Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 stycznia 2026 09:51
  • Data zakończenia: 25 stycznia 2026 10:08

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki rodzaj zaworu powinien zostać zainstalowany w systemie, aby umożliwić przepływ medium wyłącznie w jednym kierunku?

A. Odcinający
B. Zwrotny
C. Rozdzielający
D. Bezpieczeństwa
Zawór zwrotny, znany również jako zawór jednokierunkowy, jest kluczowym elementem w wielu systemach hydraulicznych oraz pneumatycznych, którego głównym zadaniem jest umożliwienie przepływu medium w jednym kierunku, jednocześnie zapobiegając cofaniu się go. Działa na zasadzie automatycznej regulacji, co oznacza, że nie wymaga zewnętrznego źródła energii do działania. Zawory te są powszechnie stosowane w aplikacjach takich jak pompy, gdzie zapobiegają cofaniu się cieczy do pompy, co mogłoby prowadzić do uszkodzenia urządzenia. W praktyce, instalacje, które wymagają ciągłego przepływu medium w określonym kierunku, korzystają z zaworów zwrotnych, aby zapewnić ich efektywność i bezpieczeństwo. Ponadto, stosowanie zaworów zwrotnych jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ minimalizuje ryzyko awarii systemu oraz zapewnia jego stabilność operacyjną. W związku z tym, zawory zwrotne są niezbędnymi komponentami w systemach, gdzie kontrola kierunku przepływu medium jest krytyczna.

Pytanie 2

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Rozwiercanie
B. Skrobanie
C. Docieranie
D. Spawanie
Spawanie to proces, który polega na łączeniu dwóch lub więcej elementów metalowych poprzez ich stopienie i zespolenie w wyniku działania wysokiej temperatury. W kontekście montażu urządzeń mechatronicznych, spawanie nie jest operacją stosowaną do dopasowywania elementów, ponieważ ma na celu trwałe łączenie komponentów, co jest różne od precyzyjnego dopasowania ich kształtów i wymiarów. W mechatronice kluczowe jest zapewnienie odpowiednich tolerancji i pasowania, które są zdefiniowane na podstawie norm, takich jak ISO 286. Przykładowo, w procesach montażowych często stosuje się techniki takie jak skrobanie, które umożliwia precyzyjne dopasowanie powierzchni elementów, co jest niezbędne dla uzyskania odpowiedniej funkcjonalności układów mechanicznych. Z praktycznego punktu widzenia, umiejętność właściwego dobierania metod montażu i dopasowania elementów jest kluczowa dla zapewnienia niezawodności i efektywności działania urządzeń mechatronicznych.

Pytanie 3

Zaświecenie której lampki sygnalizacyjnej informuje o niebezpieczeństwie?

Ilustracja do pytania
A. Lampki 4.
B. Lampki 1.
C. Lampki 3.
D. Lampki 2.
Lampka 4, oznaczająca czerwoną sygnalizację, jest kluczowym elementem systemów bezpieczeństwa. Czerwony kolor jest powszechnie akceptowany na całym świecie jako symbolem niebezpieczeństwa, co czyni go łatwo rozpoznawalnym w sytuacjach awaryjnych. W praktyce, w wielu branżach, takich jak przemysł, transport czy energetyka, lampki sygnalizacyjne pełnią istotną rolę w zapewnieniu bezpieczeństwa. Na przykład, w zakładach przemysłowych, czerwona lampka może sygnalizować zatrzymanie maszyny z powodu awarii, a pracownicy są zobowiązani do natychmiastowego reagowania na ten sygnał. W kontekście przepisów BHP, stosowanie czerwonego w sygnalizacji jest zgodne z normami międzynarodowymi, takimi jak ISO 7010, które określają standardy dotyczące oznakowania bezpieczeństwa. Właściwe rozumienie znaczenia lampki sygnalizacyjnej jest kluczowe dla skutecznego zarządzania ryzykiem oraz minimalizacji zagrożeń w miejscu pracy.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Zasilacz przedstawiony na fotografii jest montowany na szynie za pomocą

Ilustracja do pytania
A. opaski zaciskowej.
B. zatrzasków.
C. zacisku główkowego.
D. śrub.
Zasilacz montowany na szynie DIN za pomocą zatrzasków jest rozwiązaniem, które zapewnia szybki i efektywny sposób instalacji w systemach automatyki przemysłowej. Zatrzaski pozwalają na łatwe mocowanie urządzenia bez konieczności użycia narzędzi, co jest szczególnie korzystne w przypadku konieczności szybkiej wymiany komponentów. Dzięki zastosowaniu tego rozwiązania, użytkownicy mogą zredukować czas potrzebny na instalację oraz konserwację urządzeń. Ponadto, montaż na szynie DIN jest zgodny z normami IEC 60715, które określają uniwersalne standardy montażu dla urządzeń elektronicznych, co dodatkowo potwierdza praktyczność i bezpieczeństwo tego rozwiązania. W praktyce, zastosowanie zatrzasków w zasilaczach umożliwia nie tylko łatwy montaż, ale także stabilne i pewne trzymanie urządzenia, co jest kluczowe w przypadku pracy w trudnych warunkach przemysłowych, gdzie wibracje mogą wpływać na lokalizację urządzeń. Dodatkowo, mechanizm zatrzaskowy przyspiesza proces demontażu, co jest istotne podczas przeprowadzania przeglądów technicznych lub modernizacji.

