Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 00:59
  • Data zakończenia: 18 grudnia 2025 01:43

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, zestaw kluczy
B. Nóż monterski, praskę, ściągacz izolacji
C. Lutownicę, zestaw wkrętaków, ściągacz izolacji
D. Ściągacz izolacji, nóż monterski, wkrętak
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 2

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
B. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
C. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
D. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 3

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Analiza pozostałych odpowiedzi ujawnia pewne nieporozumienia dotyczące klasyfikacji i zastosowania różnych typów kabli. W odpowiedzi, która wskazuje na kabel sygnalizacyjny z żyłami jednodrutowymi, istotnym błędem jest założenie, że kabel kontrolny nie może mieć wielodrutowych żył. W praktyce, żyły wielodrutowe są często stosowane w kablach kontrolnych, ponieważ oferują większą elastyczność i odporność na uszkodzenia. W kontekście napięcia, klasyfikacja na 0,6/1 kV jest typowa dla kabli elektroenergetycznych, a nie kontrolnych, które są z reguły projektowane z myślą o niższych napięciach, takich jak 300/500 V. Odpowiedź mówiąca o kablu sygnalizacyjnym z żyłami wielodrutowymi o wiązkach parowych także nie bierze pod uwagę ekranowania, które jest kluczowe dla kabli kontrolnych. Ekranowanie zapobiega zakłóceniom i zapewnia integralność sygnału, co jest niezbędne w aplikacjach, gdzie precyzyjne przesyłanie danych jest kluczowe. Niezrozumienie różnicy między zastosowaniem kabli sygnalizacyjnych a kontrolnych prowadzi do błędnych wniosków, co może skutkować niewłaściwym doborem materiałów w projektach instalacyjnych, obniżając ich efektywność i bezpieczeństwo.

Pytanie 4

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 1 godzinę
B. 4 godziny
C. 2 godziny
D. 3 godziny
Czas, przez jaki działa oświetlenie ewakuacyjne, powinien wynosić co najmniej 2 godziny. To ważne, żeby ludzie w budynku mogli bezpiecznie się ewakuować, gdy coś się dzieje, na przykład, gdy zasilanie przestaje działać. Są różne normy, takie jak EN 1838 czy PN-EN 50172, które określają te kwestie. W praktyce to oznacza, że światło ewakuacyjne musi świecić przez wystarczająco długi czas, żeby każdy mógł dotrzeć do wyjścia, zwłaszcza w dużych budynkach, gdzie można sporo przejść. Przykładem może być biurowiec, w którym regularnie sprawdzają oświetlenie ewakuacyjne, by mieć pewność, że wszystko działa jak trzeba. Regularna konserwacja tych systemów jest naprawdę ważna dla bezpieczeństwa całego budynku.

Pytanie 5

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±0,5 mA
B. ±2,0 mA
C. ±3,2 mA
D. ±0,3 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 6

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Przerwa w przewodzie neutralnym.
C. Przerwa na zaciskach odbiornika Z2 lub Z3.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 7

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. TN-S
C. IT
D. TN-C
Odpowiedzi IT, TT i TN-S są nieprawidłowe z różnych powodów związanych z charakterystyką układów sieciowych. Układ IT oznacza instalację, w której przewody nie są uziemione, a uziemienie ochronne jest realizowane w sposób alternatywny. Takie podejście, choć może być stosowane w niektórych specyficznych warunkach, nie pozwala na wykorzystanie wspólnego przewodu neutralnego i ochronnego, co jest kluczowe w układzie TN-C. Odpowiedź TT wskazuje na układ, w którym przewód neutralny jest oddzielony od przewodu ochronnego, co również jest sprzeczne z zasadami TN-C, gdzie przewody te są połączone. Układ TN-S, z kolei, w odróżnieniu od TN-C, zakłada oddzielne przewody neutralny i ochronny, co czyni go mniej efektywnym pod względem kosztów w instalacjach, w których można zastosować TN-C. Typowe błędy myślowe przy wyborze tych odpowiedzi często wynikają z nieznajomości praktycznych różnic między tymi układami a ich realnych zastosowań w instalacjach elektrycznych. Znajomość norm i standardów, takich jak PN-IEC 60364, jest kluczowa dla właściwego doboru układów sieciowych, co pozwala na uniknięcie nieporozumień i zapewnienie bezpieczeństwa w eksploatacji urządzeń elektrycznych.

