Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 12:30
  • Data zakończenia: 19 grudnia 2025 12:44

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwójeniu V1 - V2
B. przerwie w uzwojeniu Wl - W2
C. zwarciu międzyzwojowym w uzwojeniu Ul - U2
D. przerwie w uzwojeniu VI - V2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 2

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 0,63
B. PKZM01 – 1
C. MMS-32S – 1,6A
D. MMS-32S – 4A
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.

Pytanie 3

Podczas wymiany gniazda wtyczkowego w instalacji domowej wykonanej w rurkach pod tynkiem złamał się jeden z przewodów aluminiowych, przez co stał się za krótki. Jak powinno się postąpić w tej sytuacji przy wymianie gniazda?

A. Przed zamontowaniem gniazda wymienić przewody na miedziane, wciągając nowe razem z usuwaniem starych
B. Przed zamontowaniem gniazda usunąć uszkodzony przewód i wciągnąć nowy miedziany
C. Skręcić złamany przewód z kawałkiem przewodu miedzianego i zamontować gniazdo
D. Przylutować brakującą część przewodu aluminiowego i zamontować gniazdo
Przy wymianie gniazda wtyczkowego i uszkodzeniu przewodu aluminiowego, zastosowanie lutowania lub skręcania przewodów aluminiowych z miedzianymi jest wysoce niewłaściwe. Luty w instalacjach elektrycznych powinny być unikać, zwłaszcza w przypadku materiałów różnego rodzaju, jak miedź i aluminium, gdyż różnice w rozszerzalności cieplnej oraz w elektrochemii mogą prowadzić do słabych połączeń, które są niebezpieczne. Użycie przewodów aluminiowych w połączeniu z miedzianymi stwarza ryzyko korozji galwanicznej, co na dłuższą metę powoduje problemy z przewodnictwem i może skutkować awarią instalacji. W przypadku wyciągania uszkodzonego przewodu aluminiowego i wciągania nowego miedzianego, należy pamiętać, że wprowadzenie nowych przewodów wymaga nie tylko wymiany materiału, ale także dostosowania do odpowiednich norm i standardów instalacyjnych. Niewłaściwe podejście do wymiany może prowadzić do poważnych awarii instalacji elektrycznej, co może stanowić zagrożenie dla użytkowników budynku. W związku z tym, kluczowe jest, aby unikać łączenia materiałów o różnych właściwościach w instalacjach elektrycznych oraz zapewnić pełną zgodność z przepisami i standardami bezpieczeństwa.

Pytanie 4

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,4 ∙ In
B. 2,2 ∙ In
C. 1,1 ∙ In
D. 0,8 ∙ In
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.

Pytanie 5

Element przedstawiony na ilustracji, zabezpieczający olejowy transformator energetyczny o danych znamionowych 15/0,4 kV, 2 500 kVA, nie chroni przed skutkami

Ilustracja do pytania
A. obniżenia poziomu oleju w kadzi.
B. przerw w uziemieniu.
C. zwarć międzyzwojowych.
D. rozkładu termicznego izolacji stałej.
Odpowiedź "przerw w uziemieniu" jest poprawna, ponieważ element przedstawiony na ilustracji to przekaźnik Buchholza, który odgrywa kluczową rolę w monitorowaniu stanu transformatorów olejowych. Buchholz relay jest zaprojektowany do wykrywania nieprawidłowości, takich jak obniżenie poziomu oleju w kadzi, co może wskazywać na wycieki lub inne uszkodzenia, oraz zwarcia międzyzwojowe, które mogłyby prowadzić do poważnych awarii. Działa on na zasadzie detekcji gazów, które powstają w wyniku wewnętrznych uszkodzeń, co pozwala na wczesne wykrycie problemów, zanim dojdzie do poważnych konsekwencji. W praktyce, przekaźnik Buchholza jest istotnym elementem systemu ochrony transformatora, który zgodnie z normą IEC 60076-1 powinien być stosowany w każdym transformatorze olejowym o większej mocy. Dzięki jego działaniu, można nie tylko wcześnie wykrywać uszkodzenia, ale również minimalizować ryzyko pożarów i wybuchów, co jest kluczowe dla bezpieczeństwa operacji energetycznych.

