Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 23:18
  • Data zakończenia: 7 grudnia 2025 23:51

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego rodzaju przekładnia została przedstawiona na rysunku?

Ilustracja do pytania
A. Ślimakowa.
B. Planetarna.
C. Stożkowa.
D. Zębata.
Odpowiedź "planetarna" jest poprawna, ponieważ przedstawiona na rysunku przekładnia wykazuje cechy charakterystyczne dla układu planetarnego. W przekładni planetarnej centralne koło, zwane słońcem, jest otoczone przez koła zębate, które obracają się wokół jego osi, co tworzy układ satelitów. Tego rodzaju przekładnie są szeroko stosowane w różnych aplikacjach, takich jak automatyczne skrzynie biegów, napędy elektryczne oraz w mechanizmach zegarowych. Przekładnie planetarne charakteryzują się wysoką wydajnością, kompaktowymi rozmiarami oraz możliwością przenoszenia dużych momentów obrotowych przy niewielkich wymiarach. Dzięki zastosowaniu wielu kół zębatych, przekładnia planetarna umożliwia uzyskanie różnych przełożeń, co czyni ją niezwykle wszechstronnym rozwiązaniem w inżynierii mechanicznej. Warto również zauważyć, że przekładnie planetarne często mają lepsze parametry wytrzymałościowe i wydajnościowe w porównaniu do innych typów przekładni, jak np. zębate czy ślimakowe.

Pytanie 2

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Wymieniać szybkozłączki
B. Usuwać kondensat
C. Dostosowywać ciśnienie powietrza
D. Zastępować przewody pneumatyczne
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie źródła energii zasilania powinny być doprowadzone do napędu mechatronicznego, którego schematy przedstawiono na rysunkach?

Ilustracja do pytania
A. Pneumatyczne 3 bary, elektryczne 24 V AC i 3x400 V DC
B. Pneumatyczne 3 bary, elektryczne 24 V DC i 3x400 V AC
C. Hydrauliczne 3 bary, elektryczne 24 V DC i 3x400 V AC
D. Hydrauliczne 3 bary, elektryczne 24 V AC i 3x400 V DC
Wybrane odpowiedzi dotyczące zasilania hydraulicznego lub błędnych napięć elektrycznych mogą wskazywać na pewne nieporozumienia w temacie zasilania napędów mechatronicznych. Jasne, że hydraulika ma swoje zastosowania, ale w tym przypadku nie była uwzględniona w schemacie, więc to nie jest dobre podejście. Zwykle hydraulika służy do dużych sił, ale tu kluczowe jest zasilanie pneumatyczne, co widać w symbolach na schemacie. Co do napięć, 24 V AC i 3x400 V DC są naprawdę słabym wyborem. W automatyce to DC jest preferowane z uwagi na stabilność i bezpieczeństwo. A napięcie 3x400 V DC to w ogóle rzadkość, w przemyśle to najczęściej 3x400 V AC. Ogólnie, ważne jest, żeby dobrze rozumieć, jakie źródła zasilania są odpowiednie, bo błędne przypisanie tych wartości może prowadzić do awarii i stwarzać zagrożenia. Poza zrozumieniem działania elementów, ważny jest ich odpowiedni dobór, a to już część dobrych praktyk inżynieryjnych.

Pytanie 5

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
B. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
C. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
D. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
Wskazane odpowiedzi nieprawidłowo definiują pojęcie pneumohydraulicznego wzmacniacza ciśnienia, co może prowadzić do mylnych wniosków. Propozycje takie jak akumulator hydrauliczny połączony szeregowo z siłownikiem pneumatycznym czy przemiennik pneumohydrauliczny w zestawieniu z siłownikiem hydraulicznym nie uwzględniają fundamentalnych zasad działania tych urządzeń. Akumulator hydrauliczny, będący elementem systemów hydraulicznych, przechowuje energię w postaci ciśnienia cieczy, lecz samodzielnie nie przekształca energii pneumatycznej w hydrauliczną, co jest kluczowym zjawiskiem w pneumohydraulicznych wzmacniaczach ciśnienia. Z kolei przemiennik pneumohydrauliczny jest urządzeniem, które może być wykorzystywane w kontekście różnych systemów, lecz jego rola nie jest związana z połączeniem siłowników w wymieniony sposób. Typowym błędem w myśleniu jest mylenie ról poszczególnych elementów układu oraz niewłaściwe łączenie różnych technologii, co prowadzi do nieefektywności systemu. Aby zrozumieć, jak prawidłowo konstruować tego typu systemy, ważne jest przyswojenie zasad funkcjonowania zarówno hydrauliki, jak i pneumatyki, oraz zapoznanie się z odpowiednimi normami branżowymi, które regulują ich stosowanie.

