwo, nie jest to metoda absolutna. Złośliwi użytkownicy mogą skanować sieć i kopiować adresy MAC, co czyni tę metodę podatną na ataki. Dobrym rozwiązaniem jest stosowanie filtrowania MAC w połączeniu z innymi mechanizmami zabezpieczeń, takimi jak WPA3 (Wi-Fi Protected Access 3) lub uwierzytelnianie 802.1X, co znacznie podnosi poziom ochrony sieci.

Pytanie 39

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Wkrętaka płaskiego
B. Zaciskarki do wtyków RJ45
C. Narzędzia uderzeniowego
D. Wkrętaka krzyżakowego
Narzędzie uderzeniowe jest kluczowym elementem w procesie zarabiania końcówek kabla UTP w modułach keystone ze stykami typu 110. Działa ono na zasadzie mechanicznego uderzenia, które umożliwia skuteczne i trwałe połączenie żył kabla z odpowiednimi stykami w module. Użycie narzędzia uderzeniowego zapewnia, że przewody są dokładnie wciśnięte w styki, co zapobiega problemom z przesyłem sygnału oraz minimalizuje straty. W praktyce, podczas zarabiania końcówek, ważne jest, aby żyły kabla były odpowiednio uporządkowane zgodnie z kolorami standardu T568A lub T568B, co jest kluczowe dla zachowania spójności i jakości połączeń sieciowych. Standardy te są uznawane w branży telekomunikacyjnej jako najlepsze praktyki. Narzędzie to jest niezbędne, ponieważ inne narzędzia, takie jak wkrętaki, nie są zaprojektowane do tego typu operacji i mogą prowadzić do uszkodzenia styków lub niewłaściwego połączenia.

Pytanie 40

W przestawionej na rysunku ramce Ethernet adresem nadawcy i adresem odbiorcy jest

Bajty
866246 - 15004
PreambułaAdres odbiorcyAdres nadawcyTyp ramkiDaneFrame Check Sequence
A. 32 bitowy adres IPv4.
B. 8 bajtowy adres fizyczny.
C. 48 bitowy adres fizyczny.
D. 6 bajtowy adres IPv4.
Wybór innej odpowiedzi sugeruje pewne nieporozumienia związane z podstawowymi pojęciami w zakresie adresowania w sieciach komputerowych. Adres IPv4, na przykład, jest 32-bitowym adresem logicznym, używanym w warstwie sieciowej modelu OSI, a nie w warstwie łącza danych, w której operują adresy fizyczne. Odpowiedzi wskazujące na długości adresów w bajtach mogą wprowadzać w błąd, ponieważ 8 bajtów oznaczałoby 64 bity, co jest niezgodne z rzeczywistymi wymaganiami dla adresów MAC. Typowe błędy myślowe związane z tymi niepoprawnymi odpowiedziami obejmują mylenie warstw modelu OSI i niepoprawną interpretację specyfikacji adresowania w sieciach. Dla przypomnienia, adresy MAC są używane do identyfikacji sprzętu w sieciach lokalnych, podczas gdy adresy IPv4 służą do routingu w ramach większych sieci, takich jak Internet. Zrozumienie różnicy między tymi adresami jest kluczowe dla skutecznego zarządzania sieciami komputerowymi oraz dla świadomości o tym, jak działają protokoły komunikacyjne. Ważne jest, aby nie utożsamiać adresu MAC z adresami IP, ponieważ pełnią one różne funkcje i operują w różnych kontekstach technologicznych.