Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 grudnia 2025 22:17
  • Data zakończenia: 8 grudnia 2025 22:28

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

NOWY, GOTOWY, OCZEKUJĄCY oraz AKTYWNY to

A. etapy życia projektowanej aplikacji.
B. stany programu.
C. cechy wykwalifikowanego pracownika.
D. stany procesu.
Rozumienie stanów procesu to kluczowa sprawa w systemach operacyjnych, ale często ludzie mylą je z innymi tematami. Na przykład, jeżeli ktoś pisze o stanach programu czy o tym, jakie cechy powinien mieć dobry pracownik, to tak naprawdę nie trafia w istotę rzeczy. Stan programu to coś innego, chodzi o to, jak on działa, a nie jak przechodzi między fazami w systemie. Te cechy pracownika są ważne, ale bardziej w kontekście zarządzania ludźmi, a nie technicznych detali zarządzania procesami. A te etapy życia aplikacji, jak analiza czy projektowanie, odnoszą się do cyklu życia oprogramowania, a nie bezpośrednio do stanów procesów. Często ludzie mylą te pojęcia, co prowadzi do błędnych wniosków. W systemach operacyjnych najważniejsze jest zrozumienie, jak procesy działają, co pozwala na lepsze planowanie i przydzielanie zasobów oraz wpływa na wydajność całego systemu.

Pytanie 2

W dokumentacji technicznej procesora producent zamieścił wyniki analizy zrealizowanej przy użyciu programu CPU-Z. Z tych informacji wynika, że procesor dysponuje

Ilustracja do pytania
A. 5 rdzeni
B. 6 rdzeni
C. 4 rdzenie
D. 2 rdzenie
Wybierając odpowiedź inną niż procesor z 2 rdzeniami, można wpaść w pułapkę myślową, zakładając, że większa liczba rdzeni zawsze oznacza lepszą wydajność. Choć procesory z większą liczbą rdzeni, jak te z 4, 5 czy 6 rdzeniami, są często bardziej wydajne w zadaniach wielowątkowych, to niekoniecznie są one optymalne dla wszystkich użytkowników. Wiele aplikacji, zwłaszcza tych codziennych, takich jak przeglądarki internetowe czy programy biurowe, nie wykorzystuje pełni możliwości większej liczby rdzeni. Oczywiście, w przypadku bardziej zaawansowanych zadań, takich jak renderowanie grafiki 3D czy zaawansowane obliczenia, większa liczba rdzeni może przynieść realne korzyści. Jednakże, należy pamiętać, że każdy rdzeń to dodatkowe zużycie energii i generowanie ciepła, co może wpływać na żywotność urządzenia i jego architekturę chłodzenia. W dodatku, wiele starszych systemów operacyjnych oraz aplikacji nie jest zoptymalizowanych pod kątem obsługiwania więcej niż 2 rdzeni, co sprawia, że potencjalne korzyści z większej liczby rdzeni mogą nie być w pełni wykorzystywane. W związku z tym, wybór procesora powinien być świadomy i dopasowany do rzeczywistych potrzeb, uwzględniając zarówno rodzaj zadań, jakie będą realizowane, jak i efektywność energetyczną oraz budżet użytkownika. W praktyce wybór procesora to balans pomiędzy ilością rdzeni, częstotliwością taktowania i innymi parametrami, które muszą być dostosowane do specyfiki zastosowań. Dlatego też, dla wielu użytkowników, procesory dwurdzeniowe z technologią Hyper-Threading, takie jak Intel Core i5 650, są wystarczające do codziennych potrzeb, oferując przy tym korzystny stosunek ceny do wydajności.

Pytanie 3

Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD mogą spowodować uszkodzenie

A. inwertera oraz podświetlania matrycy.
B. przewodów sygnałowych.
C. przycisków znajdujących na panelu monitora.
D. układu odchylania poziomego.
Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD to dość częsty widok, zwłaszcza w starszych modelach albo tam, gdzie zastosowano elementy gorszej jakości. Elektrolity w zasilaczach odpowiadają za filtrowanie napięcia, eliminowanie zakłóceń i stabilizację zasilania dla różnych układów monitora. Gdy się wybrzuszają, ich pojemność spada, pojawiają się prądy upływu, a napięcie staje się coraz bardziej niestabilne. To właśnie inwerter i układ podświetlania matrycy są najbardziej wrażliwe na takie wahania – pracują na wyższych napięciach, wymagają stabilnych parametrów i jeśli coś pójdzie nie tak, potrafią bardzo szybko ulec awarii. W praktyce, z mojego doświadczenia serwisowego, bardzo wiele monitorów LCD z ciemnym ekranem czy migającym podświetleniem miało właśnie uszkodzone kondensatory w zasilaczu. Czasami wymiana kilku takich elementów przywraca monitor do życia bez potrzeby wymiany droższych części. Warto pamiętać, że w standardach naprawczych zaleca się zawsze sprawdzenie kondensatorów w pierwszej kolejności przy problemach z podświetleniem. To naprawdę typowy przypadek i ważna umiejętność dla każdego technika – rozpoznawać objawy i kojarzyć je z uszkodzeniami sekcji zasilania, a nie od razu podejrzewać matrycę lub płytę główną. Gdy kondensatory są spuchnięte, napięcia zasilające inwerter stają się niestabilne, przez co inwerter albo w ogóle nie startuje, albo uszkadza się z czasem. Technicy dobrze wiedzą, że przy pierwszych objawach problemów z podświetleniem warto zerknąć na płytę zasilacza i szukać właśnie takich objawów.

