Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 grudnia 2025 14:23
  • Data zakończenia: 9 grudnia 2025 14:40

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki instrument służy do określania długości oraz tłumienności kabli miedzianych?

A. Reflektometr TDR
B. Woltomierz
C. Omomierz
D. Miernik mocy
Reflektometr TDR (Time Domain Reflectometer) jest zaawansowanym przyrządem, który pozwala na precyzyjne pomiary długości oraz tłumienności przewodów miedzianych. Działa na zasadzie wysyłania sygnału elektromagnetycznego wzdłuż przewodu i analizy echa sygnału, które odbija się od różnych punktów wzdłuż linii. Dzięki tej metodzie można nie tylko określić długość przewodu, ale także zdiagnozować problemy, takie jak uszkodzenia czy nieciągłości w instalacji. Reflektometr TDR jest szeroko stosowany w telekomunikacji oraz sieciach komputerowych, gdzie odpowiednie zarządzanie jakością sygnału jest kluczowe dla stabilności i wydajności systemu. Przykładowo, w przypadku kabla Ethernet, TDR może pomóc w identyfikacji miejsc, gdzie może występować spadek jakości sygnału, co jest szczególnie istotne w kontekście utrzymania standardów, takich jak ISO/IEC 11801 dotyczących kabli strukturalnych. Używanie reflektometrów TDR w codziennej praktyce inżynieryjnej nie tylko zwiększa efektywność diagnostyki, ale także przyczynia się do obniżenia kosztów utrzymania infrastruktury sieciowej.

Pytanie 2

Do jakiego portu należy podłączyć kabel sieciowy zewnętrzny, aby uzyskać pośredni dostęp do sieci Internet?

Ilustracja do pytania
A. WAN
B. LAN
C. PWR
D. USB
Port WAN (Wide Area Network) jest specjalnie zaprojektowany do podłączenia urządzenia sieciowego, takiego jak router, do internetu. To połączenie z siecią zewnętrzną, dostarczone przez dostawcę usług internetowych (ISP). Port WAN działa jako brama między siecią lokalną (LAN) a internetem. Umożliwia to przesyłanie danych między komputerami w sieci domowej a serwerami zewnętrznymi. Konsekwentne używanie portu WAN zgodnie z jego przeznaczeniem zwiększa bezpieczeństwo i stabilność połączenia sieciowego. Praktycznym przykładem jest podłączenie modemu kablowego lub światłowodowego do tego portu, co pozwala na udostępnianie internetu wszystkim urządzeniom w sieci. Zgodnie z dobrymi praktykami branżowymi, port WAN powinien być używany w konfiguracji zewnętrznej, aby zapewnić spójność i niezawodność połączenia z internetem. Dzięki temu można lepiej zarządzać ruchem sieciowym i zabezpieczać sieć przed nieautoryzowanym dostępem. Port WAN jest istotnym elementem architektury sieciowej, umożliwiającym efektywną transmisję danych między różnymi segmentami sieci.

Pytanie 3

Wskaż sygnał informujący o błędzie karty graficznej w komputerze z BIOS POST od firmy AWARD?

A. 1 długi, 5 krótkich
B. 1 długi, 5 krótkich
C. 1 długi, 2 krótkie
D. 1 długi, 1 krótki
Odpowiedź 1, czyli '1 długi, 2 krótkie', jest poprawna, ponieważ są to sygnały diagnostyczne wskazujące na błąd karty graficznej w systemach wyposażonych w BIOS POST firmy AWARD. W przypadku problemów z kartą graficzną, BIOS generuje ten specyficzny zestaw dźwięków, co pozwala użytkownikowi na szybkie zidentyfikowanie problemu bez potrzeby zagłębiania się w ustawienia systemowe. Przykładem zastosowania wiedzy na temat sygnałów POST jest sytuacja, w której komputer nie uruchamia się lub wyświetla błędy obrazu. W takich przypadkach, znajomość kodów sygnalizacyjnych pozwala na diagnozę i ewentualne podjęcie odpowiednich działań, jak na przykład sprawdzenie połączeń karty graficznej czy jej wymiana. W branży komputerowej standardy BIOS są powszechnie stosowane, a znajomość sygnałów POST jest kluczowa dla efektywnego rozwiązywania problemów związanych z hardwarem. Użytkownicy powinni być świadomi, że różne wersje BIOS mogą generować inne kody, dlatego warto zapoznawać się z dokumentacją konkretnego producenta.

Pytanie 4

Aby podłączyć kartę sieciową przedstawioną na rysunku do laptopa, urządzenie musi być wyposażone w odpowiednie gniazdo

Ilustracja do pytania
A. PCMCIA
B. BNC
C. Slot 3
D. Mini DIN
BNC to złącze stosowane w sieciach komputerowych, szczególnie w kontekście kabli koncentrycznych. Jest ono używane w starszych technologiach jak Ethernet 10Base2, ale nie ma zastosowania w kontekście kart rozszerzeń typu PCMCIA. Współczesne sieci oparte są na kablach skrętkowych i połączeniach bezprzewodowych, co sprawia, że złącza BNC są coraz rzadziej spotykane w typowych zastosowaniach komputerowych. Slot 3 nie jest standardem złącz w kontekście laptopów i kart sieciowych. Może to być mylone ze standardami rozszerzeń w systemach przemysłowych lub zupełnie innym kontekstem technicznym, ale nie odnosi się to do typowych gniazd laptopowych. Mini DIN to złącze używane do połączeń urządzeń peryferyjnych jak klawiatury czy myszy, zwłaszcza w standardzie PS/2. Nie jest ono stosowane do podłączania kart rozszerzeń w laptopach, ponieważ wymagałoby to zupełnie innej infrastruktury. Częsty błąd myślowy polega na myleniu kompatybilności fizycznej ze standardami interfejsów. Ważne jest, aby rozumieć, że różne złącza i interfejsy mają specyficzne zastosowania i nie są wymienne bezpośrednio. Wybór odpowiedniego interfejsu jak PCMCIA jest kluczowy w kontekście starszych rozwiązań mobilnych, podczas gdy nowe technologie korzystają z bardziej zaawansowanych standardów. Edukacja w zakresie tych standardów jest kluczowa dla poprawnego zrozumienia i stosowania technologii sieciowych w praktyce zawodowej.

Pytanie 5

Wypukłe kondensatory elektrolityczne w module zasilania monitora LCD mogą doprowadzić do uszkodzenia

A. inwertera oraz podświetlania matrycy
B. układu odchylania poziomego
C. przewodów sygnałowych
D. przycisków umieszczonych na panelu monitora
Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD mogą prowadzić do uszkodzenia inwertera oraz podświetlania matrycy, ponieważ kondensatory te odgrywają kluczową rolę w filtracji napięcia oraz stabilizacji prądów. Kiedy kondensatory ulegają uszkodzeniu, ich zdolność do przechowywania ładunku i stabilizowania napięcia spada, co może skutkować niestabilnym zasilaniem układów zasilających, takich jak inwerter, który z kolei odpowiedzialny jest za generowanie wysokiego napięcia potrzebnego do podświetlenia matrycy LCD. W praktyce, uszkodzenie kondensatorów powoduje fluktuacje napięcia, które mogą prowadzić do uszkodzenia inwertera, co skutkuje brakiem podświetlenia ekranu. W standardach branżowych, takich jak IPC-A-610, wskazuje się na konieczność monitorowania stanu kondensatorów i ich regularnej konserwacji, aby zapobiegać tego typu problemom. Zrozumienie tego zagadnienia jest istotne, aby móc skutecznie diagnozować i naprawiać sprzęt elektroniczny, co przekłada się na dłuższą żywotność urządzeń oraz ich niezawodność.