Pytanie 8

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
B. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
C. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 9

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Zasilania napięciem bezpiecznym.
B. Izolacji roboczej.
C. Samoczynnego wyłączenia zasilania.
D. Połączeń wyrównawczych.
Izolacja robocza jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Miernik izolacji, przedstawiony na rysunku, służy do oceny stanu tej izolacji poprzez pomiar rezystancji. Wysoka rezystancja izolacji wskazuje na dobrą kondycję izolacji, co zapobiega przebiciu prądu do ziemi i potencjalnemu porażeniu elektrycznemu. W kontekście standardów, zgodnie z normą PN-EN 60204-1, regularne pomiary izolacji są wymagane w celu zapewnienia bezpieczeństwa urządzeń elektrycznych. W praktyce, miernik ten jest szczególnie użyteczny w okresowych przeglądach instalacji oraz w przypadku napraw i modyfikacji, aby upewnić się, że izolacja zachowuje odpowiednie właściwości, co jest niezbędne w każdej instalacji elektrycznej. Prawidłowe przeprowadzanie takich pomiarów jest elementem dobrych praktyk w branży elektroinstalacyjnej, co na pewno podnosi poziom bezpieczeństwa użytkowania instalacji.

Pytanie 10

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 5,9 kW
B. 9,6 kW
C. 3,9 kW
D. 6,9 kW
Odpowiedź 6,9 kW jest prawidłowa, ponieważ maksymalna moc, jaką można zainstalować w obwodzie chronionym przez wyłącznik nadprądowy typu S-303 CLS6-C10/3, jest określona przez jego prąd znamionowy. W przypadku tego wyłącznika, prąd znamionowy wynosi 10 A. W systemach trójfazowych, całkowita moc jest obliczana ze wzoru P = √3 × U × I, gdzie U to napięcie międzyfazowe (400 V), a I to prąd wyłącznika (10 A). Obliczając, otrzymujemy P = √3 × 400 V × 10 A ≈ 6,93 kW, co zaokrąglamy do 6,9 kW. W praktyce oznacza to, że zainstalowanie klimatyzatora o tej mocy będzie zgodne z przepisami i zapewni bezpieczeństwo instalacji elektroenergetycznej, a także będzie zgodne z normami PN-IEC 60364. Ważne jest, aby przy doborze urządzeń zawsze uwzględniać parametry wyłączników oraz ich charakterystykę, aby uniknąć przeciążenia instalacji.

Pytanie 11

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (5÷20) · In
C. (2÷3) · In
D. (5÷10) · In
Często spotykam się z tym, że osoby uczące się o wyłącznikach nadprądowych mylą zakresy działania wyzwalaczy elektromagnetycznych – pewnie dlatego, że charakterystyki B, C i D różnią się właśnie tą wartością, a w praktyce łatwo się pomylić. Założenie, że wyzwalacz elektromagnetyczny w wyłączniku typu C zadziała np. w zakresie (3÷5)·In albo nawet (2÷3)·In jest charakterystyczne raczej dla charakterystyki B – tam wyłącznik ma zareagować szybciej, bo zabezpiecza bardziej wrażliwe obwody, gdzie nawet niewielki nadmiar prądu może zaszkodzić urządzeniom. Zakres (5÷20)·In natomiast to już bardziej charakterystyka D, która pozwala na naprawdę duże prądy rozruchowe, np. przy silnikach o dużej mocy albo transformatorach – w instalacjach domowych czy biurowych byłoby to zdecydowanie za dużo. Moim zdaniem wybór niewłaściwego zakresu wiąże się często z nieznajomością normy PN-EN 60898-1 oraz z niezrozumieniem praktycznego zastosowania poszczególnych typów wyłączników. Stosując zbyt niską krotność, ryzykujemy niepotrzebne wyłączenia zasilania przy każdym chwilowym przeciążeniu; z kolei za wysoka krotność to potencjalne zagrożenie, bo zabezpieczenie nie zareaguje przy realnym zwarciu. Dlatego zawsze warto dokładnie sprawdzić, do jakiego typu obwodu dobieramy wyłącznik: typu C używa się tam, gdzie występują średnie prądy rozruchowe, a zakres (5÷10)·In gwarantuje właściwy kompromis między skutecznością a praktycznością. Dobre praktyki branżowe uczą, by nie sugerować się tylko jednym parametrem, ale zrozumieć całą charakterystykę pracy i wynikające z niej konsekwencje dla bezpieczeństwa instalacji. To właśnie dlatego znajomość zakresu działania wyzwalaczy elektromagnetycznych w różnych typach wyłączników jest tak istotna; pozwala unikać typowych błędów przy projektowaniu i modernizowaniu instalacji elektrycznych.