Pytanie 6

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A
Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.

Pytanie 7

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 3 lata
B. 2 lata
C. 4 lata
D. 5 lat
Wybierając okres krótszy niż 5 lat na przeglądy instalacji elektrycznej, można narazić bezpieczeństwo użytkowników obiektu oraz naruszyć przepisy prawa. Odpowiedzi sugerujące przeglądy co 3, 2 lub 4 lata mogą wynikać z błędnego zrozumienia przepisów dotyczących konserwacji instalacji. W rzeczywistości, krótsze interwały mogą prowadzić do niepotrzebnych kosztów i obciążeń administracyjnych, a jednocześnie niekoniecznie zwiększą poziom bezpieczeństwa. Warto zauważyć, że w przypadku wielu budynków, które są używane sporadycznie lub nie narażone na intensywne użytkowanie, przegląd co 5 lat jest wystarczający i zgodny z wymaganiami norm. Warto również pamiętać, że przegląd instalacji nie jest tylko formalnością, ale powinien obejmować szczegółowe badania techniczne. Użytkownicy mogą mylnie sądzić, że częstsze przeglądy są zawsze lepsze, co nie jest zgodne z zasadą efektywności kosztowej. Zbyt częste kontrole mogą być uciążliwe i generować dodatkowe wydatki, które niekoniecznie przynoszą wymierne korzyści w zakresie bezpieczeństwa. Kluczowe jest zrozumienie, że przeglądy powinny być zgodne z rzeczywistym stanem technicznym instalacji oraz intensywnością jej użytkowania, a nie narzucane bezrefleksyjnie.

Pytanie 8

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Producent energii elektrycznej
B. Właściciel obiektu
C. Zarządca obiektu
D. Dostawca energii elektrycznej
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 9

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. przerwą w jednej z faz
B. przerwaniem ciągłości przewodu PEN
C. zwarciem pomiędzy fazami
D. zwarciem między fazą a przewodem PEN
Zwarcie fazy z przewodem PEN prowadziłoby do nieprawidłowego rozkładu napięć, jednak nie jest to główny powód wzrostu napięcia powyżej 300 V na odbiornikach. W sytuacji zwarcia fazowego, napięcia na pozostałych fazach mogą spadać, ponieważ dochodzi do podziału prądów i obciążenia. Zwarcie międzyfazowe także wprowadza nieprawidłowości w dostawie energii, lecz skutkiem jest zazwyczaj wyzwolenie zabezpieczeń, co chroni urządzenia przed nadmiernym napięciem. Natomiast przerwa w jednej z faz skutkuje z kolei nierównomiernym rozkładem obciążenia w systemie trójfazowym, co może prowadzić do problemów z równowagą obciążenia, ale rzadko skutkuje wzrostem napięcia na odbiornikach do wartości niebezpiecznych. W przypadku układu TN-C kluczowe znaczenie ma ciągłość przewodu PEN, który jest odpowiedzialny za ochronę przed porażeniem. Brak tego przewodu może spowodować, że napięcie na odbiornikach będzie w sposób niekontrolowany rosło, co zagraża bezpieczeństwu użytkowników oraz urządzeń. Dlatego uznanie przerwania ciągłości przewodu PEN za główną przyczynę wzrostów napięcia w tym układzie jest kluczowe dla prawidłowego zrozumienia funkcjonowania instalacji elektrycznych oraz ich bezpieczeństwa.

Pytanie 10

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
B. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
D. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 11

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 37 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6301
B. 6200
C. 6001
D. 6700
Odpowiedź 6301 jest prawidłowa, ponieważ dokładnie spełnia wszystkie wymagane wymiary dla danego zastosowania. Średnica wału o wartości 12 mm odpowiada średnicy otworu wewnętrznego łożyska 6301, który wynosi również 12 mm. Dodatkowo, średnica zewnętrzna tego łożyska wynosi 37 mm, co idealnie pasuje do średnicy wewnętrznej tarczy łożyskowej, a jego szerokość wynosząca 12 mm również jest zgodna z wymaganiami. W praktyce, dobór odpowiedniego łożyska jest kluczowy dla trwałości i niezawodności maszyn. Wybór łożyska zgodnego z wymiarami zapewnia optymalne przenoszenie obciążeń i minimalizuje zużycie. Zgodnie z międzynarodowymi standardami, właściwy dobór łożysko wpływa na efektywność działania silników i urządzeń, co często przekłada się na obniżenie kosztów eksploatacji oraz wydłużenie żywotności komponentów. W branży inżynieryjnej, stosowanie łożysk takich jak 6301 jest powszechne w silnikach elektrycznych, gdzie kluczowym aspektem jest redukcja tarcia, co z kolei zwiększa efektywność energetyczną.