Pytanie 6

Optyczna rozdzielczość to jeden z atrybutów

A. skanera
B. drukarki
C. monitora
D. modemu
Rozdzielczość optyczna nie jest właściwym parametrem dla drukarek, modemów ani monitorów. W przypadku drukarek, bardziej istotnymi wskaźnikami są rozdzielczość druku, mierzona w dpi, oraz jakość wydruku, co jest związane z innymi aspektami, takimi jak technologia druku (np. atramentowa lub laserowa). Użytkownicy mogą mylić rozdzielczość optyczną skanera z rozdzielczością druku, co prowadzi do nieporozumienia, gdyż są to zupełnie różne procesy technologiczne. Modemy natomiast operują na zasadzie przesyłu danych, a ich wydajność mierzona jest prędkościami transferu, a nie parametrami optycznymi. Z kolei w monitorach rozdzielczość odnosi się do liczby pikseli na ekranie, co także nie ma związku z rozdzielczością optyczną skanera. Typowym błędem myślowym jest utożsamianie parametrów różnych urządzeń, co może prowadzić do błędnych wniosków i niewłaściwego doboru sprzętu do konkretnych zadań. Każde z tych urządzeń ma swoje specyficzne parametry, które są kluczowe dla ich funkcjonalności i jakości działania.

Pytanie 7

Jakie parametry otrzyma interfejs sieciowy eth0 po wykonaniu poniższych poleceń w systemie Linux?

ifconfig eth0 10.0.0.100
netmask 255.255.255.0
broadcast 10.0.0.255 up
route add default gw 10.0.0.10
A. adres IP 10.0.0.10, maskę /16, bramę 10.0.0.100
B. adres IP 10.0.0.10, maskę /24, bramę 10.0.0.255
C. adres IP 10.0.0.100, maskę /24, bramę 10.0.0.10
D. adres IP 10.0.0.100, maskę /22, bramę 10.0.0.10
Dobra robota! Odpowiedź, którą wybrałeś, dobrze określa, jak wygląda konfiguracja sieci w tym przypadku. Interfejs eth0 dostaje adres IP 10.0.0.100 oraz maskę podsieci /24, co oznacza, że mamy do czynienia z 255.255.255.0. To całkiem standardowe ustawienie dla wielu lokalnych sieci. Z pomocą komendy ifconfig ustalamy nasz adres IP i maskę dla interfejsu. Fajnie, że to wiesz. A co do polecenia route – dodaje ono bramę domyślną, przez którą przechodzą pakiety, gdy chcą wyjść z naszej lokalnej sieci. To wszystko jest bardzo istotne dla administratorów sieci, bo często zdarza się, że muszą oni wszystko ustawiać ręcznie. Automatyczne przypisywanie przez DHCP nie zawsze wystarcza, więc manualna konfiguracja daje pełną kontrolę nad tym, co się dzieje w sieci.

Pytanie 8

Jakiego narzędzia należy użyć do montażu końcówek kabla UTP w gnieździe keystone z zaciskami typu 110?

A. Zaciskarki do wtyków RJ45
B. Narzędzia uderzeniowego
C. Śrubokręta płaskiego
D. Śrubokręta krzyżakowego
Użycie wkrętaka płaskiego lub krzyżakowego jest niewłaściwe w kontekście tworzenia końcówek kabli UTP w modułach keystone z stykami typu 110. Wkrętaki te są przeznaczone do pracy z śrubami i innymi elementami mocującymi, ale nie mają zastosowania w kontekście połączeń elektrycznych w systemach okablowania strukturalnego. Typowym błędem jest myślenie, że wkrętaki mogą być używane do zakładania kabli, co prowadzi do uszkodzeń zarówno kabla, jak i modułu. Istotne jest zrozumienie, że końcówki kabli UTP wymagają precyzyjnego kontaktu z pinami w module, co można osiągnąć jedynie przy użyciu narzędzia uderzeniowego, które zapewnia odpowiednią siłę i kąt wprowadzenia żył. Zaciskarka do wtyków RJ45 również nie jest właściwym narzędziem w tym przypadku, ponieważ jest zaprojektowana do pracy z wtyczkami RJ45, a nie z modułami keystone. Właściwa metodologia zakończenia kabli jest kluczowa dla zapewnienia jakości sygnału oraz trwałości instalacji. Użycie niewłaściwego narzędzia może prowadzić do dużych strat w wydajności sieci, a także zwiększać ryzyko awarii, co w kontekście profesjonalnej instalacji jest absolutnie nieakceptowalne. Właściwe narzędzie oraz technika są zatem fundamentem efektywnej i niezawodnej infrastruktury sieciowej.

Pytanie 9

Aby zainstalować serwer FTP w systemach z rodziny Windows Server, konieczne jest dodanie roli serwera

A. sieci Web
B. DHCP
C. aplikacji
D. DNS
Instalacja serwera plików FTP wymaga zrozumienia, że wprawdzie są różne komponenty w systemach Windows Server, to jednak nie każdy z nich jest odpowiedni do tego zadania. Wybór roli DNS, czyli Domain Name System, jest błędny, ponieważ DNS odpowiada za tłumaczenie nazw domen na adresy IP, a nie za zarządzanie transferem plików. Rola DHCP, czyli Dynamic Host Configuration Protocol, również nie ma nic wspólnego z FTP, ponieważ odpowiada za automatyczne przydzielanie adresów IP urządzeniom w sieci. Rola aplikacji z kolei odnosi się do hostowania aplikacji webowych, co nie obejmuje funkcji FTP. Istnieje zatem powszechne nieporozumienie dotyczące ról serwerowych w Windows Server, gdzie użytkownicy mogą mylić zadania związane z obsługą sieci z funkcjami zarządzania plikami. Właściwe zrozumienie, które role są odpowiednie do konkretnych zadań, jest kluczowe dla efektywnego zarządzania infrastrukturą IT. Wybierając niewłaściwe role, można narazić system na problemy z wydajnością i bezpieczeństwem, co stanowi typowy błąd w podejściu do konfiguracji serwerów. Dlatego ważne jest, aby przed podjęciem decyzji o instalacji określonej roli serwera, dokładnie przeanalizować jej funkcje oraz zastosowanie w kontekście wymagań organizacyjnych.

Pytanie 10

Jakie polecenie w systemie Linux pozwala na wyświetlenie oraz edytowanie tablicy trasowania pakietów sieciowych?

A. ifconfig
B. netstat
C. route
D. nslookup
Wybór poleceń takich jak 'netstat', 'ifconfig' czy 'nslookup' może prowadzić do zamieszania w kontekście zarządzania tablicą trasowania pakietów. 'Netstat' jest narzędziem do monitorowania połączeń sieciowych oraz statystyk, a także do wyświetlania aktywnych połączeń TCP/UDP. Choć dostarcza informacji o aktualnych trasach, nie umożliwia ich modyfikacji. 'Ifconfig', z drugiej strony, jest używane do konfigurowania interfejsów sieciowych, takich jak przypisywanie adresów IP do interfejsów, ale nie jest narzędziem do zarządzania trasami. Ostatnia odpowiedź, 'nslookup', służy do rozwiązywania nazw domenowych na adresy IP i nie ma związku z trasowaniem pakietów. Typowym błędem popełnianym przez osoby, które wybierają te opcje, jest mylenie funkcji narzędzi sieciowych. Kluczowe jest zrozumienie, że każde z tych poleceń ma swoją specyfikę i zastosowanie, które nie pokrywają się z funkcjonalnością polecenia 'route'. Aby skutecznie zarządzać trasami w sieci, należy stosować odpowiednie narzędzia i techniki, zgodne ze standardami branżowymi i najlepszymi praktykami, co pozwoli uniknąć błędów w konfiguracji i optymalizacji sieci.