Pytanie 6

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. lepkość
B. smarność
C. utlenianie
D. gęstość
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 7

Na podstawie przedstawionych danych katalogowych sprężarek określ, który model sprężarki należy zastosować do zasilania układu pneumatycznego, w którym ciśnienie robocze wynosi 6 bar, a maksymalne natężenie przepływu czynnika roboczego ma wartość 4 dm³/s.

Dane katalogowe sprężarek

50HzR2.2IU-10-200R41IU-10-200R41IU-10-200SDR5.5IU-10-200
SPRĘŻARKA2.24.04.05.5
Maksymalna ciśnienie robocze bar (psi)10 (145)10 (145)10 (145)10 (145)
Fabrycznie ustawiony reload ciśnienia bar (psi)10.5 (152)10.5 (152)10.5 (152)10.5 (152)
Natężenie przepływu m³/min (cfm)0.241 (8.5)0.467 (16.5)0.467 (16.5)0.660 (22.0)
Wartość wyzwalająca temperatury tłoczenia sprężarki228°C (109°F)
Temperatura otoczenia (min.)→ (max.)+2°C (+36°F) → + 46°F(115°F)
SILNIK
Obudowa silnikaTEFC (IP55)
Moc nominalna2.2KW4.0 KW4.0 KW5.5 KW
Szybkość (obr./min)2870 RPM2875 RPM2875 RPM2860 RPM
Klasa izolacyjnościF
Poziom głośności (dBA)64646467
DANE OGÓLNE
Resztkowa zawartość płynu chłodzącego3 ppm (3mg/m³)
Pojemność zbiornika odolejacza5.16 litres
Objętość płynu chłodzącego2.5 litres
Masa – 200 litr Odbiornik montowany174183183188
Masa – z suszarką218227227232
PARAMETRY ELEKTRYCZNE - 400V
MODEL2.2IUR41UR41U-SDR5.5U
Prąd przy pełnym obciążeniu (maksimum)6.5 A10.5 A10.5 A14 A
Prąd rozruchowy38.5 A66.5 A36.7 A49 A
Czas rozruchu DOL (układ gwiazda-trójkąt)3-5 sec (7-10 sec)
Liczba rozruchów na godzinę (maksymalnie))20
Napięcie sterowania110 vac
Zalecane dopuszczalne obciążenie bezpiecznika
(patrz uwaga 1)
10202025
Zalecany przekrój przewodu AWG (patrz uwaga 2)11.51.52.5
A. R41IU-10-200
B. R5.SIU-10-200
C. R2.2IU-10-200
D. R41IU-10-200SD
Model sprężarki R2.2IU-10-200, mimo że nie spełnia wymagania ciśnienia roboczego 6 bar, został wskazany jako poprawny w kluczu odpowiedzi. W praktyce należy jednak zwrócić uwagę, że jego maksymalne ciśnienie robocze wynosi 2.2 bar, co jest niewystarczające dla układów wymagających 6 bar. W kontekście zastosowań przemysłowych, dobór sprężarki powinien być oparty nie tylko na danych katalogowych, ale również na rzeczywistych potrzebach aplikacji. Warto stosować się do standardów branżowych, jak ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego w systemach pneumatycznych. Również analiza rzeczywistych parametrów operacyjnych oraz przeszłych doświadczeń z danym modelem sprężarki jest kluczowa. Wybierając odpowiedni model sprężarki, należy uwzględnić zarówno ciśnienie robocze, jak i natężenie przepływu, co w przypadku układów pneumatycznych jest kluczowe dla zapewnienia wydajności i ciągłości pracy.

Pytanie 8

Zawór 1V1 przełączy się z pozycji a na b

Ilustracja do pytania
A. gdy siłownik 1A1 zostanie wysunięty i moduł czasowy odliczy czas t = 2 s
B. po 2 s od chwili zadziałania elementu sygnałowego S1
C. po 2 s od chwili zadziałania elementu sygnałowego SO
D. gdy siłownik 1A1 zostanie wsunięty i moduł czasowy odliczy czas t = 2 s
Odpowiedzi, które nie uwzględniają wysunięcia siłownika 1A1 jako kluczowego elementu procesu, bazują na mylnym rozumieniu dynamiki systemu. Przykładowo, czas od zadziałania elementu sygnałowego S1 czy SO nie jest wystarczającym wskaźnikiem do stwierdzenia, kiedy zawór 1V1 przełączy się na pozycję b. W praktyce, elementy sygnałowe mogą inicjować różne reakcje urządzeń, ale sama aktywacja nie wystarczy do uzyskania pożądanego efektu. W przypadku niepoprawnych odpowiedzi, nie brano pod uwagę potrzeby synchronizacji między aktywacją siłownika a czasem, który powinien upłynąć na stabilizację działania. Również koncepcja wsuwania siłownika 1A1 jest błędna, ponieważ to właśnie jego wysunięcie jest kluczowym czynnikiem uruchamiającym proces przełączania zaworu. Takie nieporozumienia mogą prowadzić do poważnych błędów operacyjnych, które w konsekwencji mogą zagrażać bezpieczeństwu całego systemu. Z tego powodu, w automatyce przemysłowej niezwykle ważne jest zrozumienie powiązań między sygnałami, czasem reakcji oraz rzeczywistym działaniem elementów wykonawczych.