Pytanie 12

Jaki jest cel uziemienia ochronnego w instalacjach elektrycznych?

A. Zabezpieczenie ludzi przed porażeniem elektrycznym
B. Redukcja zużycia energii elektrycznej w instalacjach elektrycznych
C. Poprawa jakości sygnału w instalacjach telekomunikacyjnych
D. Zwiększenie mocy znamionowej urządzeń elektrycznych
Uziemienie ochronne ma na celu przede wszystkim zabezpieczenie ludzi przed porażeniem elektrycznym, co jest jednym z najważniejszych aspektów bezpieczeństwa w instalacjach elektrycznych. W praktyce oznacza to, że obudowy urządzeń elektrycznych są połączone z ziemią, co umożliwia szybkie odprowadzenie prądu w przypadku zwarcia lub uszkodzenia izolacji. Dzięki temu, jeżeli np. przewód fazowy zetknie się z metalową obudową urządzenia, prąd popłynie do ziemi, a nie przez ciało człowieka, co znacząco zmniejsza ryzyko porażenia. Takie uziemienie jest wymagane przez normy bezpieczeństwa elektrycznego, takie jak PN-IEC 60364. W skrócie, uziemienie ochronne działa jako środek zapobiegawczy, który minimalizuje ryzyko wypadków i zwiększa ogólne bezpieczeństwo użytkowników instalacji elektrycznych. Dodatkowo, uziemienie ochronne pomaga w stabilizacji napięcia sieci i eliminuje potencjalne różnice napięcia, co jest kluczowe w utrzymaniu właściwego działania urządzeń elektrycznych. To nie tylko praktyka, ale też standard w branży, który musi być przestrzegany, by zapewnić bezpieczne i efektywne działanie instalacji.

Pytanie 13

Do wykonania pomiarów impedancji pętli zwarciowej metodą spadku napięcia, zgodnie ze schematem przedstawionym na rysunku, wykorzystano impedancję Z = 50 Ω i otrzymano wyniki:
-wyłącznik otwarty, U1 = 230 V
-wyłącznik zamknięty, U2 = 200 V, I = 4,0 A
Impedancja badanej pętli zwarciowej wynosi

Ilustracja do pytania
A. 7,5 Ω
B. 42,3 Ω
C. 57,5 Ω
D. 3,7 Ω
Często pojawiającą się trudnością w obliczaniu impedancji pętli zwarciowej jest nieuwzględnienie kluczowych parametrów podczas analizy danych pomiarowych. Odpowiedzi, które zwracają uwagę na wartości takie jak 42,3 Ω czy 57,5 Ω, mogą wynikać z nieprawidłowego zrozumienia różnicy napięć. W zadaniu przedstawiono różnicę między napięciem przy otwartym wyłączniku a napięciem przy zamkniętym, co wskazuje na spadek napięcia, który należy brać pod uwagę w dalszych obliczeniach. Wartości te mogą być mylące, gdyż może wystąpić tendencja do pomijania ważnych kroków matematycznych lub błędnego stosowania wzorów. Na przykład, wyliczając impedancję, niektórzy mogą niefortunnie wziąć pod uwagę jedynie jedno z napięć zamiast obliczyć jego różnicę, co prowadzi do zaniżenia lub zawyżenia rzeczywistej wartości impedancji. Ponadto, mogą wystąpić błędy związane z zastosowaniem nieodpowiednich jednostek lub pomijania istotnych czynników, takich jak rezystancja obwodu, co również wpływa na ostateczny wynik. Zrozumienie związku między napięciem, prądem i impedancją jest kluczowe dla efektywnego diagnozowania i naprawy problemów w instalacjach elektrycznych, a także dla zapewnienia ich bezpieczeństwa i niezawodności.