Pytanie 11

Zatrzymując pracę na komputerze, możemy szybko wznowić działania po wybraniu w systemie Windows opcji

A. uruchomienia ponownego
B. wylogowania
C. stanu wstrzymania
D. zamknięcia systemu
Wybór opcji wylogowania, zamknięcia systemu czy uruchomienia ponownego nie zapewnia możliwości szybkiego powrotu do pracy. Wylogowanie z systemu Windows oznacza, że użytkownik opuszcza swoją sesję, co wymaga ponownego wprowadzenia danych logowania w celu dostępu do otwartych aplikacji i dokumentów. W praktyce, wylogowanie skutkuje zakończeniem wszystkich procesów powiązanych z sesją użytkownika, co może prowadzić do utraty niezapisanych danych. Z kolei zamknięcie systemu całkowicie wyłącza komputer, co również wiąże się z koniecznością ponownego uruchomienia go i wczytania od nowa wszystkich aplikacji, co znacznie wydłuża czas powrotu do pracy. Z kolei uruchomienie ponowne, mimo że przywraca system do stanu roboczego, również wymaga czasu na załadowanie wszystkich programów oraz danych. Wybór tych opcji wskazuje na nieporozumienie w zakresie zarządzania energią i pracą systemu, gdzie kluczowe jest zrozumienie, że w przypadku potrzeby szybkiego powrotu do pracy, najlepszym rozwiązaniem jest wybranie stanu wstrzymania. To podejście nie tylko oszczędza czas, ale także energię, co w kontekście zrównoważonego rozwoju i efektywności energetycznej staje się coraz ważniejszym aspektem w użytkowaniu komputerów.

Pytanie 12

Narzędziem systemu Windows, służącym do sprawdzenia wpływu poszczególnych procesów i usług na wydajność procesora oraz tego, w jakim stopniu generują one obciążenie pamięci czy dysku, jest

A. credwiz
B. dcomcnfg
C. resmon
D. cleanmgr
Resmon, czyli Monitor zasobów (resource monitor), to jedno z naprawdę niedocenianych narzędzi w Windowsie. Pozwala bardzo szczegółowo sprawdzić, jakie procesy i usługi najbardziej obciążają procesor, pamięć RAM, a także dysk i kartę sieciową. Osobiście uważam, że dla administratorów czy nawet zaawansowanych użytkowników to podstawa przy analizie wydajności systemu – znacznie bardziej szczegółowa niż sam Menedżer zadań. Przykładowo, gdy komputer nagle zaczyna „mulić”, to w resmonie od razu widać, który proces zjada zasoby albo np. jaka aplikacja mocno obciąża dysk, co często jest trudne do wychwycenia przy użyciu standardowych narzędzi. Co fajne, można też łatwo sprawdzić użycie portów sieciowych czy konkretne pliki, które są aktualnie blokowane przez procesy – to naprawdę spore ułatwienie przy diagnozowaniu problemów. Według dobrych praktyk branżowych, podczas troubleshootingu wydajności zawsze powinno się przeanalizować dane z resmona, bo pozwala nie tylko identyfikować „winowajców”, ale i potwierdzić czy np. bottleneck leży po stronie CPU, RAM czy dysku. Warto też wiedzieć, że resmon jest dostępny praktycznie w każdej edycji Windowsa od wersji 7 wzwyż. Takie narzędzia pokazują, jak skomplikowane może być zarządzanie systemem, ale też jak dużo daje dokładna analiza procesów w codziennej pracy.

Pytanie 13

W systemie Linux plik posiada uprawnienia ustawione na 765. Grupa przypisana do tego pliku ma możliwość

A. odczytu, zapisu oraz wykonania
B. odczytu i zapisu
C. tylko odczytu
D. odczytu i wykonania
Odpowiedź "odczytać i zapisać" jest prawidłowa, ponieważ w systemie Linux uprawnienia plików są reprezentowane przez trzy grupy: właściciela, grupę oraz pozostałych użytkowników. Liczba 765 w systemie uprawnień oznacza, że właściciel ma pełne uprawnienia (7 - odczyt, zapis, wykonanie), grupa ma uprawnienia do odczytu i zapisu (6 - odczyt, zapis, brak wykonania), a pozostałych użytkowników mają tylko prawo do wykonania (5 - odczyt, brak zapisu, wykonanie). Dlatego grupa przypisana do pliku może jedynie odczytywać oraz zapisywać plik, ale nie może go wykonać. Przykładem zastosowania takich uprawnień może być plik konfiguracyjny, gdzie administrator chciałby, aby członkowie grupy mogli go edytować, ale nie uruchamiać. Dobre praktyki wskazują, że należy starannie dobierać uprawnienia, aby zminimalizować ryzyko nieautoryzowanego dostępu oraz zapewnić odpowiednią kontrolę nad danymi. Utrzymywanie właściwych uprawnień plików jest kluczowe dla bezpieczeństwa systemu.

Pytanie 14

Po włączeniu komputera wyświetlił się komunikat "Non-system disk or disk error. Replace and strike any key when ready". Może to być spowodowane

A. skasowaniem BIOS-u komputera
B. brakiem pliku NTLDR
C. dyskietką umieszczoną w napędzie
D. uszkodzonym kontrolerem DMA
Zrozumienie problemu z komunikatem "Non-system disk or disk error" wymaga znajomości podstawowych zasad działania komputerów osobistych i ich BIOS-u. Sugerowanie, że przyczyną problemu może być brak pliku NTLDR, jest błędne, ponieważ ten plik jest kluczowy dla rozruchu systemu Windows, a komunikat wskazuje na problem z bootowaniem z nośnika, a nie na brak pliku w zainstalowanym systemie. Twierdzenie, że uszkodzony kontroler DMA mógłby być odpowiedzialny za ten błąd, również jest mylące. Kontroler DMA odpowiada za przesyłanie danych między pamięcią a urządzeniami peryferyjnymi, a jego uszkodzenie raczej skutkowałoby problemami z wydajnością lub dostępem do danych, a nie bezpośrednio z komunikatem o braku systemu. Skasowany BIOS komputera to kolejna koncepcja, która nie znajduje zastosowania w tej sytuacji. BIOS, będący podstawowym oprogramowaniem uruchamiającym, nie może być "skasowany" w tradycyjnym sensie; może być jedynie zaktualizowany, a jego usunięcie uniemożliwiłoby jakiekolwiek bootowanie systemu. Często w takich sytuacjach występuje brak zrozumienia, że komunikaty o błędach mogą odnosić się do problemów z rozruchem i należy je interpretować w kontekście obecności nośników w napędzie oraz ich zawartości. Warto więc zwracać uwagę na to, co znajduje się w napędach przed uruchomieniem komputera.

Pytanie 15

Przy zmianach w rejestrze Windows w celu zapewnienia bezpieczeństwa należy najpierw

A. zweryfikować, czy na komputerze nie ma wirusów
B. sprawdzić obecność błędów na dysku
C. wyeksportować klucze rejestru do pliku
D. utworzyć kopię zapasową ważnych plików
Podejmowanie działań związanych z bezpieczeństwem systemu Windows wymaga zrozumienia, jakie kroki są rzeczywiście kluczowe przed wprowadzeniem jakichkolwiek modyfikacji w rejestrze. Wykonanie kopii zapasowej ważnych dokumentów, choć istotne, nie odnosi się bezpośrednio do bezpieczeństwa operacji w rejestrze. Dokumenty mogą być utracone w wyniku awarii systemu, ale nie mają związku z samymi zmianami w rejestrze. Sprawdzanie błędów na dysku oraz skanowanie komputera w poszukiwaniu wirusów, choć może być częścią rutynowego utrzymania systemu, nie są bezpośrednio związane z modyfikacją rejestru. Problemy z dyskiem twardym mogą wprawdzie wpłynąć na działanie systemu, ale nie ma to związku z zapobieganiem konsekwencjom błędnych modyfikacji rejestru. Typowym błędem myślowym w tym kontekście jest zakładanie, że zabezpieczenie dokumentów czy zdrowia dysku wystarczy do ochrony przed potencjalnymi błędami w rejestrze. W praktyce, kompleksowa strategia zabezpieczeń powinna obejmować zarówno ochronę danych użytkowników, jak i zapewnienie integralności samego systemu operacyjnego, co czyni eksport kluczy rejestru niezbędnym krokiem w kontekście każdej poważnej modyfikacji systemu.