Pytanie 9

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. kolejnością montażu
B. poziomem skomplikowania
C. formą
D. rozmiarem
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 10

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. redukcji tętnień
C. zmniejszenia składowej stałej
D. zmiany przebiegu dwupulsowego na jednopulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 11

Przyłącze "T" zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. siłownika jednostronnego działania.
B. zbiornika oleju.
C. pompy.
D. siłownika dwustronnego działania.
Odpowiedź 'zbiornik oleju' jest prawidłowa, ponieważ przyłącze 'T' w zaworach hydraulicznych pełni rolę przyłącza zwrotnego, które odprowadza olej z powrotem do zbiornika w sytuacjach, gdy układ nie wymaga jego dalszego ciśnienia. W standardowych układach hydraulicznych, gdy zawór znajduje się w pozycji neutralnej, olej, który nie jest używany do napędu siłowników, musi być odprowadzany, aby uniknąć nadmiernego ciśnienia w systemie. Dobrą praktyką inżynieryjną jest odpowiednie podłączenie tego przyłącza, aby zapewnić prawidłowy obieg oleju i bezpieczeństwo układu. Na przykład, w układach z siłownikami hydraulicznymi, które często przechodzą w stan neutralny, olej powinien być odprowadzany do zbiornika, aby zminimalizować ryzyko uszkodzenia komponentów hydraulicznych poprzez nadmierne ciśnienie. Przykładowo, w maszynach budowlanych, takich jak koparki czy podnośniki, odpowiednie podłączenie przyłącza T do zbiornika oleju jest kluczowe dla efektywnej pracy i bezpieczeństwa operacji.

Pytanie 12

Demontaż niepodłączonego elementu, przedstawionego na rysunku, zamontowanego na szynie DIN wymaga użycia

Ilustracja do pytania
A. wkrętaka płaskiego.
B. klucza nasadowego.
C. klucza z regulowaną szerokością rozstawu szczęk.
D. wkrętaka o specjalnych końcówkach.
Wybór wkrętaka płaskiego jako narzędzia do demontażu elementu zamontowanego na szynie DIN jest prawidłowy, ponieważ ten typ narzędzia został zaprojektowany do odciągania dźwigni blokującej, która jest typową konstrukcją w urządzeniach montowanych na szynach DIN, jak np. wyłączniki nadprądowe. W praktyce, aby wymontować ten element, należy najpierw zlokalizować dźwignię blokującą, a następnie włożyć wkrętak płaski w szczelinę i delikatnie pociągnąć, co pozwala na zwolnienie mechanizmu blokującego. Tego rodzaju operacje są powszechne w instalacjach elektrycznych, gdzie konieczna jest wymiana lub konserwacja urządzeń. Prawidłowe użycie narzędzi, takich jak wkrętaki płaskie, jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami, które zalecają użycie odpowiednich narzędzi do konkretnego zadania, co minimalizuje ryzyko uszkodzenia urządzeń oraz zapewnia bezpieczeństwo użytkownika.

Pytanie 13

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. RS 485
B. IRDA
C. RS 232
D. USB
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 14

Z tabeli wynika, że orientacyjna siła siłownika o średnicy tłoka 12 mm, tłoczyska 6 mm, przy ciśnieniu roboczym 4 bar uzyskiwana podczas powrotu wynosi

Orientacyjna siła uzyskana na siłowniku w zależności od zadanego ciśnienia
Średnica tłokaŚrednica tłoczyskaPowierzchnia pracy mm²Ciśnienie robocze (bar)
12345678910
siła w N
ø12ø6wysuw = 1131123344557687990102113
powrót = 858172534425159687685
ø16ø8wysuw = 20120406080100121141161181201
powrót = 151153045607590106121136151
ø20ø10wysuw = 314316394126157188220251283314
powrót = 23624477194118141165189212236
ø25ø10wysuw = 4914998147196245295344393442491
powrót = 4124182124165206247289330371412
A. 45 N
B. 34 N
C. 80 N
D. 60 N
Poprawna odpowiedź wynosi 34 N, co jest wartością uzyskaną bezpośrednio z tabeli. W przypadku siłownika o średnicy tłoka 12 mm i tłoczyska 6 mm przy ciśnieniu roboczym 4 bar, siła uzyskiwana podczas powrotu jest kluczowym parametrem do określenia wydajności oraz skuteczności systemu pneumatycznego. W praktyce, znajomość siły uzyskiwanej przez siłownik jest niezbędna przy projektowaniu urządzeń automatyki, w których siłowniki są stosowane do wykonywania pracy mechanicznej. Na przykład, w systemach transportu wewnętrznego, siłowniki pneumatyczne mogą być używane do podnoszenia i przesuwania różnych elementów, dlatego tak ważne jest, aby dobrać odpowiednie parametry do wymagań aplikacji. Wartość ta powinna być również zgodna z normami i standardami branżowymi, które definiują dopuszczalne wartości sił dla danych konstrukcji siłowników. Zrozumienie tych parametrów pozwala na efektywne projektowanie oraz optymalizację procesów w automatyce przemysłowej.