Pytanie 4

Kabel typu skrętka, w którym pojedyncza para żył jest pokryta folią, a całość kabla jest osłonięta ekranem z folii i siatki, oznacza się symbolem

A. SF/UTP
B. SF/FTP
C. U/UTP
D. U/FTP
Odpowiedź SF/FTP jest prawidłowa, ponieważ oznacza kabel typu skrętka, w którym każda para żył jest dodatkowo izolowana folią, a cały kabel jest osłonięty ekranem z folii i siatki. Skrót SF oznacza 'Shielded Foiled', co wskazuje na ekranowanie zarówno na poziomie poszczególnych par, jak i na poziomie całego kabla. Tego rodzaju konstrukcja pozwala na znaczne ograniczenie zakłóceń elektromagnetycznych, co jest kluczowe w zastosowaniach, gdzie stabilność i jakość sygnału są niezbędne, takich jak sieci komputerowe w biurach lub systemy telekomunikacyjne. Kabel SF/FTP jest idealny do instalacji w miejscach z dużym natężeniem zakłóceń, takich jak blisko urządzeń elektronicznych czy w obszarach przemysłowych. Zgodnie z normami ISO/IEC 11801 oraz ANSI/TIA-568, stosowanie ekranowanych kabli w środowiskach o wysokim poziomie interferencji jest zalecane, co czyni ten typ kabla popularnym w nowoczesnych instalacjach sieciowych.

Pytanie 5

Jaki symbol urządzenia jest pokazany przez strzałkę na rysunku?

Ilustracja do pytania
A. Koncentratora
B. Routera
C. Przełącznika
D. Serwera
Router to takie urządzenie, które pomaga kierować danymi między różnymi sieciami. W sumie to jego główna rola – znaleźć najlepszą trasę dla danych, które przelatują przez sieć. Router patrzy na nagłówki pakietów i korzysta z tablicy routingu, żeby wiedzieć, gdzie te dane mają iść dalej. Jest mega ważny, bo łączy różne lokalne sieci LAN z większymi sieciami WAN, co pozwala im się komunikować. Dzięki temu ruch sieciowy jest lepiej zarządzany, co zmniejsza opóźnienia i sprawia, że wszystko działa sprawniej. Routery mogą robić też różne sztuczki, np. routing statyczny i dynamiczny – ten dynamiczny, jak OSPF czy BGP, pozwala na automatyczne aktualizacje tablicy routingu, gdy coś się zmienia w sieci. W praktyce, routery są kluczowe w firmach i w domach, nie tylko do przesyłania danych, ale też do zapewnienia bezpieczeństwa, jak NAT czy firewalle, co jest ważne w dzisiejszych czasach z tyloma zagrożeniami.

Pytanie 6

Urządzenie sieciowe, które widoczna jest na ilustracji, to

Ilustracja do pytania
A. konwerter mediów
B. przełącznik
C. firewall
D. router
Pierwszym błędnym podejściem jest zaklasyfikowanie urządzenia jako konwertera mediów. Konwertery mediów są specjalistycznymi urządzeniami stosowanymi do zamiany jednego typu medium transmisyjnego na inny, np. z miedzianego przewodu Ethernet na światłowód. Nie zarządzają one ruchem sieciowym na poziomie IP, jak to robią routery. Konwertery mediów działają na warstwie fizycznej modelu OSI, co wyklucza ich jako odpowiedź w tym przypadku. Innym błędnym rozważaniem jest uznanie urządzenia za firewall. Firewalle działają na różnych poziomach modelu OSI, ale ich podstawowym zadaniem jest filtrowanie ruchu i ochrona sieci przed nieautoryzowanym dostępem. Chociaż niektóre nowoczesne routery mogą mieć wbudowane funkcje firewalla, ich główną funkcją jest routing, a nie zabezpieczanie sieci. Przełącznik natomiast operuje na drugiej warstwie modelu OSI i jego zadaniem jest przekazywanie ramek danych w obrębie jednej sieci lokalnej na podstawie adresów MAC. Przełączniki nie zarządzają ruchem między różnymi sieciami, co jest kluczową funkcją routera. Wybór innych odpowiedzi niż router wynika z nieporozumienia dotyczącego funkcji poszczególnych urządzeń sieciowych oraz ich miejsca w infrastrukturze sieciowej, co jest fundamentalną wiedzą w dziedzinie IT.

Pytanie 7

Jakiego typu dane są przesyłane przez interfejs komputera osobistego, jak pokazano na ilustracji?

Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
stopu
A. Równoległy synchroniczny
B. Szeregowy synchroniczny
C. Szeregowy asynchroniczny
D. Równoległy asynchroniczny
Transmisja danych przez interfejs równoległy asynchroniczny wymaga przesyłania kilku bitów jednocześnie co jest realizowane za pomocą wielu linii sygnałowych W ten sposób dane są przesyłane szybciej niż w przypadku interfejsów szeregowych jednak wymaga to synchronizacji wszystkich linii co jest bardziej skomplikowane i kosztowne Podczas gdy ten typ transmisji był popularny w starszych drukarkach i innych urządzeniach peryferyjnych dzisiaj jest rzadziej stosowany ze względu na wysoki koszt opracowania i utrzymania Transmisja szeregowa synchroniczna różni się od asynchronicznej tym że wymaga synchronizacji zegara pomiędzy nadajnikiem a odbiornikiem Oznacza to że zarówno urządzenie przesyłające jak i odbierające muszą dokładnie zsynchronizować swoje zegary aby zagwarantować poprawność danych Choć zwiększa to skuteczność i szybkość transmisji wymaga to dodatkowych linii do przesyłania sygnału zegara co powoduje większe komplikacje w budowie urządzeń Przykładem może być SPI lub I2C które choć efektywne są bardziej skomplikowane niż transmisja szeregowa asynchroniczna Równoległa transmisja synchroniczna to najbardziej zaawansowany typ transmisji jednocześnie przesyłający wiele bitów z pełną synchronizacją zegara Umożliwia to błyskawiczne przesyłanie dużych ilości danych na krótkich dystansach jednak jej koszt zarówno w projektowaniu jak i produkcji jest znaczny co powoduje że jest rzadko stosowana w standardowych interfejsach komputerowych Te różne podejścia choć mają swoje zalety są często trudniejsze do implementacji i mniej praktyczne niż proste i szeroko stosowane interfejsy szeregowe asynchroniczne które oferują wystarczającą szybkość i niezawodność dla większości zastosowań

Pytanie 8

Drukarka została zainstalowana w systemie z rodziny Windows. Aby skonfigurować m.in. domyślną orientację druku, ilość stron na arkusz oraz kolory, w trakcie jej ustawiania należy skorzystać z opcji

A. udostępniania urządzenia
B. ochrony drukarki
C. uprawnień do drukowania
D. preferencji drukowania
Zabezpieczenia drukarki nie mają związku z konfiguracją ustawień wydruku. Skupiają się one głównie na zapewnieniu bezpieczeństwa przesyłanych danych oraz ochronie dostępu do urządzenia. Użytkownicy mogą mylić te opcje, myśląc, że zabezpieczenia mogą wpływać na efektywność wydruku, jednak są one istotne jedynie w kontekście ochrony prywatności i danych. Problem z udostępnianiem drukarki dotyczy przede wszystkim sytuacji, w których drukarka ma być współdzielona przez wielu użytkowników w sieci. Opcje te koncentrują się na konfiguracji dostępu oraz uprawnień użytkowników, a nie na indywidualnych preferencjach dotyczących ustawień wydruku. W kontekście praw drukowania, odnosi się to do uprawnień nadawanych poszczególnym użytkownikom, co również nie wpływa na konkretne ustawienia wydruku. Często pojawia się nieporozumienie, że prawa drukowania i preferencje drukowania są tożsame, jednak różnią się one zasadniczo, ponieważ pierwsze dotyczą autoryzacji użytkowników, a drugie odnoszą się do technicznych aspektów samego procesu wydruku. To prowadzi do błędnych wniosków dotyczących zarządzania ustawieniami drukarki, ponieważ nie wszystkie aspekty konfiguracji są ze sobą powiązane. Zrozumienie tego podziału jest kluczowe dla prawidłowej obsługi drukarki oraz wykorzystania jej możliwości w sposób, który przyczyni się do zwiększenia efektywności pracy.

Pytanie 9

W systemie Windows, po wydaniu komendy systeminfo, nie da się uzyskać danych o

A. ilości procesorów
B. zainstalowanych aktualizacjach
C. podłączonych kartach sieciowych
D. liczbie partycji podstawowych
Wszystkie wymienione odpowiedzi, z wyjątkiem liczby partycji podstawowych, są informacjami, które można uzyskać za pomocą polecenia systeminfo. Zainstalowane poprawki są kluczowe dla utrzymania bezpieczeństwa i stabilności systemu. Systeminfo wyświetla szczegóły dotyczące każdej zainstalowanej poprawki, co pozwala administratorom na monitorowanie i zarządzanie aktualizacjami. Ponadto informacja o liczbie procesorów jest istotna dla analizy wydajności systemu. Systeminfo pokazuje liczbę rdzeni oraz wątków, co jest niezbędne przy ocenie możliwości sprzętowych. Zamontowane karty sieciowe są także kluczowym elementem konfiguracji systemu. Biorąc pod uwagę, że sieciowy dostęp do zasobów oraz ich efektywne zarządzanie jest fundamentem pracy w nowoczesnym środowisku komputerowym, administratorzy muszą mieć świadomość, które karty sieciowe są aktywne i jak są skonfigurowane. Często można się spotkać z mylnym przekonaniem, że wszystkie dostępne dane powinny być dostępne w pojedynczym narzędziu. W rzeczywistości jednak, polecenie systeminfo ma swoje ograniczenia i nie dostarcza informacji na temat partycji, co jest ważnym aspektem, który można zbadać przy użyciu innych narzędzi administracyjnych. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat stanu dysków i ich struktury.