Pytanie 16

Z jaką minimalną efektywną częstotliwością taktowania mogą działać pamięci DDR2?

A. 800 MHz
B. 333 MHz
C. 233 MHz
D. 533 MHz
Wybór niższej częstotliwości taktowania, takiej jak 233 MHz, 333 MHz czy 800 MHz, nie jest zgodny z charakterystyką pamięci DDR2. Pamięć DDR2 została zaprojektowana jako kontynuacja standardów DDR, jednak z bardziej zaawansowanymi funkcjami. Częstotliwości 233 MHz oraz 333 MHz to wartości charakterystyczne dla pamięci DDR, a nie DDR2. Użytkownicy mogą mylić te standardy, sądząc, że niższe częstotliwości są kompatybilne również z DDR2, co jest błędne. W przypadku 800 MHz mamy do czynienia z wyższym standardem, który z kolei może być mylony z maksymalną częstotliwością działania, ale nie jest to minimalna wartość skutecznego taktowania dla DDR2. Taktowanie na poziomie 800 MHz jest osiągalne tylko przy zastosowaniu odpowiednich komponentów i nie jest to najniższa efektywna częstotliwość. Często błędne wyobrażenia o standardach pamięci mogą prowadzić do problemów z kompatybilnością w systemach komputerowych, gdyż niektóre płyty główne mogą nie obsługiwać starszych typów pamięci z niższymi częstotliwościami. Ważne jest, aby przy wyborze pamięci kierować się dokumentacją techniczną oraz wymaganiami sprzętowymi, co pozwoli uniknąć potencjalnych problemów z obiegiem danych oraz wydajnością systemu.

Pytanie 17

Jaką pojemność ma dwuwarstwowa płyta Blu-ray?

A. 100GB
B. 25MB
C. 50GB
D. 25GB
Prawidłowa odpowiedź wynosi 50GB, co odnosi się do pojemności dwuwarstwowej płyty Blu-ray. Płyty Blu-ray zostały zaprojektowane w celu przechowywania dużych ilości danych, co czyni je idealnymi do użycia w aplikacjach takich jak filmy w wysokiej rozdzielczości czy gry komputerowe. Standard Blu-ray wykorzystuje technologię laserową o długości fali 405 nm, co pozwala na umieszczanie danych w mniejszych przestrzeniach w porównaniu do tradycyjnych płyt DVD. W praktyce, dwuwarstwowe płyty Blu-ray mogą przechowywać do 50GB danych, co jest prawie dwukrotnie więcej niż jednowarstwowe płyty o pojemności 25GB. W branży filmowej standard Blu-ray stał się de facto normą dla dystrybucji filmów w jakości HD, a także jest szeroko stosowany w grach konsolowych, gdzie pojemność nośnika jest kluczowa. Warto również zauważyć, że rozwój technologii Blu-ray prowadzi do powstawania jeszcze bardziej pojemnych formatów, takich jak Ultra HD Blu-ray, które mogą przechowywać do 100GB danych, co jest istotne w kontekście rosnących wymagań dotyczących jakości obrazu i dźwięku.

Pytanie 18

Nośniki informacji, takie jak dysk twardy, gromadzą dane w jednostkach określanych jako sektory, których rozmiar wynosi

A. 1024KB
B. 512KB
C. 128B
D. 512B
Wybór takich rozmiarów, jak 128B, 1024KB czy 512KB, pokazuje, że można pomylić podstawowe pojęcia o przechowywaniu danych. Odpowiedź 128B nie trzyma się, bo to nie jest rozmiar sektora w nowoczesnych dyskach twardych. Mniejsze sektory byłyby mało wydajne w kontekście operacji I/O, a ich użycie mogłoby prowadzić do fragmentacji. 1024KB to też nie to, bo 1MB przekracza tradycyjne rozmiary sektorów. Z kolei 512KB to już bardzo duży rozmiar, bo to więcej niż pięć razy standardowy sektor, więc nie pasuje do realiów branży. Wygląda na to, że tu mamy do czynienia z pomyłkami w podstawowych pojęciach dotyczących wielkości danych. Zrozumienie, jaki jest standardowy rozmiar sektora, to kluczowa wiedza dla zarządzania danymi i efektywności operacji na dyskach, co jest podstawą działania każdego systemu informatycznego.

Pytanie 19

Pamięć podręczna Intel Smart Cache, która znajduje się w procesorach wielordzeniowych, takich jak Intel Core Duo, to pamięć

A. Cache L2 lub Cache L3, współdzielona przez wszystkie rdzenie
B. Cache L1 współdzielona pomiędzy wszystkie rdzenie
C. Cache L1 równo dzielona pomiędzy rdzenie
D. Cache L2 lub Cache L3, równo podzielona pomiędzy rdzenie
Odpowiedź dotycząca pamięci podręcznej Intel Smart Cache jest prawidłowa, ponieważ odnosi się do architektury procesorów wielordzeniowych, takich jak Intel Core Duo. Intel Smart Cache to pamięć podręczna typu L2 lub L3, która jest współdzielona pomiędzy rdzeniami procesora, co ma na celu zwiększenie wydajności oraz zmniejszenie opóźnień w dostępie do danych. Współdzielenie pamięci podręcznej pozwala na efektywne zarządzanie danymi, które mogą być wykorzystywane przez różne rdzenie, co znacząco poprawia współczynnik hitów cache, a tym samym ogólną wydajność systemu. Przykładowo, w zastosowaniach intensywnie obliczeniowych, takich jak gry komputerowe czy przetwarzanie grafiki, współdzielona pamięć podręczna pozwala na szybszy dostęp do często używanych danych, co jest kluczowe dla osiągnięcia lepszej wydajności. W standardach projektowania architektur procesorów, takie podejście jest uznawane za dobrą praktykę, ponieważ umożliwia lepszą skalowalność i efektywność energetyczną.

Pytanie 20

Jakie są nazwy licencji, które umożliwiają korzystanie z programu w pełnym zakresie, ale ograniczają liczbę uruchomień do określonej, niewielkiej ilości od momentu instalacji?

A. Donationware
B. Trialware
C. Adware
D. Box
Trialware to rodzaj licencji, która pozwala użytkownikom na korzystanie z oprogramowania przez określony czas lub do momentu osiągnięcia limitu uruchomień. Głównym celem trialware jest umożliwienie potencjalnym klientom przetestowania funkcji i możliwości programu przed podjęciem decyzji o zakupie. Zazwyczaj oferuje on pełną funkcjonalność, aby użytkownik mógł ocenić wartość oprogramowania. Przykładowo, wiele programów do edycji grafiki oraz aplikacji biurowych dostępnych jest w wersjach trialowych, które po upływie określonego czasu lub po wykorzystaniu limitu uruchomień przestają działać. W branży oprogramowania przyjęto standard, że trialware powinno być jasno oznaczone, aby użytkownik wiedział, że korzysta z wersji testowej, co jest zgodne z dobrą praktyką transparentności wobec klientów. Dobrze zaprojektowany trialware nie tylko przyciąga nowych użytkowników, ale również buduje zaufanie w marce, co może prowadzić do wyższej konwersji na płatne subskrypcje lub licencje.