Pytanie 12

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≤ UL
B. RA ∙ IΔn ≥ UL
C. RA ∙ IΔn < UL
D. RA ∙ IΔn > UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 13

Którym z przedstawionych na rysunkach wyłączników różnicowoprądowych można zastąpić w trójfazowej instalacji elektrycznej 230/400 V, zabezpieczonej wyłącznikiem S314 B50, uszkodzony mechanicznie wyłącznik RCD o prądzie IΔn = 0,03 A?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór innego wyłącznika różnicowoprądowego niż A może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa instalacji elektrycznej. Przykładowo, wyłącznik B o prądzie znamionowym I_n równym 0,3 A nie jest odpowiedni, ponieważ znacznie przekracza wymaganą wartość 0,03 A. Taki wyższy prąd znamionowy może nie zadziałać w przypadku realnej awarii, co może prowadzić do porażenia prądem lub pożaru. Wyłącznik C, mimo że również ma prąd znamionowy 0,03 A, może mieć inne specyfikacje, które nie odpowiadają wymaganiom instalacji trójfazowej, co czyni go niewłaściwym do zastosowania. W przypadku wyłącznika D, który również ma prąd znamionowy 0,3 A, zgubimy kluczową ochronę, jaką zapewniają wyłączniki RCD, a ich niezastosowanie w odpowiednich parametrach może skutkować poważnymi uszkodzeniami sprzętu elektrycznego oraz zagrażać bezpieczeństwu użytkowników. Zrozumienie wymagań dotyczących wyłączników różnicowoprądowych jest kluczowe dla utrzymania prawidłowego poziomu bezpieczeństwa w instalacjach elektrycznych, dlatego ważne jest, aby zawsze dobierać urządzenia zgodnie z ich specyfikacjami i normami branżowymi.

Pytanie 14

Który z przedstawionych na rysunkach elementów osprzętu należy zastosować do ułożenia dwóch przewodów DY 1,5 mm2 pod tynkiem w pomieszczeniu mieszkalnym?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź A jest spoko, bo jak chcesz ułożyć dwa przewody DY 1,5 mm² pod tynkiem w mieszkaniu, to musisz użyć rurki falistej o odpowiedniej średnicy. W tym przypadku rurka o średnicy 18 mm, którą masz w opcji A, jest zgodna z zasadami bezpieczeństwa i normami, które mówią, jak trzeba układać przewody elektryczne. Te przewody muszą być chronione przed uszkodzeniami, a rurki faliste świetnie się w tym sprawdzają. Z doświadczenia wiem, że takie rozwiązanie daje też większą elastyczność przy zmianach w instalacji. Zgodnie z normą PN-IEC 60364, ważne jest, żeby zapewnić wentylację i unikać przegrzewania przewodów. Dlatego rurki faliste są fajne, bo poprawiają trwałość całej instalacji. Dobrze dobrana średnica rurki jest kluczowa, żeby nie było zwarć ani innych problemów z prądem.