Pytanie 6

W przenośniku taśmowym zastosowano napęd mechatroniczny, którego schemat blokowy przedstawiono na rysunku. Który element umożliwiający programowe zmiany prędkości obrotowej silników napędowych oznaczono znakiem zapytania?

Ilustracja do pytania
A. Przemiennik częstotliwości.
B. Prostownik sterowany.
C. Mostek typu H.
D. Softstart.
Przemiennik częstotliwości, znany także jako falownik, jest kluczowym elementem w układach napędu elektrycznego, umożliwiającym precyzyjne kontrolowanie prędkości obrotowej silników. W kontekście przenośnika taśmowego, pozwala on na dostosowanie prędkości taśmy do zmieniających się warunków pracy, co jest niezbędne w wielu aplikacjach przemysłowych, gdzie obciążenie i wymagania transportowe mogą się różnić. Dzięki zastosowaniu przemiennika, operatorzy mogą optymalizować zużycie energii, unikając nadmiernego zużycia prądu w momentach, gdy pełna moc nie jest wymagana. W praktyce, regulacja częstotliwości zasilania silnika elektrycznego przekłada się na proporcjonalną zmianę jego prędkości obrotowej, co pozwala na osiągnięcie wyspecjalizowanych parametrów pracy. W standardach branżowych, takich jak IEC 61800, przemienniki częstotliwości są uznawane za efektywne urządzenia do zarządzania energią i zwiększania efektywności energetycznej systemów napędowych, co czyni ich nieodzownym elementem nowoczesnych systemów automatyki.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Określ, na podstawie schematu elektropneumatycznego, jak zachowa się układ po zadziałaniu czujnika 1B2.

Ilustracja do pytania
A. Zostanie włączone działanie przekaźnika KT3.
B. Tłoczysko siłownika 1A1 zostanie natychmiast wsunięte.
C. Zostanie wyłączone działanie przekaźnika KT3.
D. Tłoczysko siłownika 1A1 zostanie natychmiast wysunięte.
Wybór odpowiedzi, która sugeruje, że tłoczysko siłownika 1A1 zostanie natychmiast wsunięte lub wysunięte, opiera się na błędnym założeniu dotyczącym działania czujnika 1B2 oraz jego wpływu na inne elementy układu. Tłoczysko siłownika nie reaguje bezpośrednio na sygnał z czujnika, lecz jego ruch jest konsekwencją działania przekaźnika KT3. Zrozumienie interakcji między różnymi elementami układu elektropneumatycznego jest kluczowe. W przypadku, gdy czujnik 1B2 jest aktywowany, jego zadaniem jest zamknięcie obwodu, co prowadzi do włączenia przekaźnika KT3. Dopiero to włączenie może zainicjować ruch tłoczyska, związany z konkretnymi funkcjami układu. Odpowiedzi sugerujące, że przekaźnik KT3 zostanie wyłączony, również są błędne, ponieważ nie uwzględniają one faktu, że aktywacja czujnika prowadzi do jego włączenia, a nie wyłączenia. Takie myślenie może wynikać z niepełnego zrozumienia roli czujników w automatyce, które pełnią funkcję detekcji i nie działają samodzielnie, lecz w kontekście całego układu. W praktyce, zrozumienie schematów obwodów oraz funkcji poszczególnych elementów w systemach automatyki jest niezbędne do efektywnego projektowania i diagnostyki układów pneumatycznych i elektrycznych.

Pytanie 10

Na podstawie rysunku określ sposób mocowania siłownika pneumatycznego.

Ilustracja do pytania
A. Na łapach.
B. Wahliwe.
C. Kołnierzowe.
D. Gwintowe.
Siłownik pneumatyczny, który jest mocowany w sposób wahliwy, charakteryzuje się przegubem umożliwiającym ruch wokół osi. Takie mocowanie pozwala na elastyczne wykorzystanie siłowników w różnych aplikacjach, szczególnie tam, gdzie wymagane jest dostosowanie kąta działania. W praktyce, zastosowanie wahliwego mocowania najczęściej spotyka się w systemach automatyki przemysłowej, na przykład w urządzeniach do pakowania lub montażu, gdzie siłownik musi przeprowadzać ruchy o zmiennym kącie. Z punktu widzenia standardów branżowych, wahliwe mocowanie jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności działania systemów pneumatycznych. Dobrą praktyką w projektowaniu systemów pneumatycznych jest również zapewnienie, aby mocowanie siłownika było dostosowane do warunków pracy, co zwiększa trwałość i niezawodność instalacji. Na podstawie rysunku można również zaobserwować, że przegub zapewnia stabilność, co jest kluczowe w zastosowaniach obciążeniowych, gdzie siłowniki muszą poradzić sobie z dynamicznymi siłami.