Pytanie 14

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Warsztat sprzętu RTV
B. Pracownia szkolna
C. Plac budowy
D. Laboratorium
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 15

Jaką czynność można wykonać przy lokalizacji uszkodzeń w trakcie funkcjonowania instalacji oraz urządzeń elektrycznych w obszarach narażonych na wybuch?

A. Pomiar temperatury zewnętrznych powierzchni obudów silników
B. Dokręcanie luźnych śrub w osłonach urządzeń
C. Demontaż obudów urządzeń
D. Wymiana źródeł oświetlenia
Pomiar temperatury powierzchni obudów silników jest czynnością, która może być wykonywana w czasie pracy instalacji i urządzeń elektrycznych w strefach zagrożonych wybuchem, ponieważ nie narusza to integralności obudowy ani nie wprowadza potencjalnych źródeł zapłonu. W praktyce pomiar ten jest kluczowy dla oceny stanu operacyjnego silników i identyfikacji potencjalnych problemów, takich jak przegrzewanie, które mogłoby prowadzić do awarii. W strefach zagrożonych wybuchem, przestrzeganie przepisów takich jak ATEX (Dyrektywa 2014/34/UE) oraz IECEx jest niezbędne, by zminimalizować ryzyko wybuchu. Wskazanie anomalii w temperaturze może pozwolić na szybką interwencję, zanim dojdzie do poważniejszych usterek, co jest zgodne z najlepszymi praktykami w zakresie utrzymania bezpieczeństwa i efektywności operacyjnej. Przykładowo, termografia bezdotykowa może być używana do monitorowania temperatury w czasie rzeczywistym, co zwiększa bezpieczeństwo w strefach zagrożonych.

Pytanie 16

Silnik, o parametrach znamionowych zamieszczonych w ramce, wbudowany jest na stałe do nawijarki. Jak często należy przeprowadzać przegląd techniczny tego silnika?

PSBg 100L-6
Un = 400 VPn = 1,8 kWIn = 4,5 A
nn = 925 obr/minS1cosφ = 0,80
A. Nie rzadziej niż raz na trzy lata.
B. W terminach przewidzianych dla przeglądu nawijarki.
C. Nie rzadziej niż raz na rok.
D. W terminach planowanych postojów technologicznych nawijalni.
Odpowiedź "W terminach przewidzianych dla przeglądu nawijarki." jest poprawna, ponieważ przegląd techniczny silnika wbudowanego w nawijarkę powinien być synchronizowany z harmonogramem przeglądów całej maszyny. Zgodnie z przepisami prawa oraz normami branżowymi, wszystkie elementy maszyny, w tym silniki, muszą być regularnie sprawdzane w celu zapewnienia ich niezawodności i bezpieczeństwa. Przykładowo, w przemyśle produkcyjnym, przeprowadzanie przeglądów w zgodzie z harmonogramem dla całej maszyny pomaga nie tylko w identyfikacji potencjalnych usterek, ale także w planowaniu przestojów, co wpływa na efektywność procesów produkcyjnych. Dobre praktyki w zakresie utrzymania ruchu sugerują, że wszelkie działania konserwacyjne powinny być skoordynowane z przeglądami nawijarki, aby zminimalizować czas przestoju i koszty eksploatacji. W rezultacie, regularne przeglądy techniczne zwiększają trwałość maszyny oraz bezpieczeństwo jej użytkowania.

Pytanie 17

Jaką wartość prądu znamionowego powinien posiadać wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz Py = 2,4 kW przed zwarciem?