Pytanie 15

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 3,83 Ω
B. 2,30 Ω
C. 2,00 Ω
D. 1,15 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 16

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. MR16
B. E14
C. GU10
D. G9
Odpowiedzi E14, G9 i MR16 nawiązują do innych typów trzonków, które różnią się zarówno budową, jak i zastosowaniem. Trzonek E14, znany także jako "mały trzonek Edisona", ma gwint o średnicy 14 mm i jest najczęściej stosowany w lampach dekoracyjnych oraz żarówkach do użytku domowego. Jest to standard, który nie ma zastosowania w reflektorach, co czyni go niewłaściwym wyborem w kontekście przedstawionego źródła światła. Trzonek G9 charakteryzuje się wtykiem, który również nie pasuje do opisanego trzonka GU10, a jego zastosowanie jest najczęściej w lampach halogenowych o małej mocy. MR16 to natomiast standard, który oznacza reflektory o niskim napięciu z wtykiem typu GU5.3, co dodatkowo różni go od GU10. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków często wynikają z mylenia funkcji poszczególnych typów trzonków. Ważne jest, aby zrozumieć, że każdy typ trzonka ma swoje specyficzne zastosowanie oraz wymogi techniczne, dlatego nieprzemyślane dobieranie trzonków może prowadzić do nieprawidłowego działania systemów oświetleniowych oraz zwiększonego ryzyka uszkodzenia sprzętu. Znajomość tych różnic jest kluczowa dla efektywnego projektowania i instalacji oświetlenia.

Pytanie 17

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Lutownicy.
C. Wkrętaka.
D. Praski hydraulicznej.
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 18

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
B. oznaczenie i zabezpieczenie obszaru roboczego
C. pisemne polecenie do wykonania prac
D. wyłączenie zasilania z instalacji
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 19

Który z przedstawionych wyłączników nie zapewni skutecznej ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S 230/400 V, w którym zmierzona wartość impedancji zwarcia L-PE wynosi 1 Ω?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór wyłącznika z innych opcji jako rozwiązania problemu ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S może wynikać z błędnego zrozumienia funkcji i zastosowań poszczególnych typów wyłączników. Wiele osób może myśleć, że każdy wyłącznik różnicowoprądowy wystarczy, aby zapewnić pełną ochronę przed porażeniem, co jest mylnym przekonaniem. Wyłączniki różnicowoprądowe są zaprojektowane głównie do wykrywania upływności prądu, a nie do przerywania obwodu w przypadku zwarć lub przeciążeń. Zastosowanie wyłącznika, który nie ma odpowiednich parametrów do reagowania na sytuacje awaryjne, może prowadzić do sytuacji, w której nieprawidłowe działanie instalacji elektrycznej będzie miało poważne konsekwencje. W praktyce stosowanie wyłączników nadprądowych w połączeniu z różnicowoprądowymi pozwala na uzyskanie wyższej jakości ochrony. Należy pamiętać, że norma PN-EN 61008-1 określa wymagania dotyczące wyłączników różnicowoprądowych, a także ich zastosowanie w różnych instalacjach elektrycznych. Zrozumienie różnic i funkcji każdego z tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 20

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Dzwonkowego
B. Krzyżowego
C. Hotelowego
D. Schodowego
Odpowiedź 'dzwonkowy' jest poprawna, ponieważ w systemach oświetlenia klatki schodowej zastosowanie automatu schodowego wymaga łącznika, który umożliwia sterowanie oświetleniem w sposób wygodny i funkcjonalny. Łącznik dzwonkowy, w przeciwieństwie do innych typów łączników, takich jak krzyżowy czy hotelowy, jest zaprojektowany do pracy w obwodach, gdzie nie tylko jedno źródło światła jest sterowane z jednego miejsca. Dzięki temu, można w prosty sposób włączać i wyłączać światło z różnych lokalizacji. Przykładowo, w przypadku klatki schodowej, można zainstalować łącznik dzwonkowy na każdym piętrze, co pozwala na wygodne sterowanie oświetleniem bez potrzeby schodzenia na dół. Dodatkowo, zgodnie z normami PN-EN 60669-1, stosowanie odpowiednich łączników w takich miejscach jest kluczowe dla zapewnienia bezpieczeństwa oraz komfortu użytkowania. W przypadku automatu schodowego, który automatycznie wyłącza światło po pewnym czasie, łącznik dzwonkowy zapewnia efektywne i oszczędne rozwiązanie, idealne do podświetlania klatek schodowych i innych korytarzy.