Pytanie 10

Interfejs UDMA to interfejs

A. równoległy, wykorzystywany między innymi do podłączania kina domowego do komputera.
B. szeregowy, który służy do wymiany danych pomiędzy pamięcią RAM a dyskami twardymi.
C. równoległy, który został zastąpiony przez interfejs SATA.
D. szeregowy, używany do podłączania urządzeń wejścia.
Interfejs UDMA (Ultra Direct Memory Access) to rozwiązanie, które przez dłuższy czas było standardem w komputerach klasy PC, zwłaszcza do podłączania dysków twardych i napędów optycznych przy użyciu taśm ATA/IDE. UDMA to interfejs równoległy – dane przesyłane były wieloma przewodami jednocześnie, co w tamtym czasie pozwalało na osiągnięcie całkiem sporych prędkości transferu, nawet do 133 MB/s w wersji UDMA 6 (Ultra ATA/133). Jednak wraz z rozwojem technologii, pojawiły się szeregowe interfejsy takie jak SATA, które są mniej podatne na zakłócenia elektromagnetyczne i umożliwiają wygodniejsze prowadzenie przewodów oraz wyższe prędkości. Moim zdaniem warto znać historię UDMA, a nawet czasem spotyka się jeszcze starsze komputery lub sprzęt przemysłowy z tym interfejsem – wtedy wiedza o nim jest bardzo przydatna przy serwisie. W praktyce UDMA wymagał stosowania 80-żyłowych taśm, gdzie połowa przewodów była wykorzystywana do uziemienia i ochrony sygnału. To pokazuje, jak równoległość przesyłu wymuszała dodatkowe zabiegi techniczne. Dla porównania, SATA, który go zastąpił, przesyła dane tylko dwoma przewodami (plus masa), co jest dużo prostsze. No i jeszcze jedno – UDMA był typowo używany właśnie do dysków ATA, a jego obsługa wymagała wsparcia zarówno ze strony płyty głównej, jak i systemu operacyjnego. W skrócie: UDMA to interfejs równoległy, który dziś już praktycznie całkiem ustąpił szeregowej magistrali SATA. Warto o tym pamiętać, bo czasem można się jeszcze z nim spotkać, np. podczas modernizacji starszych maszyn.

Pytanie 11

Jak można przywrócić domyślne ustawienia płyty głównej, gdy nie ma możliwości uruchomienia BIOS Setup?

A. przełożyć zworkę na płycie głównej
B. doładować baterię na płycie głównej
C. ponownie uruchomić system
D. zaktualizować BIOS Setup
Przełożenie zworki na płycie głównej to sprytny sposób, żeby przywrócić ustawienia fabryczne BIOS-u, zwłaszcza gdy nie możemy wejść do menu. Zworki to takie maleńkie złącza, które umożliwiają zmianę ustawień sprzętu, no i właśnie resetowanie BIOS-u. Żeby to zrobić, najpierw musisz znaleźć zworkę CMOS, zazwyczaj jest blisko baterii na płycie głównej. Cała procedura polega na przestawieniu zworki z pozycji normalnej na reset, a potem wrócisz do normalnej pozycji po kilku sekundach. Dzięki temu skasujesz wszelkie zmiany, które mogły być wcześniej wprowadzone, co jest przydatne, jak masz problemy z uruchomieniem komputera. Rekomenduję też zajrzeć do dokumentacji płyty głównej, żeby dobrze zlokalizować zworkę i wiedzieć, co do czego, bo to naprawdę może uprościć diagnostykę i naprawę.

Pytanie 12

W komputerze o parametrach przedstawionych w tabeli konieczna jest wymiana karty graficznej na kartę GeForce GTX 1070 Ti Titanium 8G DDR5, PCI EX-x16 3.0, 256b, 1683 MHz/1607 MHz, Power consumption 180W, 3x DP, 2x HDMI, recommended power supply 500W, DirectX 12, OpenGL 4.5. W związku z tym należy również zaktualizować