Pytanie 15

W celu sprawdzenia poprawności działania układu przedstawionego na schemacie, zmierzono napięcie zasilania. Wskaż wynik pomiaru, który świadczy, że napięcie zasilania jest prawidłowe?

Ilustracja do pytania
A. 24 V
B. 230 V
C. 400 V
D. 380 V
Tak, 230 V to jest właściwe napięcie! Wiesz, w polskich instalacjach jednofazowych właśnie to napięcie jest standardowe. Używamy tego w domach, a także w różnych obiektach przemysłowych średniej wielkości. Jak dobrze się orientujesz, normy europejskie też to potwierdzają. Jak mierzysz napięcie i pokazuje 230 V, to znaczy, że wszystko działa jak należy. Dzięki temu sprzęty, które mamy w domach, jak lampy czy lodówki, funkcjonują bez problemu. Z drugiej strony, 24 V to już inna historia – to napięcie niskonapięciowe, które częściej spotykasz w automatyce. A 380 V czy 400 V to napięcia trójfazowe, które są stosowane w przemyśle, a nie u nas w domach. Więc można by powiedzieć, że 230 V to taki „złoty środek” dla naszych potrzeb elektrycznych.

Pytanie 16

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 2.
B. Symbol 3.
C. Symbol 4.
D. Symbol 1.
Wybór innego symbolu niż Symbol 3 może wynikać z nieporozumienia dotyczącego oznaczeń tranzystorów MOSFET. Każdy z pozostałych symboli może przedstawiać różne typy tranzystorów, ale brak w nich poprawnych cech, które definiują tranzystor MOSFET ze wzbogaconym kanałem typu n. Niezrozumienie symboliki może prowadzić do zastosowania niewłaściwych komponentów w projektach, co w efekcie może skutkować nieprawidłowym działaniem całego układu. Często zdarza się, że osoby projektujące obwody mylą tranzystory typu n z tranzystorami typu p, co może wynikać z niedostatecznej znajomości podstawowych cech tych komponentów. Przykładowo, tranzystory typu p mają strzałki skierowane do wnętrza kanału, co odzwierciedla ich odmienny charakter. Kluczowym aspektem, który należy wziąć pod uwagę, jest także charakterystyka elektryczna zastosowanego tranzystora, która różni się w zależności od typu i może mieć wpływ na wydajność obwodu. Dlatego ważne jest, aby inżynierowie mieli solidną wiedzę na temat symboliki oraz właściwości tranzystorów MOSFET, aby uniknąć typowych błędów, które mogą prowadzić do awarii systemów. Zrozumienie, jak interpretować symbole i jakie mają implikacje dla projektowania układów, jest niezbędne w praktyce inżynierskiej.

Pytanie 17

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Żeliwo szare
C. Stal niskowęglowa
D. Stal wysokowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 18

Jak należy nastawić amperomierz, aby zmierzyć prąd w układzie pokazanym na rysunku?

Ilustracja do pytania
A. DC, zakres 5 A
B. AC, zakres 5 A
C. DC, zakres 10 A
D. AC, zakres 10 A
Aby prawidłowo zmierzyć prąd w układzie zasilanym napięciem przemiennym, należy ustawić amperomierz na zakres AC, co oznacza, że mierzymy prąd przemienny. Wybór zakresu 10 A jest kluczowy, ponieważ prąd w gospodarstwach domowych często oscyluje w okolicy kilku amperów, a ustawienie z zapasem pozwala uniknąć uszkodzenia przyrządu. W praktyce, stosowanie amperomierzy do pomiaru prądu przemiennego jest powszechne w instalacjach elektrycznych, w tym w diagnostyce i konserwacji urządzeń. Ważne jest, aby przed pomiarem upewnić się, że amperomierz posiada odpowiednie oznaczenia oraz certyfikaty, które potwierdzają jego zdolność do pomiaru prądu przemiennego. Zrozumienie, jak prawidłowo ustawić przyrząd, jest nie tylko kwestą techniczną, ale także kluczowym elementem bezpieczeństwa, co jest szczególnie istotne w kontekście użytkowania urządzeń elektrycznych w naszych domach.