Pytanie 11

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 1 440 zł
B. 2 200 zł
C. 2 440 zł
D. 1 220 zł
Aby obliczyć całkowity koszt urządzenia elektronicznego, należy uwzględnić zarówno koszt materiałów, jak i koszt wykonania, a także podatek VAT. Koszt materiałów wynosi 1 000 zł. Koszt wykonania, który wynosi 100% ceny materiałów, również jest równy 1 000 zł. W związku z tym całkowity koszt przed naliczeniem VAT wynosi 1 000 zł (materiały) + 1 000 zł (wykonanie) = 2 000 zł. Następnie należy obliczyć podatek VAT, który wynosi 22% z kwoty 2 000 zł. Obliczenie podatku wygląda następująco: 2 000 zł * 0,22 = 440 zł. Zatem całkowity koszt urządzenia, uwzględniając podatek VAT, wynosi 2 000 zł + 440 zł = 2 440 zł. Przykładem zastosowania tej wiedzy w praktyce może być wycena projektów w branży elektroniki, gdzie znajomość kosztów i podatków jest niezbędna do efektywnego zarządzania budżetem.

Pytanie 12

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 13

Rurka Bourdona stanowi część

A. filtru powietrza
B. manometru
C. smarownicy
D. reduktora ciśnienia
Rurka Bourdona jest kluczowym elementem manometru, który służy do pomiaru ciśnienia gazów i cieczy. Działa na zasadzie deformacji, gdy ciśnienie wewnętrzne powoduje, że elastyczna rurka zmienia swój kształt. Zmiana ta jest następnie przekształcana na wskazanie na skali manometru, co pozwala na dokładny pomiar ciśnienia. Rurki Bourdona są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, petrochemiczny, a także w systemach HVAC. Zgodnie z normami, takimi jak ISO 5171, manometry powinny być kalibrowane regularnie, aby zapewnić ich dokładność i zgodność z wymaganiami. Przykładem praktycznego zastosowania może być monitorowanie ciśnienia w kotłach parowych, gdzie precyzyjny pomiar jest kluczowy dla bezpieczeństwa i efektywności działania systemu. W ogólności, zastosowanie rurki Bourdona w manometrach jest nie tylko powszechne, ale także ściśle związane z zapewnieniem odpowiednich standardów bezpieczeństwa i jakości w różnych aplikacjach przemysłowych.

Pytanie 14

Rezystory R1 = 400 Ω/0,25 W i R2 = 400 Ω/1 W ograniczają prądy płynące przez diody D1, D2. Woltomierze V1, V2 wskazują napięcie po 15 V. Oznacza to, że

Ilustracja do pytania
A. rezystory R1 i R2 są przeciążone.
B. rezystory R1 i R2 nie są przeciążone.
C. rezystor R2 jest przeciążony.
D. rezystor R1 jest przeciążony.
Nie jest prawdą, że niektóre rezystory nie mogą być przeciążone, co chyba wynika z niezrozumienia, jak się oblicza moc w układzie. Jeśli myślisz, że R1 może być przeciążony, ale nie bierzesz pod uwagę, że R2 też się może przegrzać, to możesz się pomylić. Ważne jest, żeby wiedzieć, że moc na rezystorze obliczamy na podstawie napięcia i oporu. Dla R1 przy 15 V moc wynosi 0,5625 W, co już przekracza maksymalną moc 0,25 W. R2 też ma podobny problem, bo również 0,5625 W, a jego maksymalna moc to 1 W. Dlatego oba rezystory są w takiej sytuacji, co sugeruje błąd w analizie. Unikanie takich pomyłek w praktyce jest ważne, bo może to skutkować uszkodzeniem elementów, a w konsekwencji awarią całego sprzętu. Żeby ocenić, czy rezystory są przeciążone, trzeba dobrze przeliczyć moc i zrozumieć konsekwencje, jakie niosą za sobą takie przekroczenia, jak przegrzanie, które prowadzi do awarii. W projektowaniu układów zawsze dobrze jest stosować zasady dobrego projektowania, czyli dobierać odpowiednie komponenty i uwzględniać marginesy bezpieczeństwa w obliczeniach.