Pytanie 21

Na diagramie mikroprocesora zidentyfikowany strzałką blok odpowiada za

Ilustracja do pytania
A. przechowywanie następujących adresów pamięci z komendami
B. przechowywanie aktualnie realizowanej instrukcji
C. przetwarzanie wskaźnika do następnej instrukcji programu
D. wykonywanie operacji arytmetycznych oraz logicznych na liczbach
Blok ALU, czyli jednostka arytmetyczno-logiczna, jest kluczowym elementem mikroprocesora odpowiedzialnym za wykonywanie operacji arytmetycznych i logicznych na liczbach. ALU realizuje podstawowe działania matematyczne, takie jak dodawanie, odejmowanie, mnożenie i dzielenie, oraz operacje logiczne, m.in. AND OR XOR i NOT. Jest niezbędnym komponentem w większości zadań przetwarzania danych wykonywanych przez procesor. W rzeczywistych zastosowaniach ALU jest używana w każdej operacji związanej z obliczeniami, na przykład podczas wykonywania skomplikowanych algorytmów, zarządzania pamięcią czy przetwarzania grafiki. Współczesne mikroprocesory mogą mieć kilka niezależnych ALU, co pozwala na równoległe przetwarzanie instrukcji i znacznie zwiększa wydajność. Dobre praktyki projektowe zalecają optymalizację ścieżki danych do ALU, aby minimalizować opóźnienia, co jest kluczowe w systemach o wysokiej wydajności, takich jak serwery czy superkomputery. Wydajność ALU ma bezpośredni wpływ na ogólną wydajność procesora, dlatego w zaawansowanych systemach stosuje się różne techniki, takie jak potokowanie, by zwiększyć przepustowość operacyjną jednostki.

Pytanie 22

Który z poniższych interfejsów komputerowych stosuje transmisję równoległą do przesyłania danych?

A. SATA
B. PCI
C. IEEE-1394
D. LAN
Rozważając inne interfejsy wymienione w pytaniu, warto przyjrzeć się ich zasadom działania. IEEE-1394, znany również jako FireWire, jest interfejsem, który wykorzystuje transmisję szeregową do przesyłania danych. Ten standard został zaprojektowany z myślą o szybkim transferze danych pomiędzy urządzeniami, np. kamerami cyfrowymi a komputerami. Jego główną zaletą jest możliwość łączenia wielu urządzeń w topologii gwiazdy bez potrzeby skomplikowanej konfiguracji. W kontekście SATA (Serial ATA), również korzysta on z transmisji szeregowej, co pozwala na osiągnięcie wysokich prędkości przesyłu danych, szczególnie w przypadku dysków twardych. SATA wprowadza wiele rozwiązań, takich jak hot-swapping, co jest bardzo praktyczne w przypadku serwerów i urządzeń przechowujących dane. Interfejs LAN (Local Area Network) także opiera się na transmisji szeregowej i jest używany do komunikacji między komputerami w sieciach lokalnych. Często mylone jest pojęcie równoległej i szeregowej transmisji, co prowadzi do nieporozumień. Równoległa transmisja, jak w przypadku PCI, wymaga wielu linii do przesyłania danych jednocześnie, a szeregowa wysyła je jedna po drugiej, co w praktyce może prowadzić do różnych poziomów wydajności i zastosowań. Zrozumienie tych różnic jest kluczowe dla skutecznej analizy i projektowania systemów komputerowych.

Pytanie 23

Do czego służy mediakonwerter?

A. do łączenia kabli skrętkowych kategorii 6 i 7
B. do filtrowania stron internetowych
C. do analizy zawartości w sieciach internetowych
D. do konwersji sygnału optycznego na elektryczny i odwrotnie
Mediakonwerter to urządzenie, które pełni kluczową rolę w transmisji danych w sieciach telekomunikacyjnych i systemach IT. Jego podstawowym zadaniem jest konwersja sygnału optycznego na elektryczny i odwrotnie, co jest niezbędne w nowoczesnych infrastrukturach sieciowych. W praktyce, mediakonwertery są używane do łączenia różnych typów mediów transmisyjnych, umożliwiając integrację sieci optycznych z sieciami miedzianymi. Przykładem zastosowania może być sytuacja, gdy istnieje potrzeba przesyłania danych z serwera, który obsługuje sygnał optyczny, do stacji roboczej, która wykorzystuje standardowe połączenie Ethernet. W takich przypadkach mediakonwerter pozwala na bezproblemowe przekazywanie informacji, wykorzystując różne standardy, takie jak IEEE 802.3 dla Ethernetu, a także standardy dla transmisji optycznej, takie jak SFP (Small Form-factor Pluggable). Warto również dodać, że mediakonwertery są często używane w telekomunikacji i w aplikacjach monitorowania wideo, gdzie przesył danych na dużych odległościach jest kluczowy dla jakości usług. Dzięki nim, organizacje mogą korzystać z zalet technologii optycznej, takich jak większa przepustowość i mniejsze zakłócenia, co przekłada się na lepszą efektywność operacyjną.

Pytanie 24

W systemie adresacji IPv6 adres ff00::/8 definiuje

A. zestaw adresów służących do komunikacji multicast
B. adres nieokreślony
C. zestaw adresów sieci testowej 6bone
D. adres wskazujący na lokalny host
Adres nieokreślony (0::/128) w IPv6 oznacza, że urządzenie nie ma przypisanego adresu i jest używane głównie w kontekście konfiguracji i testowania, a nie do komunikacji. Pula adresów testowej sieci 6bone była używana w przeszłości do testowania protokołów IPv6 w sieciach eksperymentalnych, ale nie jest już aktualnie wykorzystywana w praktyce. Adres wskazujący na lokalnego hosta również nie ma zastosowania w kontekście ff00::/8, ponieważ adres lokalny to 127::1, a nie adres multicast. W przypadku błędnego zrozumienia, że ff00::/8 to adres dla lokalnego hosta, błędnie interpretuje się funkcję adresów multicast jako adresów unicast. Podczas projektowania i zarządzania sieciami, zrozumienie różnicy między tymi rodzajami adresów jest kluczowe, ponieważ każdy z nich ma inną rolę i zastosowanie. Typowe błędy myślowe wynikają z mylenia adresów unicast, multicast i broadcast, co prowadzi do nieefektywnego projektowania sieci oraz problemów z jej wydajnością. W rzeczywistości, adresy multicast są niezbędne do efektywnej komunikacji w sieciach, a ich zrozumienie pozwala na tworzenie bardziej złożonych architektur sieciowych zgodnych z aktualnymi standardami.

Pytanie 25

Jakim protokołem jest protokół dostępu do sieci pakietowej o maksymalnej prędkości 2 Mbit/s?

A. Frame Relay
B. VDSL
C. X . 25
D. ATM
Jakbyś wybrał inne protokoły, na przykład ATM, VDSL albo Frame Relay, to mogłoby być trochę zamieszania, bo każdy z nich ma swoje specyfikacje i zastosowania. ATM, czyli Asynchronous Transfer Mode, jest protokołem, który potrafi obsługiwać różne dane jak głos czy wideo, ale jego minimalna prędkość to już 25 Mbit/s, co znacznie przewyższa 2 Mbit/s - więc nie nadaje się do sieci pakietowej o niskiej prędkości. VDSL, czyli Very High Bitrate Digital Subscriber Line, to kolejny przykład technologii, która też ma o wiele wyższe prędkości niż 2 Mbit/s, więc też źle by wypadł w tym kontekście. Frame Relay, chociaż dedykowany do przesyłania danych w rozległych sieciach, również operuje na prędkościach powyżej 2 Mbit/s, więc znów nie sprawdziłby się jako wybór. Wybierając coś, co się do tego nie nadaje, nie tylko byś miał słabą komunikację, ale też mogłyby się pojawić problemy z niezawodnością i zarządzaniem przepustowością. Duży błąd to mylenie różnych protokołów i ich zastosowań oraz ignorowanie wymagań o prędkości czy niezawodności, które są kluczowe w kontekście dostępu do sieci pakietowej.