Pytanie 21

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Po każdej naprawie maszyn
B. Co najmniej raz na rok
C. Co pięć lat
D. Tylko przed uruchomieniem nowych maszyn
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 22

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec typu Segera.
B. Wkrętaka płaskiego.
C. Szczypiec uniwersalnych.
D. Wkrętaka imbusowego.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 23

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. TN-C
C. TT
D. IT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 24

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. LgY
C. YADY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 25

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 5 lat
B. 2 lata
C. 10 lat
D. 1 rok
Przeglądy instalacji elektrycznej co 2 lata, 1 rok czy 10 lat mogą być mylące, ponieważ każdy z tych okresów nie uwzględnia rzeczywistych wymagań dotyczących bezpieczeństwa i stanu technicznego instalacji. Przegląd co 2 lata może wydawać się rozsądny w kontekście częstotliwości, jednak nie odpowiada on rzeczywistym potrzebom użytkowników, ponieważ pomija dłuższe, udokumentowane okresy, w których instalacja może funkcjonować prawidłowo bez poważnych usterek. Z kolei roczny przegląd wydaje się być nadmiernie rygorystyczny i nieekonomiczny, co może prowadzić do zbędnych kosztów. Przegląd co 10 lat z kolei może stwarzać złudne poczucie bezpieczeństwa, ponieważ przez tak długi okres mogą wystąpić zmiany w warunkach użytkowania, które mogą wpłynąć na stan instalacji, takie jak zużycie materiałów czy zmiany norm prawnych. Dlatego kluczowe jest, aby stosować się do ustalonej przez normy praktyki pięcioletniej, co jest uzasadnione zarówno technicznie, jak i prawnymi wymaganiami. Niedostateczna częstotliwość przeglądów może prowadzić do poważnych konsekwencji, takich jak awarie, które niosą za sobą nie tylko ryzyko dla zdrowia i życia, ale również mogą skutkować wysokimi kosztami naprawy i odszkodowań.

Pytanie 26

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy C
B. Klasy B
C. Klasy D
D. Klasy A
Odpowiedź wskazująca na klasy C jako odpowiednie do instalacji ograniczników przepięć w rozdzielnicach mieszkaniowych jest prawidłowa z kilku powodów. Klasa C, według normy IEC 61643-11, jest zaprojektowana do ochrony instalacji elektrycznych przed przepięciami o średniej energii, co czyni je idealnym wyborem dla typowych warunków panujących w budynkach mieszkalnych. Ograniczniki klasy C charakteryzują się czasem reakcji na przepięcia, który jest wystarczająco krótki, by zminimalizować ryzyko uszkodzenia sprzętu AGD czy innych urządzeń elektronicznych, a jednocześnie są w stanie radzić sobie z energią przepięć generowanych przez różne źródła, takie jak wyładowania atmosferyczne czy nagłe zmiany w obciążeniu sieci. Dodatkowo, zaleca się, aby ograniczniki klasy C były instalowane równolegle z ogranicznikami klasy B w celu zapewnienia kompleksowej ochrony. Takie podejście nie tylko zwiększa bezpieczeństwo, ale także zgodność z dobrymi praktykami branżowymi i standardami ochrony przeciwprzepięciowej, co jest kluczowe w kontekście wzrastającej liczby urządzeń elektronicznych w gospodarstwach domowych.

Pytanie 27

Którym symbolem graficznym oznacza się na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Poprawna odpowiedź to B, ponieważ symbol ten dokładnie odwzorowuje sposób prowadzenia przewodów elektrycznych przedstawiony na zdjęciu. Przewody prowadzone są podtynkowo w rurach instalacyjnych i rozdzielają się w pewnym punkcie na trzy inne przewody. W branży elektrycznej, zgodnie z normami IEC 60617, symbole graficzne mają na celu uproszczenie zrozumienia rozkładu instalacji elektrycznej, a poprawny wybór symbolu B jest kluczowy dla właściwej interpretacji schematów przez techników i inżynierów. Przewody podtynkowe w rurach są standardowym rozwiązaniem w nowoczesnych instalacjach, co zapewnia ochronę mechaniczną oraz estetykę. W praktyce, zastosowanie odpowiednich symboli na planach instalacyjnych ułatwia lokalizację potencjalnych problemów oraz ich przyszłą konserwację. Zrozumienie i poprawne stosowanie symboli jest niezbędne w codziennej pracy każdego elektryka, a ich znajomość wpływa na bezpieczeństwo i efektywność instalacji elektrycznych.