Pytanie 15

Woltomierz działający w trybie AC pokazuje wartość napięcia elektrycznego

A. chwilową
B. skuteczną
C. maksymalną
D. średnią
Woltomierz w trybie pracy AC wskazuje wartość skuteczną napięcia elektrycznego, co oznacza, że mierzy on efektywną wartość napięcia, która generuje taką samą moc w obciążeniu rezystancyjnym, jak napięcie stałe. Wartość skuteczna, oznaczana jako Ueff, jest istotna w obliczeniach związanych z systemami zasilania i elektrycznymi układami energetycznymi, ponieważ pozwala na realne oszacowanie ilości energii dostarczanej do urządzenia. Na przykład, w domowych instalacjach elektrycznych napięcie zmienne (AC) o wartości skutecznej 230 V odpowiada napięciu stałemu 230 V pod względem generowanej mocy. Praktyczne zastosowanie tej wiedzy można zobaczyć w projektowaniu układów zasilania oraz w obliczeniach związanych z mocą czynna i bierną. Zgodnie z normami IEC 61010, pomiar wartości skutecznej jest kluczowy dla zapewnienia bezpieczeństwa i efektywności układów elektrycznych. Warto również dodać, że woltomierze cyfrowe często korzystają z układów pomiarowych, które są w stanie precyzyjnie obliczyć wartość skuteczną, nawet w obecności zniekształceń harmonicznych.

Pytanie 16

Do zagniatania tulejek kablowych należy użyć narzędzia przedstawionego na rysunku

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
W przypadku wyboru narzędzi oznaczonych literami A, B lub D, można zauważyć szereg nieprawidłowości związanych z ich zastosowaniem w kontekście zagniatania tulejek kablowych. Narzędzie A, czyli szczypce tnące boczne, zostały zaprojektowane głównie do cięcia przewodów, a nie do ich łączenia. Próba użycia tych szczypiec do zagniatania tulejek zakończy się nie tylko nieskutecznością w uzyskaniu właściwego połączenia, ale również może prowadzić do uszkodzenia elementów instalacji. Narzędzie B, szczypce długie zagięte, są z kolei przeznaczone do manipulacji w trudno dostępnych miejscach, ale nie posiadają mechanizmu potrzebnego do skutecznego zagniatania. Użycie ich w takim celu może prowadzić do błędnego wykonania połączenia, co może skutkować niebezpiecznymi sytuacjami w instalacjach elektrycznych. Z kolei narzędzie D, szczypce uniwersalne, choć wszechstronne, nie są zoptymalizowane do precyzyjnego zagniatania tulejek, co zmniejsza jakość i trwałość wykonanych połączeń. Wybór nieodpowiednich narzędzi jest typowym błędem, który wynika z braku zrozumienia specyfiki zastosowania narzędzi elektrycznych i może prowadzić do poważnych problemów z bezpieczeństwem oraz efektywnością pracy. Zaleca się, aby zawsze korzystać z narzędzi przeznaczonych do konkretnego zadania, co jest zgodne z najlepszymi praktykami w branży, aby zminimalizować ryzyko błędów i awarii.

Pytanie 17

Na którym rysunku przedstawiono prawidłowe ułożenie przewodów hydraulicznych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Rysunki A, C i D pokazują, że przewody są ułożone źle, co może stworzyć sporo problemów. Na przykład, w rysunku A widzimy, że przewody są za mocno skręcone, co może sprawić, że się uszkodzą z powodu zbyt dużego napięcia. Taki układ także utrudnia dostęp do ważnych części systemu, a to w przypadku awarii może prowadzić do dodatkowych kłopotów. Rysunek C natomiast pokazuje przewody, które mogą się stykać z innymi elementami instalacji. To nie jest okej, bo może być ryzyko zwarć albo wycieków. A na rysunku D widzimy, że przewody są umieszczone tak, że trudno im się poruszać, co w dłuższym czasie może kończyć się pęknięciami. Te błędy często wynikają z braku zrozumienia zasad hydrauliki i braku odpowiedniego przeszkolenia. Dlatego ważne jest, żeby przy projektowaniu i instalacji tych systemów trzymać się branżowych standardów, które mówią, jak najlepiej ułożyć przewody, żeby były bezpieczne i trwałe.

Pytanie 18

Na rysunku zamieszczono element, który zabezpiecza przed

Ilustracja do pytania
A. chwilowym zanikiem napięcia.
B. zwarciem doziemnym.
C. zwarciem i przeciążeniem.
D. gwałtownym wzrostem napięcia.
Poprawna odpowiedź to zwarcie doziemne. Na zdjęciu przedstawiony jest wyłącznik różnicowoprądowy, który jest kluczowym elementem ochrony instalacji elektrycznych. Działa na zasadzie monitorowania prądu przepływającego przez obwód i wykrywania różnicy między prądem wchodzącym a wychodzącym. Gdy stwierdzi, że prąd wypływa do ziemi, co może być skutkiem zwarcia doziemnego, natychmiast odłącza zasilanie. Takie działanie jest niezbędne w celu ochrony osób przed porażeniem prądem oraz zapobiegania pożarom wywołanym przez awarie elektryczne. W kontekście standardów, wyłączniki różnicowoprądowe są zgodne z normą IEC 61008, która definiuje ich działanie i wymagania. W praktyce, ich zastosowanie jest powszechne w instalacjach domowych, obiektach użyteczności publicznej oraz w przemysłowych systemach elektrycznych, co znacząco zwiększa bezpieczeństwo użytkujących te instalacje.