Pytanie 26

W systemie SI jednostką do mierzenia napięcia jest

A. amper
B. wat
C. herc
D. wolt
Wolt (V) jest jednostką miary napięcia w układzie SI, która mierzy różnicę potencjałów elektrycznych między dwoma punktami. Został zdefiniowany na podstawie pracy wykonywanej przez jednostkę ładunku elektrycznego, gdy przechodzi przez element obwodu. Na przykład, gdy napięcie wynosi 5 woltów, oznacza to, że pomiędzy dwoma punktami jest ustalona różnica potencjału, która pozwala na przepływ prądu. W praktyce, wolt jest kluczowym parametrem w elektrotechnice i elektronice, wpływając na projektowanie urządzeń elektrycznych, takich jak zasilacze, akumulatory, a także w systemach telekomunikacyjnych. Dobrą praktyką jest mierzenie napięcia w obwodach za pomocą multimetru, co pozwala na monitorowanie i diagnostykę układów elektronicznych. Przykłady zastosowania napięcia to różne urządzenia domowe, takie jak żarówki, które działają na napięciu 230 V, czy systemy fotowoltaiczne, w których napięcie generowane przez ogniwa słoneczne ma kluczowe znaczenie dla efektywności zbierania energii.

Pytanie 27

Złącze SC powinno być zainstalowane na kablu

A. koncentrycznym
B. typu skrętka
C. światłowodowym
D. telefonicznym
Złącza koncentryczne, telefoniczne oraz typu skrętka to technologie, które nie mają zastosowania w kontekście złącza SC. Złącza koncentryczne są używane głównie w systemach telewizyjnych oraz w lokalnych sieciach komputerowych, jednak nie są one kompatybilne z technologią światłowodową. W przypadku złączy telefonicznych, które często używają przewodów miedzianych, nie ma mowy o zastosowaniu technologii optycznej. Z kolei złącza typu skrętka, popularne w sieciach Ethernet, również nie znajdują zastosowania w transmisji światłowodowej. Wybór niewłaściwego złącza można wytłumaczyć brakiem zrozumienia różnic między tymi technologiami; wiele osób myśli, że wszystkie złącza do przesyłu danych można stosować zamiennie. W rzeczywistości, różne technologie wymagają specyficznych złączy ze względu na różnice w transmisji sygnału oraz parametrach elektrycznych. Niezrozumienie tych zasad może prowadzić do awarii systemu oraz obniżenia jakości transmisji, co jest nieakceptowalne w dzisiejszych wymagających środowiskach IT. Zastosowanie złączy dostosowanych do konkretnej technologii jest kluczowe dla zapewnienia optymalnej wydajności oraz zgodności z obowiązującymi standardami.

Pytanie 28

Adres IP lokalnej podsieci komputerowej to 172.16.10.0/24. Komputer1 posiada adres IP 172.16.0.10, komputer2 - 172.16.10.100, a komputer3 - 172.16.255.20. Który z wymienionych komputerów należy do tej podsieci?

A. Jedynie komputer2 z adresem IP 172.16.10.100
B. Jedynie komputer1 z adresem IP 172.16.0.10
C. Wszystkie trzy wymienione komputery
D. Jedynie komputer3 z adresem IP 172.16.255.20
Adres IP 172.16.10.0/24 oznacza, że mamy do czynienia z podsiecią o masce 255.255.255.0, co daje możliwość przydzielenia adresów IP od 172.16.10.1 do 172.16.10.254. Komputer2, posiadający adres IP 172.16.10.100, znajduje się w tym zakresie, co oznacza, że należy do lokalnej podsieci. W praktyce, takie przydzielanie adresów IP jest standardową praktyką w zarządzaniu sieciami, gdzie różne podsieci są tworzone w celu segmentacji ruchu i zarządzania. Użycie adresów IP w zakresie prywatnym (172.16.0.0/12) jest zgodne z zaleceniami standardu RFC 1918, który definiuje adresy, które mogą być używane w sieciach wewnętrznych. Przykładowo, w zastosowaniach domowych lub biurowych, zarządzanie podsieciami pozwala na efektywne wykorzystanie dostępnych zasobów sieciowych oraz zwiększa bezpieczeństwo poprzez izolowanie różnych segmentów sieci. W przypadku komputerów1 i 3, ich adresy IP (172.16.0.10 i 172.16.255.20) nie mieszczą się w zakresie podsieci 172.16.10.0/24, co wyklucza je z tej konkretnej lokalnej podsieci.

Pytanie 29

Systemy operacyjne należące do rodziny Linux są dystrybuowane na mocy licencji

A. GNU
B. MOLP
C. shareware
D. komercyjnej
Odpowiedź GNU jest prawidłowa, ponieważ systemy operacyjne z rodziny Linux są dystrybuowane głównie na podstawie licencji GNU General Public License (GPL). Ta licencja, stworzona przez fundację Free Software Foundation, ma na celu zapewnienie swobody użytkowania, modyfikacji i dystrybucji oprogramowania. Dzięki temu każda osoba ma prawo do korzystania z kodu źródłowego, co sprzyja innowacjom i współpracy w społeczności programistycznej. Przykładem jest dystrybucja Ubuntu, która jest jedną z najpopularniejszych wersji systemu Linux, dostarczająca użytkownikom łatwy dostęp do potężnych narzędzi, bez konieczności płacenia za licencję. W praktyce, licencje GNU przyczyniają się do tworzenia otwartych i bezpiecznych rozwiązań, które są stale rozwijane przez globalną społeczność. Systemy operacyjne oparte na tej licencji są wykorzystywane w wielu sektorach, od serwerów po urządzenia mobilne, co podkreśla ich znaczenie oraz elastyczność w zastosowaniach komercyjnych i prywatnych.

Pytanie 30

Które urządzenie pomiarowe wykorzystuje się do określenia wartości napięcia w zasilaczu?

A. Woltomierz
B. Amperomierz
C. Omomierz
D. Watomierz
Woltomierz jest specjalistycznym przyrządem pomiarowym zaprojektowanym do mierzenia napięcia elektrycznego. Jego zastosowanie jest kluczowe w elektrotechnice, gdzie ocena wartości napięcia w zasilaczach i obwodach elektrycznych jest niezbędna do zapewnienia ich prawidłowego funkcjonowania. Przykładowo, przy konserwacji i diagnostyce urządzeń elektronicznych w laboratoriach lub warsztatach, woltomierz pozwala na precyzyjne określenie napięcia wejściowego i wyjściowego, co jest istotne dla analizy ich wydajności i bezpieczeństwa. W praktyce, pomiar napięcia z użyciem woltomierza odbywa się poprzez podłączenie jego końcówek do punktów, między którymi chcemy zmierzyć napięcie, co jest zgodne z zasadami BHP oraz standardami branżowymi, takimi jak IEC 61010. Zrozumienie funkcji woltomierza oraz umiejętność jego użycia jest niezbędne dla każdego specjalisty zajmującego się elektrycznością i elektroniką.