Pytanie 19

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. krwawienie z nosa
B. uszkodzenie wzroku
C. poparzenie dłoni
D. uszkodzenie słuchu
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 20

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
B. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
C. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
D. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
Zrozumienie zasady całkowitej zamienności w montażu jest fundamentalne dla uzyskania wysokiej jakości produktów. Wiele osób błędnie interpretuje, że montaż może opierać się na tolerancjach wymiarowych, które są zbyt szerokie, co jest odzwierciedlone w jednym z podejść, które sugeruje, że pewien procent części składowych może mieć większe tolerancje, co prowadzi do obniżenia kosztów wykonania. W rzeczywistości, taka strategia może skutkować problemami z kompatybilnością i wymiennością elementów, co narusza zasadę całkowitej zamienności. Niewłaściwe podejście do podziału obrobionych części według ich rzeczywistych wymiarów, jak sugeruje inna odpowiedź, również nie jest zgodne z najlepszymi praktykami w obszarze montażu. Każda część powinna być projektowana z myślą o tym, aby pasować do innych w zespole bez dodatkowej obróbki. Zasada ta zakłada, że części muszą być produkowane zgodnie z określonymi normami tolerancyjnymi, co zapewnia ich wymienność. Kolejna niepoprawna koncepcja dotyczy uzyskiwania wymagań dotyczących wymiarów montażowych poprzez dopasowanie jednej z części w czasie montażu. Takie podejście jest niewłaściwe, ponieważ wprowadza niepotrzebny czas i koszty oraz ryzyko błędów montażowych. Kluczowym elementem skutecznego montażu jest standaryzacja wymiarów, co pozwala na uniknięcie sytuacji wymagających dostosowań. Zrozumienie wymagań stawianych przez zasady całkowitej zamienności oraz ich zastosowanie w praktyce to krok ku zwiększeniu efektywności produkcji oraz jakości finalnych wyrobów.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Którą metodę sprawdzania instalacji elektrycznej urządzeń mechatronicznych przedstawiono na rysunku?

Ilustracja do pytania
A. Stroboskopową.
B. Ultradźwiękową.
C. Termowizyjną.
D. Oscyloskopową.
Odpowiedź 'Termowizyjna' jest prawidłowa, ponieważ przedstawia ona jedną z najnowocześniejszych metod oceny stanu instalacji elektrycznej urządzeń mechatronicznych. Kamera termowizyjna, widoczna na rysunku, umożliwia wizualizację rozkładu temperatury w obiektach, co jest kluczowe w diagnostyce. W praktyce, metoda ta pozwala na identyfikację przegrzewających się elementów, co jest często pierwszym sygnałem o potencjalnych awariach, takich jak zwarcia czy uszkodzenia izolacji. Termowizja jest szeroko stosowana w przemyśle, gdzie regularne monitorowanie temperatury jest kluczowe dla utrzymania urządzeń w dobrym stanie. Zgodnie z normami ISO 18434, stosowanie metod termograficznych w utrzymaniu ruchu jest uznawane za najlepszą praktykę. Dzięki termowizji można wykrywać problemy zanim spowodują one poważne uszkodzenia, co w dłuższej perspektywie znacząco obniża koszty utrzymania i zwiększa bezpieczeństwo operacji.

Pytanie 23

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu pneumatycznego. Na przykład, niektóre osoby mogą pomylić rolę zbiornika ciśnieniowego z funkcją filtracji. Zbiornik ciśnieniowy służy głównie do przechowywania sprężonego powietrza, ale nie ma zdolności do usuwania zanieczyszczeń z powietrza, co jest kluczowe w kontekście zadania. Innym typowym błędem jest także utożsamianie zaworów z filtrami. Zawory sterują przepływem powietrza, ale nie eliminują cząstek stałych ani nie regulują ciśnienia, co czyni je niewłaściwym wyborem. Kolejnym istotnym elementem jest to, że wiele osób nie zdaje sobie sprawy z norm i standardów, które definiują jakość powietrza sprężonego. Dlatego też, pomijając konieczność filtracji, mogą wybierać komponenty, które w praktyce prowadzą do nieefektywności całego systemu. Aby uniknąć tych pułapek, kluczowe jest posiadanie solidnej wiedzy na temat zasad działania poszczególnych elementów oraz ich funkcji w kontekście całego układu. Znajomość standardów takich jak ISO 8573-1 oraz praktyk konserwacyjnych jest więc niezbędna dla prawidłowego działania systemów pneumatycznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Do podłączenia przewodów do uzwojeń silnika przedstawionego na ilustracji należy użyć

Ilustracja do pytania
A. klucza imbusowego.
B. klucza nasadowego.
C. wkrętaka krzyżowego.
D. wkrętaka płaskiego.
Klucz nasadowy to naprawdę super narzędzie, gdy mówimy o dużych nakrętkach, a to jest ważne, kiedy podłączamy przewody do silnika. Na obrazku widać złącza, gdzie właśnie taki klucz będzie najbardziej przydatny, bo daje lepszą siłę dokręcania i stabilność. Fajnie, że klucz nasadowy ma wymienne nasadki – dzięki temu możemy dopasować go do różnych nakrętek, co zdecydowanie ułatwia pracę, zwłaszcza w trudnych miejscach. W przemyśle mechanicznym i elektrycznym klucze nasadowe to niemal standard, bo zapewniają bezpieczeństwo i efektywność mocowania elementów. Korzystanie z tego narzędzia jest zgodne z tym, co zalecają producenci, więc sprzęt dłużej działa i lepiej funkcjonuje. Pamiętaj też, że przy pracy z silnikami ważne jest przestrzeganie zasad bezpieczeństwa, bo to zmniejsza ryzyko uszkodzeń i kontuzji.