PodzespółParametryPobór mocy [W]
Procesor Intel i5Cores: 6, Threads: 6, 2.8 GHz, Tryb Turbo: 4.0 GHz, s-115130
Moduł pamięci DDR3Taktowanie: 1600 MHz, 8 GB (1x8 GB), CL 96
Monitor LCDPowłoka: matowa, LED, VGA x1, HDMI x1, DP x140
Mysz i klawiaturaprzewodowa, interfejs: USB2
Płyta główna2x PCI Ex-x16 3.0, D-Sub x1, USB 2.0 x2, RJ-45 x1, USB 3.1 gen 1 x4, DP x1, PS/2 x1, DDR3, s-1151, 4xDDR4 (Max: 64 GB)35
Karta graficzna3x DP, 1x DVI-D, 1x HDMI, 2 GB GDDR3150
Dysk twardy 7200 obr/min1 TB, SATA III (6 Gb/s), 64 MB16
ZasilaczMoc: 300W---
A. procesora
B. zasilacza
C. płyty głównej
D. karty sieciowej
Wymieniając kartę graficzną na GeForce GTX 1070 Ti Titanium 8G DDR5, trzeba na pewno zwrócić uwagę na to, ile energii cała konfiguracja będzie potrzebować. Ta karta ma pobór mocy na poziomie 180W, co jest całkiem sporo. Jak policzymy inne sprzęty, które też potrzebują energii – procesor 30W, pamięć 6W, monitor 40W, mysz i klawiaturę razem 2W, płyta główna 35W oraz stara karta graficzna 150W – to wychodzi nam razem 403W. Po dodaniu nowej karty, zasilacz powinien mieć przynajmniej 583W mocy. Zasilacz 300W nie da rady, bo to za mało. Dobrze jest mieć zapas mocy, tak z 20%, więc najlepiej pomyśleć o zasilaczu co najmniej 700W. Musisz wymienić zasilacz, żeby wszystko działało stabilnie, a sprzęt się nie uszkodził. Warto dobierać zasilacz tak, żeby nie tylko spełniał obecne wymagania, ale też żeby dało się później rozbudować komputer.

Pytanie 13

Magistrala PCI-Express wykorzystuje do transmisji danych metodę komunikacji

A. asynchronicznej Full duplex.
B. synchronicznej Half duplex.
C. asynchronicznej Simplex.
D. synchronicznej Full duplex.
Rozważając metody komunikacji w kontekście magistrali PCI-Express, łatwo wpaść w pułapkę myślenia o tradycyjnych rozwiązaniach znanych z wcześniejszych standardów, takich jak PCI czy AGP. Często można spotkać się z przekonaniem, że transmisja w takich systemach oparta jest na trybie synchronicznym, bo przecież zegar systemowy steruje całością – jednak PCIe działa trochę inaczej. Synchronizacja nie jest tu realizowana klasycznie jak w busach równoległych, a raczej przez bardziej złożone mechanizmy sygnalizacji szeregowej. Warianty typu Simplex czy Half duplex wydają się logiczne, bo w wielu sieciach komputerowych (np. Ethernet starszych generacji) rzeczywiście ogranicza nas jedna ścieżka dla obu kierunków transmisji lub konieczność naprzemiennego nadawania i odbioru. Jednak PCI-Express to rozwiązanie, gdzie na każdą linię (tzw. lane) przypadają osobne ścieżki dla wysyłania i odbierania sygnałów, co pozwala na pełną, dwukierunkową komunikację bez wzajemnych blokad. Brak asynchroniczności natomiast skutkowałby koniecznością bardzo ścisłej synchronizacji po stronie obu urządzeń, co ograniczałoby szybkość i skalowalność. Typowy błąd to utożsamianie „pełnego dupleksu” wyłącznie z transmisją synchroniczną. W rzeczywistości w PCIe nie ma jednego globalnego zegara, a komunikacja odbywa się za pomocą tzw. kodowania 8b/10b lub 128b/130b (w nowszych wersjach), z autonegocjacją parametrów sygnału. Z mojego doświadczenia wynika, że takie nieporozumienia biorą się z prób przenoszenia wiedzy ze starszych architektur na nowe technologie, co nie zawsze ma sens. Dla praktyka informatyków i elektroników kluczowe jest zapamiętanie, że PCIe korzysta z pełnego dupleksu na fizycznych, wydzielonych ścieżkach i nie wymaga ścisłego zsynchronizowania obu końców magistrali w tradycyjny sposób. Tylko takie podejście umożliwia współczesne prędkości i niezawodność transmisji.

Pytanie 14

Zamiana taśmy barwiącej wiąże się z eksploatacją drukarki

A. atramentowej
B. termicznej
C. laserowej
D. igłowej
Drukarki igłowe wykorzystują taśmy barwiące jako kluczowy element do reprodukcji tekstu i obrazów. W przeciwieństwie do drukarek laserowych czy atramentowych, które używają toneru czy atramentu, drukarki igłowe działają na zasadzie mechanicznego uderzenia igieł w taśmę barwiącą, co pozwala na przeniesienie atramentu na papier. Wymiana taśmy barwiącej jest konieczna, gdy jakość wydruku zaczyna się pogarszać, co może objawiać się niewyraźnym tekstem lub niedoborem koloru. Przykładem zastosowania drukarek igłowych są systemy księgowe, które wymagają wielokrotnego drukowania takich dokumentów jak faktury czy raporty, gdzie trwałość druku jest kluczowa. Dobre praktyki sugerują, aby regularnie kontrolować stan taśmy barwiącej oraz wymieniać ją zgodnie z zaleceniami producenta, co zapewnia optymalną jakość wydruków i wydajność sprzętu.

Pytanie 15

Jakie zakresy adresów IPv4 mogą być używane jako adresy prywatne w lokalnej sieci?