Pytanie 19

Którego ściągacza należy użyć do demontażu łożyska przedstawionego na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Ściągacz typu A, który wybrałeś, jest idealnym narzędziem do demontażu łożysk zewnętrznych, takich jak to przedstawione na rysunku. Jego konstrukcja dwuramienna pozwala na efektywne i równomierne ściąganie łożyska, co jest kluczowe dla uniknięcia uszkodzenia zarówno łożyska, jak i wału, z którym jest połączone. W praktyce, podczas demontażu łożyska, ważne jest, aby ramiona ściągacza mogły być umieszczone pod łożyskiem, co umożliwia zastosowanie równomiernej siły we wszystkich kierunkach. Użycie niewłaściwego ściągacza, takiego jak B, C czy D, mogłoby prowadzić do niedostatecznego ściągnięcia łożyska lub jego uszkodzenia, co zwiększa ryzyko kosztownych napraw. W branży inżynieryjnej i mechanicznej stosowanie odpowiednich narzędzi zgodnych z normami i standardami jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Dlatego zawsze warto dobierać narzędzia zgodnie z ich przeznaczeniem oraz wymaganiami technicznymi.

Pytanie 20

W układzie przedstawionym na schemacie zawór zasadniczy jest sterowany

Ilustracja do pytania
A. elektrycznie.
B. pneumatycznie przez spadek ciśnienia.
C. siłą mięśni.
D. pneumatycznie przez wzrost ciśnienia.
Zawór zasadniczy w układzie pneumatycznym działa na zasadzie wzrostu ciśnienia. To ważny element, bo kiedy ciśnienie w linii sterującej rośnie, to przesuwa elementy zaworu pomocniczego i zmienia stan zaworu zasadniczego. Taki sposób sterowania jest często stosowany w automatyce i inżynierii pneumatycznej, bo pozwala na skuteczne zarządzanie przepływem. Na przykład w przemyśle, gdzie automatyzacja działa sprawnie dzięki pneumatycznemu sterowaniu zaworami. To umożliwia szybkie i bezproblemowe procesy technologiczne. Warto też wspomnieć, że wiele inżynieryjnych aplikacji korzysta z zaworów regulujących ciśnienie, co zwiększa ich wszechstronność i funkcjonalność.

Pytanie 21

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Gwintownik
B. Narzynka
C. Tłocznik
D. Skrobak
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 22

Ile wynosi wartość natężenia prądu znamionowego toru głównego wyłącznika różnicowoprądowego przedstawionego na ilustracji?

Ilustracja do pytania
A. 400 V
B. 800 A
C. 30 mA
D. 63 A
Odpowiedź '63 A' jest poprawna, ponieważ na przedstawionym wyłączniku różnicowoprądowym wyraźnie widnieje oznaczenie, które wskazuje na wartość natężenia prądu znamionowego toru głównego. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach elektrycznych, które zapewniają ochronę przed porażeniem prądem elektrycznym oraz przeciążeniami. Wartość 63 A oznacza maksymalne natężenie prądu, które urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. W praktyce, wybór odpowiedniego wyłącznika różnicowoprądowego jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej. Standardy takie jak PN-EN 61008 określają wymagania dotyczące tych urządzeń, w tym klasyfikację według wartości znamionowych. Dlatego ważne jest, aby instalatorzy i inżynierowie dobrze rozumieli oznaczenia na tego typu sprzęcie oraz potrafili je interpretować, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Warystor.
B. Tensometr.
C. Gaussotron.
D. Termistor.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 25