A. 10A
B. 16A
C. 6A
D. 20A
Wybór wyłącznika instalacyjnego nadprądowego o charakterystyce typu B do zabezpieczenia grzejnika jednofazowego o parametrach U<sub>N</sub> = 230 V i P<sub>y</sub> = 2,4 kW jest kluczowy dla prawidłowego działania instalacji elektrycznej. Obliczając wartość prądu znamionowego, korzystamy ze wzoru: I = P / U, gdzie P to moc grzejnika, a U to napięcie zasilania. Zatem I = 2400 W / 230 V = 10,43 A. Wyłącznik nadprądowy powinien mieć wartość prądu znamionowego większą od prądu obliczonego, co w praktyce oznacza, że dla tego zastosowania odpowiedni będzie wyłącznik 16A, który pozwoli na swobodne działanie urządzenia, nie wyzwalając w normalnych warunkach pracy. Wyłączniki instalacyjne charakteryzujące się typem B są przeznaczone do ochrony obwodów zawierających urządzenia o charakterze rezystancyjnym, co jest typowe dla grzejników. Użycie wyłącznika o odpowiedniej charakterystyce minimalizuje ryzyko uszkodzeń instalacji elektrycznej oraz pożarów. W praktyce oznacza to, że dobór 16A jest zgodny z obowiązującymi normami, co wpływa na bezpieczeństwo i wiarygodność całej instalacji.

Pytanie 18

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zastosować dodatkowy filtr harmonicznych
B. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
C. Zwiększyć napięcie zasilające
D. Zwiększyć długość przewodów zasilających
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 19

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B16
B. C10
C. C16
D. B10
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy typu B charakteryzuje się zdolnością do wykrywania przeciążeń oraz zwarć w instalacjach elektrycznych. Przy impedancji pętli zwarcia Z = 4,2 Ω, wyłącznik B10 zapewnia odpowiednią ochronę przeciwporażeniową, gdyż jego prąd znamionowy wynosi 10 A. W sytuacji zwarcia, czas reakcji wyłącznika jest kluczowy dla bezpieczeństwa, a wyłącznik typu B zadziała przy prądzie zwarciowym w granicach 3 do 5 krotności prądu znamionowego. Przykładowo, dla prądu zwarciowego rzędu 30 A, wyłącznik ten zadziała w czasie wystarczającym, by zminimalizować ryzyko uszkodzenia instalacji oraz zapobiec porażeniom. Zgodnie z normami, takimi jak PN-EN 60898, dobór wyłącznika powinien być dostosowany do warunków pracy oraz charakterystyki obciążenia, co potwierdza wybór B10 jako właściwy. Dodatkowo, stosowanie wyłączników nadprądowych zgodnych z obowiązującymi regulacjami sprzyja utrzymaniu wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 20

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
B. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
C. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
D. Zmierzyć ciągłość przewodów ochronnych PE
Sprawdzanie działania wyłącznika RCD przy pomocy przycisku 'TEST' nie rozwiązuje problemu z wysoką wartością impedancji pętli zwarcia, a jedynie testuje funkcjonalność samego urządzenia. Wyłączniki RCD mają na celu ochronę przed porażeniem prądem elektrycznym, ale ich sprawność nie wpływa bezpośrednio na impedancję pętli zwarcia. Wartość impedancji pętli zwarcia jest krytycznym parametrem, który powinien mieścić się w określonych granicach, aby zapewnić, że zabezpieczenia, takie jak bezpieczniki lub wyłączniki, zadziałają w odpowiednim czasie w przypadku zwarcia. Testy rezystancji izolacji przewodów, choć istotne, nie są bezpośrednio związane z problemem impedancji pętli zwarcia, ponieważ koncentrują się na integralności izolacji, a nie na połączeniach. Z kolei pomiar ciągłości przewodów ochronnych PE, choć ważny, nie identyfikuje potencjalnych problemów z połączeniami wewnętrznymi obwodu, które mogą być źródłem wysokiej impedancji. Niestety, często dochodzi do mylnego przekonania, że pojedyncze testy mogą kompleksowo rozwiązać problem, podczas gdy kluczowe jest zdiagnozowanie i nawiązanie do przyczyn wysokiej impedancji, które mogą wynikać z wielu czynników, w tym właśnie z nieprawidłowych połączeń elektrycznych.