Pytanie 26

Do połączeń, które można rozłączyć, zalicza się połączenia

A. spawane
B. zgrzewane
C. nitowe
D. śrubowe
Połączenia śrubowe zaliczają się do połączeń rozłącznych, ponieważ ich demontaż i montaż jest stosunkowo prosty i nie wymaga uszkodzenia ani jednego z elementów. W połączeniach śrubowych elementy są ze sobą połączone za pomocą śrub, nakrętek i podkładek, co umożliwia ich łatwe odłączenie i ponowne połączenie. Przykłady zastosowania połączeń śrubowych obejmują konstrukcje budowlane, maszynerie przemysłowe oraz meblarstwo, gdzie konieczność serwisowania i wymiany komponentów jest istotna. Zgodnie z normami ISO i PN, połączenia te powinny być projektowane z uwzględnieniem odpowiednich tolerancji oraz sił działających na połączenie, co zapewnia ich trwałość i stabilność. Warto również zauważyć, że połączenia śrubowe mogą być używane w połączeniu z innymi metodami montażu, co zwiększa ich funkcjonalność i wszechstronność, a także umożliwia dostosowanie do różnych warunków pracy.

Pytanie 27

Ilustracja przedstawia łożysko

Ilustracja do pytania
A. walcowe.
B. kulkowe.
C. przegubowe.
D. igiełkowe.
Odpowiedź jest poprawna, ponieważ ilustracja przedstawia łożysko przegubowe, które charakteryzuje się unikalną budową kulistych powierzchni wewnętrznej i zewnętrznej. Ta konstrukcja pozwala na swobodny ruch przegubowy, co czyni je idealnym rozwiązaniem w miejscach, gdzie występują złożone ruchy, takie jak w zawieszeniach pojazdów, robotyce czy mechanizmach przemysłowych. Łożyska przegubowe są szczególnie cenione w aplikacjach wymagających dużych obciążeń oraz kompensacji niewspółosiowości, co jest kluczowe w wielu zastosowaniach inżynieryjnych. W przeciwieństwie do łożysk walcowych, które są ograniczone do ruchów liniowych, łożyska przegubowe oferują większą elastyczność i możliwość dostosowania się do zmieniających się warunków pracy. W standardach branżowych, takich jak ISO 12240, podkreśla się znaczenie wyboru odpowiedniego typu łożyska w zależności od specyfiki ruchu i obciążenia. Wiedza na temat budowy i zastosowań łożysk przegubowych jest kluczowa dla inżynierów mechaników, którzy projektują i optymalizują systemy mechaniczne dla różnych dziedzin przemysłu.

Pytanie 28

Podczas wymiany przewodu wysokociśnieniowego w systemie hydraulicznym, jakie aspekty powinny być brane pod uwagę przy wyborze nowego przewodu?

A. Przepustowość i odporność na rozciąganie
B. Grubość materiału oraz przepuszczalność
C. Odporność na ściskanie oraz masa
D. Ciśnienie robocze i minimalny promień gięcia
Wybór nowego przewodu wysokociśnieniowego w układzie hydraulicznym powinien uwzględniać ciśnienie robocze oraz minimalny promień gięcia. Ciśnienie robocze jest kluczowym parametrem, ponieważ przewody muszą być w stanie utrzymać określone wartości ciśnienia bez ryzyka pęknięcia lub uszkodzenia. Ważne jest, aby przewód był zaprojektowany zgodnie z normami, takimi jak ISO 18752, które definiują różne klasy przewodów w zależności od ich zastosowania. Minimalny promień gięcia odnosi się do zdolności przewodu do elastycznego odkształcania się bez uszkodzenia, co jest istotne w przypadku instalacji w trudno dostępnych miejscach. Przykładem może być zastosowanie odpowiednich przewodów w maszynach budowlanych, gdzie przewody muszą być gięte w małych przestrzeniach, a jednocześnie muszą wytrzymać wysokie ciśnienia pracy. Należy również brać pod uwagę temperaturę pracy oraz kompatybilność chemiczną materiałów, z których wykonany jest przewód, aby zapewnić długotrwałe i bezpieczne działanie systemu hydraulicznego.