A. 168.172.0.0 ÷ 168.172.255.255
B. 127.0.0.0 ÷ 127.255.255.255
C. 172.16. 0.0 ÷ 172.31.255.255
D. 200.186.0.0 ÷ 200.186.255.255
Zakres adresów IPv4 od 172.16.0.0 do 172.31.255.255 jest jednym z trzech standardowo zarezerwowanych zakresów adresów prywatnych, które mogą być używane w sieciach lokalnych. Zgodnie z dokumentem RFC 1918, te adresy nie są routowane w Internecie, co oznacza, że ich użycie wewnątrz sieci lokalnej nie wpływa na globalny ruch internetowy. Przykład zastosowania to stworzenie lokalnej sieci w biurze, gdzie wszystkie urządzenia (komputery, drukarki, smartfony) mogą korzystać z adresów w tym zakresie. Dzięki temu możliwe jest zbudowanie infrastruktury sieciowej, która nie wymaga wykupu publicznych adresów IP, co może znacząco obniżyć koszty. Użycie prywatnych adresów IP wymaga jednak zastosowania mechanizmów, takich jak NAT (Network Address Translation), aby umożliwić dostęp tych urządzeń do Internetu. Warto zauważyć, że inne zarezerwowane zakresy adresów prywatnych to 10.0.0.0 do 10.255.255.255 oraz 192.168.0.0 do 192.168.255.255. Te standardy są powszechnie stosowane w praktyce, co sprawia, że ich znajomość jest kluczowa dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 16

Jakie polecenie umożliwia wyświetlanie oraz modyfikację tabel translacji adresów IP do adresów fizycznych?

A. EXPAND
B. MMC
C. ARP
D. PATH
ARP (Address Resolution Protocol) jest protokołem służącym do mapowania adresów IP na adresy MAC (Media Access Control) w sieciach lokalnych. Jego głównym celem jest umożliwienie komunikacji pomiędzy urządzeniami w sieci, które korzystają z różnych warstw modelu OSI. W przypadku, gdy urządzenie A chce wysłać dane do urządzenia B, musi najpierw znać adres MAC urządzenia B. Protokół ARP umożliwia nawiązanie tej relacji poprzez zapytanie sieci, które adresy MAC odpowiadają określonemu adresowi IP. Przykładowo, gdy komputer lokalizuje serwer w sieci, najpierw wysyła zapytanie ARP, aby dowiedzieć się, jaki adres MAC odpowiada jego IP. Zapytania ARP są kluczowe w operacjach takich jak DHCP (Dynamic Host Configuration Protocol) oraz w ogólnej komunikacji w sieciach Ethernet. Zastosowanie ARP jest zgodne z normami IETF, co czyni go standardowym i uznawanym rozwiązaniem w branży.

Pytanie 17

Na przedstawionym panelu tylnym płyty głównej znajdują się między innymi następujące interfejsy:

Ilustracja do pytania
A. 2 x USB 3.0; 2 x USB 2.0, 1.1; 2 x DP, 1 x DVI
B. 2 x USB 3.0; 4 x USB 2.0, 1.1; 1 x D-SUB
C. 2 x HDMI, 1 x D-SUB, 1 x RJ-11, 6 x USB 2.0
D. 2 x PS2; 1 x RJ45; 6 x USB 2.0, 1.1
Błędne odpowiedzi wynikają z niewłaściwego zrozumienia konfiguracji interfejsów na płycie głównej. Pierwsza odpowiedź sugeruje obecność 2 portów PS2 i 1 portu RJ45. Mimo że port RJ45 rzeczywiście jest obecny na zdjęciu, porty PS2 są zazwyczaj używane dla klawiatur i myszy starszego typu, co nie pasuje do przedstawionego panelu. Druga odpowiedź poprawnie identyfikuje porty i jest zgodna z rzeczywistą konfiguracją. Trzecia odpowiedź wskazuje na obecność 2 portów HDMI, portu D-SUB, portu RJ-11 oraz 6 portów USB 2.0. Porty HDMI pozwalają na cyfrowe połączenie z monitorami czy telewizorami, jednak takie interfejsy nie są widoczne na zdjęciu. Również port RJ-11, używany do połączeń telefonicznych, jest błędnie przedstawiony. Czwarta odpowiedź sugeruje 2 porty USB 3.0, 2 porty USB 2.0 oraz 2 porty DisplayPort i 1 port DVI. Porty DP i DVI oferują cyfrowe połączenia wideo, ale na obrazie widoczny jest jedynie analogowy port D-SUB. Zrozumienie różnorodności i przeznaczenia interfejsów płyty głównej jest kluczowe w kontekście kompatybilności sprzętowej oraz efektywnego wykorzystania dostępnych zasobów sprzętowych. Dobór odpowiednich złącz wpływa na funkcjonalność i przyszłą rozbudowę systemów komputerowych, co jest istotne z punktu widzenia planowania infrastruktury IT w środowiskach zawodowych. Profesjonalne projektowanie systemów wymaga uwzględnienia zarówno aktualnych, jak i przyszłych potrzeb użytkowników, co oznacza konieczność świadomego wyboru płyty głównej z odpowiednimi interfejsami.