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na pomiar parametrów procesowych prasy
B. na załączanie i wyłączanie pracy prasy
C. na wizualizację przebiegu pracy prasy
D. na odczyt wartości zmierzonych parametrów
Urządzenia HMI w mechatronice, jak na przykład w prasie hydraulicznej, to naprawdę ważny element do komunikacji między operatorem a maszyną. W kontekście tego pytania, HMI umożliwia odczyt wartości zmierzonych parametrów, co jest kluczowe, aby wiedzieć, w jakim stanie pracuje prasa. Dzięki temu operator może lepiej zrozumieć, co się dzieje w trakcie pracy maszyny, bo wizualizacja przebiegu pracy jest bardzo pomocna. Poza tym, HMI pozwala na włączanie i wyłączanie prasy, co jest istotne w automatyzacji. Trzeba jednak pamiętać, że pomiar samych parametrów procesowych przy pomocy HMI nie jest możliwy, bo jego główną rolą jest pokazywanie danych z innych czujników. W praktyce, standardy jak ISO 10218 dla robotów mówią, że HMI powinno być używane do komunikacji, a nie do pomiarów. Zrozumienie tego, jak działa HMI, jest naprawdę kluczowe przy projektowaniu i obsłudze automatyzacji, a także w dbaniu o ergonomię i bezpieczeństwo w pracy.

Pytanie 26

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1000 mm2
B. 2000 mm2
C. 3000 mm2
D. 1500 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności F<sub>u</sub> = η ∙ S ∙ p. Wstawiając znane wartości: F<sub>u</sub> = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = F<sub>u</sub> / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m<sup>2</sup>, co odpowiada 2000 mm<sup>2</sup>. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 27

Ilustracja przedstawia łożysko

Ilustracja do pytania
A. walcowe.
B. kulkowe.
C. igiełkowe.
D. przegubowe.
Zgłoszona odpowiedź jest niepoprawna, ponieważ nie uwzględnia specyfiki budowy i funkcji łożysk przegubowych. Łożyska walcowe, igiełkowe oraz kulkowe różnią się zasadniczo od łożysk przegubowych pod względem zastosowania i możliwości ruchowych. Łożyska walcowe, na przykład, składają się z cylindrycznych elementów tocznych, co pozwala im przenosić obciążenia w kierunku osiowym, ale nie są one przystosowane do ruchów kątowych. W przypadku łożysk igiełkowych, które są w rzeczywistości podtypem łożysk walcowych, również ograniczają się one do przenoszenia obciążeń wzdłuż osi, co czyni je nieodpowiednimi w sytuacjach, gdzie wymagany jest ruch przegubowy. Łożyska kulkowe oferują pewną swobodę ruchu, jednak ich konstrukcja nie pozwala na tak dużą kompensację niewspółosiowości, jak ma to miejsce w łożyskach przegubowych. Często błędne zrozumienie tych różnic prowadzi do nieprawidłowego doboru łożysk w projektach inżynieryjnych, co może skutkować awariami lub skróceniem żywotności mechanizmów. Dobierając odpowiednie łożysko, inżynierowie muszą brać pod uwagę rodzaj ruchu, obciążenia, a także wymagania dotyczące trwałości i niezawodności. Warto więc zwrócić uwagę na specyfikacje techniczne i zalecenia producentów, aby uniknąć nieporozumień i niedopasowań w praktycznych zastosowaniach.