Pytanie 21

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Podnapięciowego.
B. Podczęstotliwościowego.
C. Nadnapięciowego.
D. Nadprądowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przekaźnika podnapięciowego jest istotnym elementem w projektowaniu systemów elektrycznych i automatyki. Oznaczenie "U" wewnątrz prostokąta wskazuje, że przekaźnik działa w odpowiedzi na spadek napięcia poniżej ustalonego poziomu. Przekaźniki podnapięciowe są używane do ochrony urządzeń przed niewłaściwym działaniem spowodowanym niskim napięciem, co może prowadzić do uszkodzenia elementów elektronicznych lub niestabilnej pracy systemu. Przykłady zastosowania obejmują systemy zasilania, w których kluczowe jest utrzymanie napięcia w odpowiednich granicach, na przykład w zasilaczach UPS, gdzie przekaźnik może odłączyć obciążenie w przypadku spadku napięcia. Zgodnie z normą IEC 60947-5-1, przekaźniki te powinny być używane w odpowiednich warunkach, aby zapewnić bezpieczeństwo i niezawodność działania. Zrozumienie symboliki i działania przekaźników podnapięciowych jest fundamentem w dziedzinie elektrotechniki i automatyki, co podkreśla ich znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 22

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 23

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O przekroju dwa razy mniejszym, połączonymi szeregowo
B. O przekroju dwa razy mniejszym, połączonymi równolegle
C. O średnicy dwa razy mniejszej, połączonymi równolegle
D. O średnicy dwa razy mniejszej, połączonymi szeregowo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która sugeruje użycie drutu o przekroju dwa razy mniejszym, połączonym równolegle, jest prawidłowa ze względu na zasadę zachowania impedancji w transformatorach. Gdy zmniejszamy pole przekroju poprzecznego drutu nawojowego, zwiększa się jego oporność, co negatywnie wpływa na zdolność przewodzenia prądu. Aby zrekompensować tę utratę, łączenie dwóch lub więcej drutów równolegle pozwala na zwiększenie efektywnej powierzchni przekroju poprzecznego, co przeciwdziała wzrostowi oporności. W praktyce takie podejście jest zgodne z normami stosowanymi w rewitalizacji transformatorów, gdzie zachowanie parametrów elektrycznych jest kluczowe dla ich dalszego funkcjonowania. Dodatkowo, przy odpowiednim doborze materiałów izolacyjnych oraz średnicy drutów, można uzyskać wydajność bliską oryginalnym wartościom. Przykładem może być przezwojenie transformatora w elektrowniach, gdzie zastosowanie drutów o mniejszych średnicach, połączonych równolegle, skutkuje poprawą funkcjonowania urządzenia, a także wpływa na obniżenie kosztów materiałów. Takie praktyki są szeroko przyjęte w branży, co potwierdzają liczne publikacje i normy techniczne.

Pytanie 24

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Bezpiecznik typu aR
C. Wyłącznik nadprądowy typu Z
D. Wyłącznik nadprądowy typu B

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 25

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. ciągłej
B. dorywczej
C. przerywanej
D. nieokresowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie S1 na tabliczce znamionowej silnika trójfazowego mówi nam, że ten silnik jest stworzony do pracy ciągłej. To znaczy, że powinien działać bez przerwy i w pełnym obciążeniu przez dłuższy czas. Takie silniki są projektowane według normy IEC 60034-1, która określa różne klasy i tryby pracy silników elektrycznych. Silniki oznaczone jako S1 są często używane w różnych branżach przemysłowych, jak pompy, wentylatory czy kompresory. Tutaj stała, niezawodna praca jest bardzo ważna. Na przykład, w systemach HVAC wentylatory muszą działać non-stop, żeby utrzymać dobrą cyrkulację powietrza. Silniki S1 to także gwarancja dłuższej żywotności i lepszej efektywności energetycznej, co jak najbardziej wpisuje się w dobre praktyki inżynieryjne i normy ochrony środowiska. Co więcej, zazwyczaj są objęte gwarancją, co jeszcze bardziej podkreśla ich niezawodność w zastosowaniach wymagających ciągłej pracy.

Pytanie 26

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Amperomierz oraz woltomierz
B. Amperomierz oraz watomierz
C. Woltomierz oraz omomierz
D. Woltomierz oraz watomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby wyznaczyć rezystancję uzwojeń transformatora średniej mocy, kluczowe jest zastosowanie amperomierza i woltomierza. Amperomierz służy do pomiaru prądu płynącego przez uzwojenie, natomiast woltomierz mierzy napięcie na tym uzwojeniu. Zgodnie z prawem Ohma, rezystancję można obliczyć, dzieląc zmierzone napięcie przez zmierzony prąd (R = U/I). Takie podejście jest nie tylko zgodne z dobrymi praktykami inżynieryjnymi, ale również spełnia standardy zawarte w normach IEC dotyczących testowania transformatorów. W praktyce, w trakcie pomiarów, należy upewnić się, że wszystkie urządzenia są odpowiednio skalibrowane i przystosowane do zakresu mocy transformatora, co zapewni dokładność wyników. Ponadto, pomiary powinny być przeprowadzane w warunkach stabilnych, aby uniknąć zakłóceń mogących wpływać na dokładność odczytów. Takie procedury mogą być kluczowe dla oceny stanu technicznego transformatora oraz jego efektywności energetycznej.