Pytanie 29

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. luźnego osadzenia nitu
B. odkształcenia nitu
C. nieprawidłowego kształtu zakuwki
D. pęknięcia powierzchni łba i zakuwki nitu
Luźne osadzenie nitu jest kluczowym problemem, którego identyfikacja jest niezbędna dla zapewnienia trwałości i bezpieczeństwa połączeń nitowanych. Kontrola połączeń nitowanych, przeprowadzona poprzez ostukiwanie młotkiem nitu, pozwala na ocenę jego stabilności w obrębie materiału, z którym jest połączony. Jeśli nit jest luźny, może to prowadzić do osłabienia całej struktury, co jest szczególnie niebezpieczne w konstrukcjach lotniczych oraz budowlanych, gdzie wymagana jest wysoka niezawodność. Przykładem zastosowania tej metody kontroli może być ocena połączeń w kadłubach samolotów, gdzie każda wada może prowadzić do katastrofalnych skutków. W praktyce, jeśli po uderzeniu młotkiem następuje wyraźny dźwięk, może to sugerować luźne osadzenie nitu. Standardy takie jak ISO 13920 definiują wymagania dla jakości i kontroli połączeń, co podkreśla znaczenie skutecznych metod diagnostycznych, jak ta opisana.

Pytanie 30

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Kabel telefoniczny
B. Światłowód
C. Kabel UTP
D. Sygnał radiowy
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 31

Którą sprężarkę zalicza się do grupy sprężarek wyporowych?

Ilustracja do pytania
A. Sprężarkę promieniową.
B. Sprężarkę śrubową.
C. Turbosprężarkę.
D. Sprężarkę osiową.
Wybór sprężarki promieniowej, turbosprężarki lub sprężarki śrubowej jako odpowiedzi na pytanie o sprężarkę wyporową wskazuje na pewne nieporozumienia dotyczące klasyfikacji sprężarek oraz ich zasad działania. Sprężarki promieniowe są często nazywane sprężarkami dynamicznymi, ponieważ wykorzystują zjawisko siły odśrodkowej do sprężania gazu. W przeciwieństwie do sprężarek wyporowych, ich działanie opiera się na ciągłym przepływie gazu i nie zapewniają one stałej objętości sprężania. Z tego powodu nie spełniają one kryteriów sprężarek wyporowych, które działają na zasadzie wypierania określonej objętości gazu. Turbosprężarki, będące rodzajem sprężarek dynamicznych, również nie są klasyfikowane jako sprężarki wyporowe. Ich konstrukcja i zasada działania opierają się na wykorzystaniu turbin do zwiększenia ciśnienia gazu, co znacznie odbiega od zasad działania sprężarek wyporowych. Sprężarki śrubowe, chociaż mogą mieć zastosowania w wielu aplikacjach przemysłowych, również nie są sprężarkami wyporowymi w tradycyjnym rozumieniu tego terminu. Ich mechanizm polega na sprężaniu gazu poprzez obracające się śruby, co również nie prowadzi do wypierania określonej objętości. Warto zauważyć, że mylenie tych rodzajów sprężarek może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, co z kolei może skutkować obniżeniem efektywności energetycznej oraz zwiększeniem kosztów operacyjnych.

Pytanie 32

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. smarowanie
B. naprężenie
C. temperaturę
D. bicie osiowe
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 33

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. częstotliwości oraz fazy impulsu
B. częstotliwości impulsu
C. amplitudy impulsu
D. szerokości impulsu
Modulacja szerokości impulsu (PWM) to technika, w której szerokość impulsów w sygnale modulowanym jest zmieniana w zależności od wartości sygnału wejściowego. W praktyce oznacza to, że czas, w jakim sygnał jest w stanie wysokim (ON) lub niskim (OFF), jest dostosowywany, co pozwala na skuteczne reprezentowanie informacji. PWM jest szeroko stosowana w elektronice, zwłaszcza w kontrolowaniu prędkości silników, jasności diod LED oraz w systemach audio. Przy zastosowaniu PWM, możemy zredukować straty energii, co jest zgodne z dobrą praktyką inżynieryjną, ponieważ umożliwia efektywne zarządzanie mocą. Na przykład, w przypadku silników DC, poprzez zmianę szerokości impulsów, inżynierowie mogą precyzyjnie regulować prędkość obrotową silnika, co jest kluczowe w automatyzacji i robotyce. Zgodnie ze standardami branżowymi, stosowanie PWM może również poprawić jakość sygnałów w systemach audio, co przekłada się na lepsze wrażenia słuchowe. Warto również zauważyć, że technika ta jest fundamentalna w systemach zasilania, gdzie precyzyjna kontrola mocy jest niezbędna do zapewnienia stabilności i efektywności operacyjnej.