Pytanie 28

Symbolem K1 oznaczono

Ilustracja do pytania
A. pompę hydrauliczną.
B. silnik pneumatyczny.
C. sprężarkę.
D. pompę próżniową.
Pompa hydrauliczna z symbolem K1 to naprawdę ważny element w systemach hydraulicznych. Działa tak, że zamienia energię mechaniczną na hydrauliczną, co jest mega istotne przy zasilaniu różnych mechanizmów. Widziałem to na różnych budowach czy w maszynach do podnoszenia, gdzie pompy hydrauliczne są w użyciu. Warto też zwrócić uwagę, że najczęściej pompa jest zasilana przez silnik elektryczny (symbol M), co sprawia, że wszystko działa sprawnie i niezawodnie. Jak patrzymy na schematy, to umiejętność rozpoznawania tych symboli jest kluczowa, zwłaszcza dla inżynierów. Ostatnio czytałem, że nowoczesne systemy hydrauliczne mogą być zintegrowane z elektronicznym sterowaniem, co dodatkowo zwiększa ich precyzję. Bez znajomości tych symboli i ich funkcji trudno byłoby pracować w tej branży.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. CAN
B. RS 485
C. PROFINET
D. SmartWire-DT
PROFINET to standard komunikacyjny oparty na Ethernet, który został zaprojektowany z myślą o automatyzacji przemysłowej. Jednym z kluczowych aspektów PROFINET jest to, że nie wymaga stosowania rezystorów terminujących na końcach łącza, co różni go od innych magistrali komunikacyjnych, takich jak RS 485 czy CAN, które zazwyczaj wymagają terminacji dla zapewnienia integralności sygnału. W przypadku PROFINET, sygnał jest przesyłany w formie pakietów danych, co sprawia, że terminacja nie jest konieczna. Dzięki temu, PROFINET oferuje większą elastyczność w projektowaniu sieci oraz upraszcza instalację, co jest szczególnie korzystne w rozbudowanych systemach automatyki, gdzie wiele urządzeń jest połączonych w sieć. Przykłady zastosowania PROFINET obejmują systemy sterowania procesami, robotykę oraz monitoring w czasie rzeczywistym w zakładach przemysłowych, gdzie wysoka prędkość transmisji i niskie opóźnienia są kluczowe dla efektywności działania. Standard ten jest zgodny z normą IEC 61158 i zyskuje coraz większe uznanie w branży dzięki możliwości integracji z istniejącymi infrastrukturami sieciowymi opartymi na Ethernet.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Przyłącze "T" zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. siłownika jednostronnego działania.
B. zbiornika oleju.
C. siłownika dwustronnego działania.
D. pompy.
Odpowiedź 'zbiornik oleju' jest prawidłowa, ponieważ przyłącze 'T' w zaworach hydraulicznych pełni rolę przyłącza zwrotnego, które odprowadza olej z powrotem do zbiornika w sytuacjach, gdy układ nie wymaga jego dalszego ciśnienia. W standardowych układach hydraulicznych, gdy zawór znajduje się w pozycji neutralnej, olej, który nie jest używany do napędu siłowników, musi być odprowadzany, aby uniknąć nadmiernego ciśnienia w systemie. Dobrą praktyką inżynieryjną jest odpowiednie podłączenie tego przyłącza, aby zapewnić prawidłowy obieg oleju i bezpieczeństwo układu. Na przykład, w układach z siłownikami hydraulicznymi, które często przechodzą w stan neutralny, olej powinien być odprowadzany do zbiornika, aby zminimalizować ryzyko uszkodzenia komponentów hydraulicznych poprzez nadmierne ciśnienie. Przykładowo, w maszynach budowlanych, takich jak koparki czy podnośniki, odpowiednie podłączenie przyłącza T do zbiornika oleju jest kluczowe dla efektywnej pracy i bezpieczeństwa operacji.

Pytanie 34

Elementem zaworu, oznaczonym na rysunku znakiem X jest

Ilustracja do pytania
A. elektromagnes z przyłączem.
B. przyłącze przetwornika ciśnienia.
C. przyłącze wspomagania pneumatycznego.
D. czujnik położenia suwaka.
Element oznaczony znakiem X na rysunku to elektromagnes z przyłączem, co jest kluczowe w kontekście działania zaworów elektromagnetycznych. Elektromagnesy są szeroko stosowane w automatyce przemysłowej do sterowania przepływem cieczy lub gazów. W przypadku pneumatyki, elektromagnes aktywuje ruch suwaka, co pozwala na otwieranie bądź zamykanie drogi przepływu powietrza. Tego typu rozwiązania są zgodne z normami ISO 4414, które określają zasady bezpieczeństwa i niezawodności w systemach pneumatycznych. W praktyce, odpowiednio dobrany elektromagnes może znacząco zwiększyć efektywność układów automatyki, a jego zastosowanie w zaworach umożliwia precyzyjne zarządzanie przepływem medium w różnych procesach technologicznych, co jest kluczowe w nowoczesnych liniach produkcyjnych i systemach automatyzacji. Dobrą praktyką w projektowaniu systemów automatyki jest również zapewnienie odpowiednich zabezpieczeń, aby zapobiec nieautoryzowanemu uruchamianiu zaworów, co może prowadzić do poważnych awarii.

Pytanie 35

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7
A. 3 x 3 mm
B. 5 x 5 mm
C. 6 x 6 mm
D. 4 x 4 mm
Najczęściej popełnianym błędem przy wyborze wymiarów wpustu pryzmatycznego jest nieprawidłowe dopasowanie jego rozmiaru do średnicy wału. Wiele osób może pomyśleć, że wymiary 3 x 3 mm, 5 x 5 mm lub 6 x 6 mm będą odpowiednie dla wału o średnicy 12 mm, co jest błędne. Takie rozumowanie wynika często z niepełnego zrozumienia podstawowych zasad projektowania połączeń mechanicznych. W rzeczywistości, każdy wpust jest projektowany według określonych norm, które określają, jakie wymiary powinny być stosowane dla różnych średnic wałów. Zastosowanie zbyt małych wymiarów, takich jak 3 x 3 mm, prowadzi do niewystarczającego przenoszenia momentu obrotowego, co może skutkować ich uszkodzeniem oraz niestabilnością całego mechanizmu. Podobnie, zbyt duże wymiary, takie jak 5 x 5 mm lub 6 x 6 mm, mogą uniemożliwić odpowiednie osadzenie wpustu na wale, co również prowadzi do luzów i potencjalnych uszkodzeń. Kluczowym aspektem jest zrozumienie, że dobór wymiarów wpustu nie jest tylko kwestią estetyki, ale jest to fundamentalna zasada konstrukcji mechanicznych, która ma bezpośredni wpływ na efektywność i bezpieczeństwo urządzeń. Dlatego tak ważne jest, aby stosować się do tabel i specyfikacji producentów, aby dokonać właściwego wyboru wymiarów wpustu pryzmatycznego.