Pytanie 27

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Samoczynnego szybkiego wyłączenia napięcia
B. Instalowania osłon i barier
C. Umieszczenia elementów z napięciem poza zasięgiem ręki
D. Izolowania części czynnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 28

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Realizowanie przeglądów niewymagających demontażu
B. Włączanie i wyłączanie urządzeń
C. Przeprowadzanie oględzin wymagających demontażu
D. Monitorowanie urządzeń w trakcie pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 29

W szlifierce uszkodzony został wirnik. Na rysunku z dokumentacji techniczno-ruchowej jest on oznaczony numerem

Ilustracja do pytania
A. 12
B. 9
C. 50
D. 35

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 9 jest prawidłowa, ponieważ na załączonym rysunku z dokumentacji techniczno-ruchowej szlifierki wirnik został oznaczony numerem 9. Wirnik jest kluczowym elementem silnika elektrycznego, którego właściwe funkcjonowanie jest niezbędne dla prawidłowej pracy szlifierki. Wirnik, obracając się, wytwarza pole elektromagnetyczne, które napędza obrót narzędzia szlifierskiego. Zrozumienie oznaczeń w dokumentacji technicznej jest niezbędne dla efektywnej diagnostyki i konserwacji maszyn. W praktyce, gdy dochodzi do uszkodzenia wirnika, konieczne jest jego dokładne zidentyfikowanie w dokumentacji, co umożliwia szybkie zamówienie odpowiednich części zamiennych i wykonanie naprawy. Warto również pamiętać, że zgodnie z normami branżowymi, regularne przeglądy i konserwacja wirników w urządzeniach szlifierskich są kluczowe dla zapewnienia ich długowieczności oraz bezpieczeństwa użytkowania. W przypadku problemów z wirnikiem, jego wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta, co pozwoli na uniknięcie dalszych uszkodzeń oraz gwarancji efektywności działania szlifierki.

Pytanie 30

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Zwiększa zakres pomiarowy woltomierza
B. Daje możliwość zdalnego pomiaru energii elektrycznej
C. Umożliwia pomiar upływu prądu przez izolację
D. Poszerza zakres pomiarowy amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Boczniki rezystancyjne są kluczowym elementem w pomiarach prądowych, ponieważ umożliwiają rozszerzenie zakresu pomiarowego amperomierzy, co jest szczególnie ważne w przypadku pomiarów dużych prądów. Działają na zasadzie dzielenia prądu na mniejsze wartości, co pozwala na precyzyjniejsze pomiary oraz ochronę urządzenia pomiarowego przed uszkodzeniem. Przykładem zastosowania bocznika rezystancyjnego może być pomiar prądów w instalacjach przemysłowych, gdzie wartości prądów mogą znacznie przekraczać możliwości standardowych amperomierzy. Dzięki zastosowaniu bocznika, możliwe jest przekształcenie dużych prądów na mniejsze napięcia, które mogą być bezpiecznie zmierzone. Dobrze zaprojektowane boczniki powinny być zgodne z normami, takimi jak IEC 61010, co zapewnia ich bezpieczeństwo i niezawodność w trudnych warunkach pracy. Właściwy dobór bocznika oraz jego parametry, takie jak wartość rezystancji i moc, mają kluczowe znaczenie dla dokładności pomiarów i ochrony urządzeń, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 31

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
B. Ocena czystości filtrów powietrza chłodzącego
C. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
D. Kontrola połączeń stykowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 32

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 0,4 s
B. 0,1 s
C. 0,2 s
D. 5,0 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 33

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. separację elektryczną
B. wyłącznie specjalne ogrodzenia
C. umiejscowienie poza zasięgiem ręki
D. jedynie obudowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 34