Pytanie 18

Jakie urządzenie należy wykorzystać w sieci Ethernet, aby zredukować liczbę kolizji pakietów?

A. Bramkę VoIP
B. Przełącznik
C. Regenerator
D. Koncentrator
Przełącznik (switch) to urządzenie sieciowe, które działa na poziomie drugiego poziomu modelu OSI (warstwa łącza danych) i ma za zadanie przekazywanie ramek danych między różnymi urządzeniami w sieci Ethernet. Główną zaletą przełączników jest ich zdolność do tworzenia osobnych domen kolizji. Oznacza to, że każdy port przełącznika może działać jako odrębny kanał komunikacyjny, co znacznie minimalizuje ryzyko kolizji pakietów. Dzięki temu, w sieciach z dużym ruchem, przełączniki umożliwiają równoczesne przesyłanie danych przez wiele urządzeń bez zakłóceń. Przełączniki wykorzystują adresy MAC do zarządzania ruchem, co pozwala na efektywne kierowanie danych do odpowiednich odbiorców. W praktyce, wdrożenie przełączników w sieciach lokalnych (LAN) jest standardową praktyką, a ich użycie jest zgodne z normami IEEE 802.3, które definiują standardy dla Ethernetu. Używając przełączników, administratorzy sieci mogą nie tylko zwiększyć wydajność sieci, ale także uprościć zarządzanie ruchem i poprawić bezpieczeństwo poprzez segmentację sieci.

Pytanie 19

Jaką przepustowość określa standard Ethernet IEEE 802.3z?

A. 1Gb
B. 10Mb
C. 1GB
D. 100Mb
W przypadku odpowiedzi 1 Gb, należy zauważyć, że standard IEEE 802.3z dotyczy przepływności 100 Mb/s, a nie 1 Gb/s. W rzeczywistości 1 Gb/s jest zdefiniowany przez inny standard, znany jako Gigabit Ethernet (IEEE 802.3ab), który umożliwia znacznie szybsze przesyłanie danych, ale nie jest to właściwy kontekst dla pytania. Odpowiedzi 10 Mb i 1GB również są mylące. 10 Mb/s, znany jako Ethernet, to starsza technologia, która nie spełnia wymagań współczesnych aplikacji, a 1GB/s odnosi się do prędkości, która przekracza możliwości standardu IEEE 802.3z. Mylne przypisanie tych wartości do odpowiedniego standardu może prowadzić do nieporozumień w kontekście projektowania sieci. Kluczowym błędem myślowym jest nieznajomość ewolucji standardów Ethernet oraz ich zastosowań w praktyce. Często zdarza się, że inżynierowie sieciowi nie rozumieją różnic pomiędzy poszczególnymi standardami, co skutkuje nieefektywnym wykorzystaniem zasobów sieciowych oraz narastającymi problemami z wydajnością. Zrozumienie tych różnic jest kluczowe dla tworzenia efektywnych architektur sieciowych.

Pytanie 20

Co nie wpływa na utratę z pamięci masowej HDD?

A. Zniszczenie talerzy dysku.
B. Sformatowanie partycji dysku.
C. Utworzona macierz dyskowa RAID 5.
D. Fizyczne uszkodzenie dysku.
Wybranie odpowiedzi dotyczącej utworzenia macierzy dyskowej RAID 5 jako czynnika, który nie wpływa na utratę danych z pamięci masowej HDD, jest w pełni uzasadnione technicznie. RAID 5 to rodzaj macierzy zapasowej, która właśnie ma na celu zwiększenie bezpieczeństwa i dostępności danych, a nie ich utratę. W praktyce, kiedy tworzymy macierz RAID 5, dane są rozpraszane między kilkoma dyskami wraz z sumami kontrolnymi (parity), co pozwala na odtworzenie informacji nawet w przypadku awarii jednego z dysków fizycznych. Co ciekawe, w środowiskach serwerowych czy w centrach danych stosowanie RAID 5 jest standardem od lat – moim zdaniem to taki must-have w przypadku krytycznych danych, szczególnie gdy nie chcemy tracić informacji przez zwykłą awarię sprzętu. Oczywiście samo założenie RAID 5 nie powoduje usunięcia ani utraty danych z pojedynczego HDD, a wręcz przeciwnie – daje dodatkowy poziom ochrony. Warto pamiętać, że RAID 5 nie jest rozwiązaniem idealnym, bo nie chroni przed wszystkim (np. przypadkowym usunięciem plików czy atakami ransomware), ale do kwestii fizycznych i logicznych awarii to bardzo dobra praktyka. Z własnego doświadczenia wiem, że wiele firm wręcz wymaga stosowania macierzy RAID do ważnych danych. Podsumowując, RAID 5 to ochrona, a nie czynnik powodujący utratę danych. I tyle, taka prosta prawda z praktyki informatyków.

Pytanie 21

Schemat ilustruje ustawienia urządzenia WiFi. Wskaż, które z poniższych stwierdzeń na temat tej konfiguracji jest prawdziwe?