Pytanie 36

W celu uruchomienia szeregowego silnika prądu stałego należy połączyć go zgodnie ze schematem

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź A jest poprawna, ponieważ przedstawia prawidłowy schemat połączenia szeregowego silnika prądu stałego. W takim układzie silnik jest połączony szeregowo z obciążeniem, co oznacza, że prąd przepływa najpierw przez silnik, a następnie przez rezystor D1. To połączenie jest istotne, ponieważ w układzie szeregowym prąd jest taki sam w każdym elemencie, co pozwala na równomierne rozłożenie napięcia i prądu w całym obwodzie. Przykładem zastosowania połączenia szeregowego jest zasilanie silników w aplikacjach, gdzie wymagane jest oszczędne użycie energii, na przykład w prostych mechanizmach napędowych. W praktyce, umiejscowienie rezystora w tym układzie może również służyć do ograniczenia prądu, co jest istotne w kontekście ochrony silnika przed przeciążeniem. Dobrą praktyką jest również regularne monitorowanie parametrów pracy silnika, aby upewnić się, że działa on w zakresie swoich specyfikacji, co może zapobiec uszkodzeniom oraz zwiększyć efektywność energetyczną. Warto pamiętać, że znajomość właściwych schematów połączeń jest kluczowa w inżynierii elektrycznej i automatyce.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. oceny stopnia naprężenia
B. sprawdzenia wymiarów
C. analizy stopnia zużycia
D. weryfikacji czystości paska
Odpowiedź 'sprawdzenie stopnia naprężenia' jest poprawna, ponieważ nie jest to czynność przygotowawcza, lecz działa niezbędne do zapewnienia prawidłowej pracy paska klinowego po jego montażu. Zanim pasek zostanie zamontowany, kluczowe jest, aby skupić się na weryfikacji wymiarów, kontroli czystości paska oraz ocenie stopnia zużycia. Weryfikacja wymiarów polega na sprawdzeniu długości i szerokości paska, co zapewnia, że nowy pasek będzie pasował do przekładni pasowej. Kontrola czystości paska jest niezbędna, aby zminimalizować ryzyko uszkodzeń mechanicznych i zapewnić odpowiednie tarcie między paskiem a kołami pasowymi. Ocena stopnia zużycia paska pozwala ustalić, czy stary pasek wymaga wymiany. Najważniejsze standardy branżowe, takie jak ISO 9001, zalecają dokładne przygotowanie przed montażem, co podkreśla znaczenie tych czynności, aby uniknąć problemów z wydajnością i trwałością systemu napędowego.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Które oczko, przygotowane do założenia na śrubę w tabliczce zaciskowej silnika, jest prawidłowo uformowane i wygięte we właściwym kierunku?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór innej odpowiedzi niż B może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności połączeń elektrycznych. Oczka, które nie są odpowiednio uformowane lub mają nieprawidłowe wygięcie, mogą prowadzić do osłabienia połączenia, co zwiększa ryzyko zwarcia elektrycznego lub awarii sprzętu. Często, niewłaściwe oczka mogą mieć otwarty koniec, co stwarza zagrożenie, że przewód nie będzie stabilnie zamocowany, co w praktyce może skutkować jego przypadkowym wysunięciem się z złącza. Te typowe błędy myślowe mogą wynikać z niepełnego zrozumienia zasad działania tabliczek zaciskowych oraz wymagań technicznych dotyczących montażu. Kluczowe jest, aby zrozumieć, że każdy element instalacji musi być odpowiednio dobrany do jego zastosowania, a nieprzestrzeganie tych zasad może prowadzić do uszkodzenia urządzeń oraz generować dodatkowe koszty naprawy. Takie zaniechania są także niezgodne z najlepszymi praktykami w dziedzinie elektrotechniki, które zalecają stosowanie jedynie komponentów spełniających normy branżowe i producentskie, takie jak IEC 60898 czy IEC 60947-1. Dlatego przed dokonaniem wyborów konstrukcyjnych w instalacjach elektrycznych warto zasięgnąć wiedzy i upewnić się, że każdy element jest właściwie dobrany i zamocowany, aby zapewnić długotrwałe i bezpieczne użytkowanie.