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Pancerza stalowego
B. Zewnętrznego oplotu włóknistego
C. Żył aluminiowych
D. Powłoki polietylenowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 35

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. PKZM01 – 1
B. PKZM01 – 0,63
C. MMS-32S – 1,6A
D. MMS-32S – 4A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie wyłącznika silnikowego PKZM01 – 1 jest najlepszym rozwiązaniem do zabezpieczenia silnika o prądzie znamionowym 0,69 A. Wyłącznik ten ma prąd znamionowy 1 A, co zapewnia odpowiednią ochronę przed przeciążeniem silnika. Zgodnie z normą IEC 60947-4-1, wyłączniki silnikowe powinny być dobrane tak, aby ich prąd znamionowy był nieco wyższy od prądu znamionowego chronionego urządzenia, co pozwala na uniknięcie fałszywych wyłączeń przy normalnej pracy. Dodatkowo, wyłącznik PKZM01 – 1 posiada funkcję zabezpieczenia przed zwarciem i przeciążeniem, co jest kluczowe w kontekście długoterminowej niezawodności układów elektrycznych. W praktyce, użycie tego typu wyłącznika pozwala nie tylko na zabezpieczenie silnika, ale także na zwiększenie trwałości instalacji, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej. Warto również dodać, że wybierając odpowiedni wyłącznik, należy wziąć pod uwagę charakterystykę obciążenia, co pozwala na minimalizację ryzyka uszkodzeń w systemie.

Pytanie 36

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 4 mm²
B. 2,5 mm²
C. 1,5 mm²
D. 1 mm²

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 37

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 1,2
B. 2,0
C. 0,9
D. 1,1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 38

Uzwojenie pierwotne transformatora jednofazowego jest zrobione z drutu nawojowego

A. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i wyższej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i niższej liczbie zwojów niż uzwojenie wtórne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uzwojenie pierwotne transformatora jednofazowego rzeczywiście jest wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne. Ta konstrukcja jest kluczowa w kontekście działania transformatora, ponieważ umożliwia efektywną indukcję elektromagnetyczną. Uzwojenie pierwotne, mając więcej zwojów, generuje silniejsze pole magnetyczne w rdzeniu transformatora, co sprzyja przekazywaniu energii do uzwojenia wtórnego. Dodatkowo zastosowanie cieńszego drutu zmniejsza straty energii związane z oporem elektrycznym, co jest zgodne z dobrymi praktykami projektowania transformatorów. Przykładowo, w transformatorach niskonapięciowych, takich jak te stosowane w zasilaczach, kluczowe jest, aby uzwojenie pierwotne miało odpowiednią liczbę zwojów, co pozwala na uzyskanie pożądanej wartości napięcia wyjściowego na uzwojeniu wtórnym, zgodnie z zasadą transformacji napięcia, opisaną wzorem: U1/U2 = N1/N2, gdzie U to napięcie, a N to liczba zwojów.

Pytanie 39

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Przed zwarciem i przeciążeniem
B. Przed przepięciem i przeciążeniem
C. Wyłącznie przed zwarciem
D. Wyłącznie przed przeciążeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe typu aM są zaprojektowane z myślą o ochronie przed zwarciem, co oznacza, że ich głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalone wartości, co może prowadzić do niebezpiecznych sytuacji. W przypadku zwarcia, prąd może gwałtownie wzrosnąć, co skutkuje dużym ryzykiem uszkodzenia instalacji oraz odbiorników. Zastosowanie wkładek topikowych aM jest zgodne z normami PN-EN 60269, które określają wymagania dla zabezpieczeń w obwodach elektrycznych. Warto pamiętać, że wkładki te nie chronią bezpośrednio przed przeciążeniem, które jest spowodowane długotrwałym przepływem prądu przekraczającym nominalne wartości, lecz jest regulowane przez inne mechanizmy zabezpieczające. Przykładem zastosowania wkładek aM jest ich użycie w obwodach zasilających silniki elektryczne, gdzie ochrona przed zwarciami jest kluczowa dla uniknięcia poważnych uszkodzeń.

Pytanie 40

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 2 lata
B. 1 rok
C. 3 lata
D. 4 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.