Pytanie 28

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 29

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Szeregowy.
B. Grupowy.
C. Jednobiegunowy.
D. Dwubiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 30

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. MR16
B. E27
C. G9
D. GU10
Wybór odpowiedzi E27, MR16 lub G9 wskazuje na nieporozumienie dotyczące rodzajów trzonków źródeł światła. E27 to popularny trzonek stosowany w tradycyjnych żarówkach, charakteryzujący się dużym gwintem, który nie ma wypustek, co znacząco różni się od konstrukcji GU10. Przeznaczenie E27 obejmuje głównie zastosowania w domowych źródłach światła, gdzie wymagana jest wygodna wymiana żarówek, jednak nie pasuje to do specyfikacji prezentowanego trzonka. Z kolei MR16 to rodzaj trzonka, który zazwyczaj używa się w lampach halogenowych o niskim napięciu i ma inną konstrukcję, składającą się z dwóch metalowych nóżek, co sprawia, że także nie jest zgodny z ilustracją. Trzonek G9, mimo że występuje w podobnych zastosowaniach oświetleniowych, różni się od GU10 pod względem zarówno konstrukcji, jak i sposobu montażu. Jednym z typowych błędów jest brak znajomości specyfikacji i zastosowań różnych typów trzonków, co prowadzi do mylnych wniosków. Aby uniknąć takich nieporozumień, warto zaznajomić się z charakterystyką i zastosowaniem trzonków zgodnych z normami, co jest kluczowe dla odpowiedniego doboru źródeł światła w projektach oświetleniowych.

Pytanie 31

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. ALY 2,5 mm2
D. YLY 2,5 mm2
Odpowiedzi ADY 2,5 mm2, YLY 2,5 mm2 oraz YDY 2,5 mm2 są niepoprawne, ponieważ nie spełniają właściwych kryteriów dotyczących materiału przewodnika oraz rodzaju konstrukcji. Oznaczenie ADY sugeruje, że przewód ma rdzeń aluminiowy, jednak nie odnosi się do specyfikacji, iż jest to przewód wielodrutowy. W praktyce, przewody aluminiowe jednożyłowe są rzadziej stosowane, ponieważ ich sztywność ogranicza elastyczność w instalacji w porównaniu do przewodów wielodrutowych. Z kolei oznaczenie YLY wskazuje na przewód miedziany, co jest niezgodne z wymaganiami pytania, które dotyczy przewodu aluminiowego. Warto pamiętać, że zastosowanie przewodów miedzianych w sytuacjach, gdzie aluminium powinno być użyte, może prowadzić do problemów z przewodnictwem oraz zwiększonego ryzyka przegrzania, co z kolei może skutkować uszkodzeniem instalacji. Ostatecznie, YDY oznacza przewód z żyłą miedzianą o odpowiednich parametrach, co znowu nie jest zgodne z wymaganiami pytania. Ważne jest, aby znać różnice w oznaczeniach i ich znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, aby unikać nieporozumień i potencjalnych zagrożeń w praktyce inżynieryjnej.

Pytanie 32

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,82
C. 0,69
D. 0,57
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 33