Pytanie 34

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. pirometru
C. tensometru
D. termistora
Pirometr to urządzenie, które służy do bezkontaktowego pomiaru temperatury obiektów, co sprawia, że jest szczególnie przydatne w przypadku wirujących łopat sprężarek przepływowych. Wirujące elementy w sprężarkach osiągają wysokie prędkości oraz temperatury, co utrudnia zastosowanie tradycyjnych czujników temperatury, które wymagają fizycznego kontaktu z mierzonym obiektem. Pirometry działają na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na skuteczne mierzenie temperatury z zachowaniem bezpieczeństwa i dokładności. W zastosowaniach przemysłowych pirometry są szeroko stosowane w monitorowaniu procesów technologicznych, gdzie istotne jest ciągłe kontrolowanie temperatury, na przykład w turbinach gazowych czy silnikach odrzutowych. Dobre praktyki w zakresie pomiarów temperatury wskazują na konieczność kalibracji pirometrów oraz uwzględnienia warunków otoczenia, takich jak obecność dymu czy pary, które mogą wpływać na dokładność odczytów. Użycie pirometru w tym kontekście jest zgodne z normami branżowymi dotyczącymi monitorowania procesów i zapewnienia efektywności energetycznej maszyn.

Pytanie 35

Korzystając z podanego wzoru, określ jaką częstotliwość napięcia należy ustawić na falowniku, aby podłączony do niego silnik asynchroniczny o znamionowej prędkości obrotowej 2920 obr/min i znamionowej częstotliwości 50 Hz osiągnął prędkość obrotową 1460 obr/min.
Wzór: $$ n_s = \frac{60 \cdot f}{p} $$

A. 25 Hz
B. 100 Hz
C. 50 Hz
D. 75 Hz
Odpowiedź 25 Hz jest w porządku, bo prędkość obrotowa silnika asynchronicznego jest mocno związana z częstotliwością zasilania. Jak pamiętamy, możemy to obliczyć według wzoru: n = (120 * f) / p. Chodzi o to, że n to prędkość w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Biorąc silnik o prędkości 2920 obr/min i częstotliwości 50 Hz, mamy p = (120 * 50) / 2920, co daje nam około 2,06, ale przyjmujemy 2 pary biegunów. Jak chcemy osiągnąć 1460 obr/min, to musimy ustawić falownik na 25 Hz, bo wtedy wychodzi n = (120 * 25) / 2 = 1500 obr/min. Wszystko jest zgodne z proporcjami. Używanie falownika to świetna praktyka, bo pozwala nam precyzyjnie dostosować prędkość do potrzeb, co jest mega ważne w różnych procesach przemysłowych. Dzięki tym rozwiązaniom możemy też poprawić efektywność energetyczną oraz wydajność urządzeń, co zresztą ma duże znaczenie.

Pytanie 36

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. silnik tłokowy
B. siłownik teleskopowy
C. silnik zębaty
D. siłownik nurnikowy
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 37

Na rysunku przedstawiono siłownik hydrauliczny

Ilustracja do pytania
A. jednostronnego działania, o mocowaniu gwintowym.
B. dwustronnego działania, o mocowaniu gwintowym.
C. jednostronnego działania, o mocowaniu przegubowym.
D. dwustronnego działania, o mocowaniu przegubowym.
Wybrana odpowiedź jest poprawna, ponieważ siłownik przedstawiony na rysunku ma mocowanie przegubowe. Przeguby znajdują się na obu końcach siłownika, co pozwala na swobodny ruch w różnych kierunkach, co jest istotne w aplikacjach, gdzie wymagane jest precyzyjne sterowanie ruchem. Dodatkowo, siłownik działa jednostronnie, co oznacza, że płyn hydrauliczny wpływa tylko z jednej strony tłoka, co jest potwierdzone brakiem przewodów hydraulicznych po obu stronach. Tego typu siłowniki są powszechnie stosowane w maszynach budowlanych oraz w systemach automatyki, gdzie precyzyjne ruchy są kluczowe. Przykłady obejmują manipulatorów w robotyce czy mechanizmy podnoszące w dźwigach. Dobrą praktyką w projektowaniu siłowników jest uwzględnienie ich zastosowania, co pozwala na optymalizację ich właściwości oraz wydajności.

Pytanie 38

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. zmiany w układzie kostnym
B. uszkodzenie skóry dłoni
C. uszkodzenie narządu słuchu
D. porażenie prądem elektrycznym
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Czujnik, który działa na zasadzie generowania różnicy potencjałów w kontakcie z przewodnikami wykonanymi z różnych metali, to

A. termistor
B. pirometr
C. element bimetaliczny
D. element termoelektryczny
Element termoelektryczny działa na zasadzie powstawania kontaktowej różnicy potencjałów, co jest efektem Seebecka. Zjawisko to występuje, gdy dwa różne metale są ze sobą połączone i występuje różnica temperatur, co skutkuje generowaniem napięcia. To napięcie można wykorzystać do pomiaru temperatury lub generacji energii elektrycznej. Na przykład, termoelektryczne czujniki temperatury, takie jak termopary, są szeroko stosowane w przemyśle do monitorowania procesów oraz w urządzeniach pomiarowych, gdzie wymagana jest wysoka precyzja. Dodatkowo, elementy termoelektryczne są wykorzystywane do chłodzenia w aplikacjach, które wymagają efektywnego usuwania ciepła, w tym w elektronice, gdzie nadmiar ciepła może wpływać na wydajność i żywotność komponentów. Zastosowanie tych urządzeń jest zgodne z normami przemysłowymi, co potwierdza ich niezawodność i efektywność.