Pytanie 31

Aby zrealizować wymianę informacji między dwoma odmiennymi sieciami, konieczne jest użycie

A. routera
B. przełącznika
C. koncentratora
D. mostu
Most, przełącznik i koncentrator to urządzenia, które pełnią odpowiednie funkcje w sieciach, jednak nie są przeznaczone do komunikacji pomiędzy różnymi sieciami. Most (bridge) działa na warstwie drugiej modelu OSI – warstwie łącza, a jego głównym zadaniem jest łączenie dwóch segmentów tej samej sieci lokalnej (LAN), co oznacza, że nie potrafi efektywnie zarządzać różnymi adresami IP. Przełącznik (switch) również działa na warstwie łącza i jest używany do łączenia urządzeń w sieci lokalnej, ale nie ma zdolności do trasowania ruchu między różnymi sieciami, podobnie jak most. Koncentrator (hub) to urządzenie, które nie wykonuje żadnej inteligentnej analizy ruchu; po prostu przesyła dane do wszystkich portów, co czyni go nieefektywnym w większych sieciach. Podstawowym błędem, który prowadzi do wyboru jednego z tych urządzeń, jest mylenie ich funkcji z rolą routera w sieciach. Routery są zaprojektowane specjalnie do zarządzania ruchem między różnymi sieciami, co jest kluczowe w kontekście Internetu, podczas gdy pozostałe urządzenia są ograniczone do pracy w obrębie jednej sieci lokalnej.

Pytanie 32

Transmisja w standardzie 100Base-T korzysta z kabli skrętkowych, które mają

A. 1 parę
B. 4 pary
C. 2 pary
D. 3 pary
Co do liczby par przewodów w kablu dla standardu 100Base-T, to rzeczywiście warto to zrozumieć. Osoby, które wskazały 3 pary, mylą się, bo na prawdę do 100 Mbps wystarczą 2 pary. Jeżeli ktoś zaznaczył 1 parę, to jest błędne myślenie, że jedna para da radę przesyłać dane w obu kierunkach. W 100Base-T trzeba używać dwóch par, bo to umożliwia płynne działanie w obie strony. A 4 pary są zbędne w tym przypadku. W nowszych standardach jak 1000Base-T rzeczywiście używają 4 pary, ale tu to niepotrzebne. Generalnie, nie każda wyższa liczba oznacza lepszą wydajność. Dlatego ważne jest, żeby znać te standardy Ethernet i co one oznaczają, bo to pomaga w podejmowaniu lepszych decyzji na temat konfiguracji sieci.

Pytanie 33

Jaka licencja ma charakter zbiorowy i pozwala instytucjom komercyjnym oraz organizacjom edukacyjnym, rządowym, charytatywnym na nabycie większej liczby programów firmy Microsoft na korzystnych warunkach?

A. MOLP
B. APSL
C. OEM
D. MPL
Licencja MOLP (Microsoft Open License Program) jest skierowana do instytucji komercyjnych, edukacyjnych, państwowych oraz charytatywnych, umożliwiając im zakup większej liczby licencji na oprogramowanie Microsoft na korzystnych warunkach. Jest to model licencjonowania, który pozwala na elastyczne zarządzanie licencjami oraz dostosowanie ich do potrzeb organizacji. Przykładowo, szkoły i uczelnie mogą zyskać dostęp do oprogramowania Microsoft, takiego jak Windows czy Office, w przystępniejszej cenie, co pozwala im na lepsze wykorzystanie budżetów edukacyjnych. Program MOLP ułatwia również aktualizację i zarządzanie licencjami, co jest zgodne z dobrymi praktykami w obszarze IT, gdzie efektywność i oszczędność kosztów są kluczowe. Z perspektywy branżowej, MOLP odpowiada na rosnące zapotrzebowanie na elastyczne i skalowalne rozwiązania licencyjne, co czyni go idealnym wyborem dla większych instytucji, które potrzebują dostępu do najnowszych technologii w sposób ekonomiczny i efektywny.

Pytanie 34

Aby aktywować tryb awaryjny w systemach z rodziny Windows, w trakcie uruchamiania komputera trzeba nacisnąć klawisz

A. F7
B. F10
C. F1
D. F8
Wybór klawiszy F1, F7 lub F10 jako opcji do uruchamiania trybu awaryjnego w systemach Windows pokazuje pewne nieporozumienia dotyczące funkcji tych klawiszy. Klawisz F1 zazwyczaj służy do otwierania pomocy systemowej, co jest przydatne, gdy użytkownik potrzebuje wsparcia w obsłudze systemu, ale nie ma związku z uruchamianiem trybu awaryjnego. Z kolei F7 nie jest standardowo przypisany do żadnej funkcji w kontekście rozruchu systemu Windows, co może wynikać z mylnego powiązania go z innymi systemami operacyjnymi lub aplikacjami. Klawisz F10, używany w wielu kontekstach jako przycisk do dostępu do menu BIOS lub innego oprogramowania układowego, nie ma również zastosowania w kontekście trybu awaryjnego. Użytkownicy mogą błędnie założyć, że różne klawisze funkcyjne oferują podobne funkcje w różnych systemach operacyjnych, co prowadzi do nieprawidłowych wniosków. Rzeczywistość jest taka, że każdy klawisz funkcyjny ma ściśle określoną rolę. Warto zawsze zapoznać się z dokumentacją lub podręcznikami użytkownika, aby potwierdzić, które klawisze są odpowiednie w danym kontekście. Błąd w wyborze odpowiedniego klawisza może znacząco wpłynąć na proces rozwiązywania problemów i ograniczyć dostęp do niezbędnych funkcji systemu.

Pytanie 35

Dezaktywacja automatycznych aktualizacji systemu Windows skutkuje

A. zablokowaniem samodzielnego pobierania uaktualnień przez system
B. uniemożliwieniem jakiejkolwiek formy pobierania aktualizacji systemu
C. automatycznym weryfikowaniem dostępności aktualizacji i informowaniem o tym użytkownika
D. automatycznym ściąganiem aktualizacji bez ich instalacji
Wyłączenie automatycznej aktualizacji systemu Windows skutkuje zablokowaniem samodzielnego pobierania i instalowania uaktualnień przez system operacyjny. Z perspektywy użytkownika oznacza to, że system nie będzie automatycznie pobierał najnowszych poprawek zabezpieczeń czy aktualizacji funkcjonalnych, co może wpłynąć na bezpieczeństwo i stabilność systemu. Przykładowo, jeśli użytkownik zdecyduje się na wyłączenie automatycznych aktualizacji, będzie musiał ręcznie sprawdzać dostępność aktualizacji oraz je instalować, co może prowadzić do opóźnień w zabezpieczaniu systemu. Zgodnie z najlepszymi praktykami branżowymi, regularne aktualizacje są kluczowe dla ochrony przed nowymi zagrożeniami oraz poprawy wydajności systemu. Użytkownicy powinni być świadomi tego, że decydując się na wyłączenie automatycznych aktualizacji, narażają się na ryzyko związane z potencjalnymi lukami w zabezpieczeniach, które mogłyby zostać załatane przez producenta.

Pytanie 36

Który z podanych adresów IPv4 należy do kategorii B?