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Sprawdzenie stanu izolacji oraz powłok przewodów
B. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
C. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
D. Zamiana wszystkich źródeł oświetlenia w oprawach
Wymiana wszystkich źródeł światła w oprawach nie jest bezpośrednio związana z konserwacją instalacji elektrycznej, lecz dotyczy czynności eksploatacyjnych. Choć wymiana żarówek jest konieczna, nie wpływa na ogólny stan instalacji ani nie zaspokaja wymogów przepisów dotyczących bezpieczeństwa. Z kolei sprawdzenie czasu zadziałania zabezpieczenia zwarciowego, mimo iż istotne, koncentruje się na aspektach ochronnych, a nie na konserwacji samej instalacji. Praktyka ta nie obejmuje analizy stanu izolacji przewodów, co jest fundamentalne dla długoterminowej funkcjonalności systemu. Wymiana wszystkich zacisków śrubowych w puszkach rozgałęźnych również nie stanowi konserwacji w rozumieniu stanu technicznego instalacji, a raczej działania prewencyjnego, które powinno być realizowane w odpowiednich interwałach czasowych. Konserwacja instalacji elektrycznej wymaga całościowego podejścia, które skupia się na ocenie i utrzymaniu integralności systemu, a nie tylko na pojedynczych elementach. Zrozumienie, że konserwacja to znacznie więcej niż proste działania eksploatacyjne, jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych w mieszkaniach.

Pytanie 34

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Szeregowy prądu stałego
C. Synchroniczny
D. Asynchroniczny klatkowy
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 35

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
B. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
C. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
D. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 36

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. przeciążenia obwodu elektrycznego
C. uszkodzenia podłączonego urządzenia elektrycznego
D. zwarcia w obwodzie elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 37

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 1,5 kV
B. 2,5 kV
C. 4,0 kV
D. 6,0 kV
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 38

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. wszystkie przewody czynne
B. przewody fazowe oraz ochronny
C. tylko przewody fazowe
D. wyłącznie przewód neutralny
Wybór tylko przewodów fazowych lub przewodu neutralnego do pomiaru prądu upływu jest niezgodny z zasadami diagnostyki elektrycznej. Ograniczając pomiar do samych przewodów fazowych, pomijamy istotny element równowagi prądów w obwodzie, co może prowadzić do błędnych wniosków o stanie instalacji. Przewód neutralny odgrywa kluczową rolę w bilansowaniu prądów w instalacji trójfazowej, a jego wyłączenie z pomiaru nie pozwala na pełne zrozumienie prądów upływowych, które mogą występować. Z kolei pomiar tylko przewodu neutralnego jest całkowicie niewłaściwy, ponieważ nie dostarcza informacji o prądach płynących przez przewody fazowe, które mogą być źródłem zagrożenia. Dlatego istotne jest, aby w pomiarach uwzględniać wszystkie przewody czynne, co jest zgodne z kryteriami bezpieczeństwa zawartymi w normach, takich jak IEC 60364. Nieprawidłowe zrozumienie roli każdego z przewodów w instalacji elektrycznej prowadzi do ryzykownych sytuacji, w których prądy upływowe mogą pozostać niezauważone, a co za tym idzie, zwiększa się ryzyko wystąpienia porażenia prądem elektrycznym. Każdy pracownik zajmujący się eksploatacją instalacji elektrycznych powinien być świadomy tych aspektów, aby zapewnić pełne bezpieczeństwo oraz zgodność z obowiązującymi normami technicznymi.

Pytanie 39

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 206,9 lm/W
B. 14,5 lm/W
C. 1 180,0 lm/W
D. 81,4 lm/W
Nieprawidłowe odpowiedzi często wynikają z nieporozumień związanych z efektywnością świetlną. Często ludzie mylą lumeny z watami, co prowadzi do pomyłek. Na przykład, jeśli ktoś odpowiedział 14,5 lm/W, to pewnie myślał, że moc żarówki to jej skuteczność, co całkowicie mija się z prawdą. Moc w watach mówi nam, ile energii żarówka zużywa, a nie jak dobrze świeci. Inny błąd to podawanie złych danych, jak 1 180,0 lm/W – to jest fizycznie niemożliwe dla normalnych źródeł światła. Czasem zapominamy także o kontekście, w jakim używamy źródeł światła, co prowadzi do błędnych wyników. Trzeba pamiętać, że skuteczność świetlna to liczby, które trzeba dobrze zrozumieć i podliczyć, bazując na danych o strumieniu świetlnym i mocy, co jest współczesnym krokiem w stronę lepszej efektywności energetycznej oraz ekologii.

Pytanie 40

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. świecznikowy.
B. dwubiegunowy.
C. hotelowy.
D. schodowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.