A. 128.100.100.10
B. 10.10.10.10
C. 224.100.10.10
D. 192.168.1.10
Adres IPv4 128.100.100.10 należy do klasy B, co wynika z jego pierwszego oktetu. Klasa B obejmuje adresy, których pierwszy oktet mieści się w przedziale od 128 do 191. W praktyce, klasyfikacja adresów IP jest kluczowym elementem w projektowaniu sieci komputerowych, ponieważ pozwala na efektywne zarządzanie przestrzenią adresową. Adresy klasy B są często wykorzystywane w średnich i dużych sieciach, ponieważ oferują możliwość stworzenia do 65 536 adresów IP w ramach jednej sieci (przy użyciu maski podsieci 255.255.0.0). Przykładem zastosowania adresów klasy B jest ich wykorzystanie w przedsiębiorstwach, które potrzebują dużej liczby adresów dla swoich urządzeń, takich jak komputery, serwery, drukarki i inne. W kontekście standardów, klasyfikacja adresów IP opiera się na protokole Internet Protocol (IP), który jest kluczowym elementem w architekturze Internetu. Warto zaznaczyć, że klasy adresów IP są coraz mniej używane na rzecz CIDR (Classless Inter-Domain Routing), który oferuje większą elastyczność w alokacji adresów. Niemniej jednak, zrozumienie klasyfikacji jest nadal istotne dla profesjonalistów zajmujących się sieciami.

Pytanie 37

Bezpośrednio po usunięciu istotnych plików z dysku twardego, użytkownik powinien

A. wykonać defragmentację dysku
B. ochronić dysk przed zapisywaniem nowych danych
C. przeprowadzić test S. M. A. R. T. na tym dysku
D. zainstalować narzędzie diagnostyczne
Podejście zakładające przeprowadzenie testu S.M.A.R.T. po usunięciu plików jest nieoptymalne w kontekście odzyskiwania danych. Test S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) ma na celu ocenę stanu technicznego dysku twardego i wykrycie potencjalnych problemów z jego wydajnością czy niezawodnością. Choć może być przydatny do monitorowania ogólnej kondycji dysku, nie wpływa na możliwość odzyskania skasowanych plików. Usunięcie plików nie jest objawem uszkodzenia dysku, a raczej błędu użytkownika. To samo dotyczy instalacji programów diagnostycznych; ich użycie nie pomoże w odzyskaniu danych, a jedynie dostarczy informacji o stanie dysku, co jest nieadekwatne w tej sytuacji. Defragmentacja dysku z kolei, mimo że może poprawić wydajność, jest całkowicie niezalecana po usunięciu plików. Proces ten reorganizuje dane, co w praktyce oznacza, że może nadpisać obszary pamięci, w których znajdowały się usunięte pliki. W rezultacie, działania te mogą doprowadzić do całkowitej utraty możliwości ich odzyskania. Kluczowym błędem jest przekonanie, że działania te pomogą w odzyskaniu danych, podczas gdy w rzeczywistości mogą one tylko pogorszyć sytuację. Dlatego najważniejsze jest zapobieganie zapisowi nowych danych na dysku i podejmowanie działań mających na celu ich odzyskanie zanim nastąpi jakiekolwiek nadpisanie. W przypadku utraty plików, zawsze zaleca się skorzystanie z profesjonalnych usług odzyskiwania danych, które stosują odpowiednie metody i narzędzia do odzyskiwania informacji bez ryzyka ich usunięcia.

Pytanie 38

Na ilustracji pokazano interfejs w komputerze dedykowany do podłączenia

Ilustracja do pytania
A. monitora LCD
B. drukarki laserowej
C. plotera tnącego
D. skanera lustrzanego
Przedstawiony na rysunku interfejs to złącze DVI (Digital Visual Interface) powszechnie używane do podłączania monitorów LCD do komputera. Jest to cyfrowy standard przesyłania sygnału wideo, co zapewnia wysoką jakość obrazu bez strat wynikających z konwersji sygnału, w przeciwieństwie do starszych analogowych interfejsów takich jak VGA. DVI występuje w różnych wariantach takich jak DVI-D, DVI-I czy DVI-A w zależności od rodzaju przesyłanego sygnału, jednak najczęściej stosowane jest DVI-D do przesyłu czysto cyfrowego obrazu. Stosowanie DVI jest zgodne z wieloma standardami branżowymi, a jego popularność wynika z szerokiego wsparcia dla wysokiej rozdzielczości oraz łatwości obsługi. Współczesne monitory często wykorzystują bardziej zaawansowane złącza takie jak HDMI czy DisplayPort, jednak DVI nadal znajduje zastosowanie szczególnie w środowiskach biurowych i starszych konfiguracjach sprzętowych. Podłączenie monitora za pomocą DVI może być również korzystne w kontekście profesjonalnych zastosowań graficznych, gdzie istotna jest precyzja wyświetlanego obrazu i synchronizacja sygnału cyfrowego.

Pytanie 39

Jaki instrument jest używany do usuwania izolacji?

Ilustracja do pytania
A. Rys. A
B. Rys. C
C. Rys. D
D. Rys. B
Rysunek C przedstawia przyrząd do ściągania izolacji, znany jako ściągacz izolacji lub stripper. Jest to narzędzie powszechnie stosowane w pracach elektrycznych i elektronicznych do usuwania izolacji z przewodów elektrycznych. Prawidłowe użycie ściągacza izolacji pozwala na precyzyjne usunięcie izolacji bez uszkadzania przewodników, co jest kluczowe dla zapewnienia dobrego połączenia elektrycznego i uniknięcia awarii. Ściągacze izolacji mogą być ręczne lub automatyczne i są dostępne w różnych rozmiarach, aby pasować do różnorodnych średnic kabli. Dobre praktyki branżowe sugerują użycie odpowiedniego narzędzia dopasowanego do typu i grubości izolacji, aby zapobiec przedwczesnemu uszkodzeniu przewodów. Narzędzie to jest niezbędne dla każdego profesjonalisty zajmującego się instalacjami elektrycznymi, ponieważ przyspiesza proces przygotowania przewodów do montażu. Automatyczne ściągacze izolacji dodatkowo zwiększają efektywność pracy, eliminując potrzebę ręcznego ustawiania głębokości cięcia. Ergonomia tego narzędzia sprawia, że jest wygodne w użyciu, zmniejszając zmęczenie użytkownika podczas długotrwałej pracy.

Pytanie 40

Funkcja systemu operacyjnego, która umożliwia jednoczesne uruchamianie wielu aplikacji w trybie podziału czasu, z tym że realizacja tego podziału odbywa się przez same aplikacje, nosi nazwę

A. wieloprogramowości
B. wielodostępowości
C. wielozadaniowości z wywłaszczeniem
D. wielozadaniowości kooperatywnej
Wielozadaniowość z wywłaszczeniem, choć brzmi podobnie, różni się fundamentalnie od kooperatywnej. W tym modelu system operacyjny samodzielnie przejmuje kontrolę nad procesorem, gdy jedna z aplikacji nie jest w stanie oddać czasu CPU, co skutkuje lepszym zarządzaniem zasobami. Wywłaszczenie pozwala na bardziej efektywne korzystanie z wielozadaniowości, eliminując ryzyko zamrożenia systemu przez nieodpowiadające programy. Przykładowo, w systemie Windows, jeżeli aplikacja nie reaguje, system operacyjny może przydzielić czas procesora innym aktywnym programom, co zapewnia płynność działania. Wielodostępność to koncepcja, która odnosi się do umożliwienia wielu użytkownikom korzystania z systemu jednocześnie, co nie jest bezpośrednio związane z zarządzaniem czasem procesora przez aplikacje. Również wieloprogramowość to termin, który odnosi się do możliwości uruchamiania wielu programów w systemie, ale nie definiuje konkretnego sposobu, w jaki te programy dzielą czas procesora. Typowym błędem jest mylenie tych terminów z koncepcją wielozadaniowości, co prowadzi do nieporozumień w kontekście projektowania i implementacji systemów operacyjnych. Aby zrozumieć różnice, kluczowe jest spojrzenie na sposób, w jaki aplikacje i system operacyjny współpracują w zakresie zarządzania czasem procesora i zasobami systemowymi.