Ilustracja do pytania
A. Urządzenia w sieci posiadają adresy klasy A
B. Filtrowanie adresów MAC jest wyłączone
C. Obecnie w sieci WiFi działa 7 urządzeń
D. Dostęp do sieci bezprzewodowej jest ograniczony tylko do siedmiu urządzeń
Filtrowanie adresów MAC w sieciach WiFi jest techniką zabezpieczającą polegającą na ograniczaniu dostępu do sieci tylko dla urządzeń o określonych adresach MAC. W przypadku przedstawionej konfiguracji opcja filtrowania adresów MAC jest ustawiona na 'Disable', co oznacza, że filtrowanie adresów MAC jest wyłączone. Oznacza to, że wszystkie urządzenia mogą łączyć się z siecią, niezależnie od ich adresu MAC. W praktyce, wyłączenie filtrowania adresów MAC może być użyteczne w środowiskach, gdzie konieczne jest zapewnienie szerokiego dostępu do sieci bez konieczności ręcznego dodawania adresów MAC urządzeń do listy dozwolonych. Jednakże, z perspektywy bezpieczeństwa, wyłączenie filtrowania MAC może zwiększać ryzyko nieautoryzowanego dostępu do sieci, dlatego w środowiskach o wysokim stopniu bezpieczeństwa zaleca się jego włączenie i regularną aktualizację listy dozwolonych adresów. Dobre praktyki branżowe wskazują na konieczność stosowania dodatkowych mechanizmów zabezpieczeń, takich jak WPA2 lub WPA3, aby zapewnić odpowiedni poziom ochrony sieci bezprzewodowej.

Pytanie 22

Zaprezentowane właściwości karty sieciowej sugerują, że karta

Kod ProducentaWN-370USB
InterfejsUSB
Zgodność ze standardemIEEE 802.11 b/g/n
Ilość wyjść1 szt.
ZabezpieczeniaWEP 64/128, WPA, WPA2
Wymiary49(L) x 26(W) x 10(H) mm
A. działa w sieciach przewodowych z wykorzystaniem gniazda USB
B. działa w standardzie c
C. nie oferuje szyfrowania danych
D. działa w sieciach bezprzewodowych
Karta sieciowa podana w pytaniu działa w standardzie IEEE 802.11 b/g/n co wyraźnie wskazuje że jest to karta przeznaczona do komunikacji bezprzewodowej. Standard IEEE 802.11 jest powszechnie stosowany w sieciach Wi-Fi i obejmuje różne warianty jak b g n gdzie każdy z nich różni się zakresem prędkości i zasięgiem. Na przykład tryb n oferuje wyższe prędkości i lepszy zasięg w porównaniu do starszych wersji b i g. Karta ta łączy się z urządzeniem poprzez port USB co jest powszechnym sposobem podłączania kart sieciowych zwłaszcza w laptopach i komputerach stacjonarnych które nie mają wbudowanego modułu Wi-Fi. Praktyczne zastosowanie kart bezprzewodowych obejmuje dostęp do internetu w miejscach publicznych takich jak kawiarnie czy lotniska jak również w sieciach domowych i biurowych gdzie unika się konieczności prowadzenia kabli. Przy wyborze kart sieciowych warto zwrócić uwagę na obsługiwane standardy i zabezpieczenia takie jak WEP WPA i WPA2 które są kluczowe dla bezpieczeństwa danych przesyłanych przez sieć.

Pytanie 23

Minimalna ilość pamięci RAM wymagana dla systemu operacyjnego Windows Server 2008 wynosi przynajmniej

A. 512 MB
B. 1 GB
C. 1,5 GB
D. 2 GB
Wybór odpowiedzi wskazujących na wartości poniżej 2 GB, takie jak 512 MB, 1,5 GB czy 1 GB, opiera się na nieaktualnych założeniach dotyczących wymagań systemowych. W początkowych latach istnienia systemów operacyjnych, takie jak Windows Server 2003 czy starsze wersje, rzeczywiście mogły funkcjonować przy mniejszych ilościach pamięci RAM. Jednak wraz z rozwojem technologii oraz wzrostem wymagań aplikacji i usług, minimalne wymagania dotyczące pamięci RAM znacznie się zwiększyły. Użytkownicy często mylą 'minimalne' wymagania z 'zalecanymi', co prowadzi do nieporozumień. Używanie serwera z pamięcią niższą niż 2 GB w kontekście Windows Server 2008 może prowadzić do poważnych problemów wydajnościowych, takich jak wolniejsze działanie aplikacji, długie czasy odpowiedzi oraz częstsze przestoje. W systemach serwerowych pamięć RAM ma kluczowe znaczenie dla utrzymania wydajności i zdolności obsługi wielu jednoczesnych połączeń. Należy również pamiętać, że zbyt mała ilość pamięci może ograniczać możliwości zarządzania zasobami oraz wprowadzać ograniczenia w zakresie funkcjonalności serwera, co w konsekwencji może prowadzić do nieefektywności w operacjach biznesowych.

Pytanie 24

Oprogramowanie przypisane do konkretnego komputera lub jego podzespołów, które uniemożliwia instalację na nowym sprzęcie zakupionym przez tego samego użytkownika, to

A. MPL
B. MOLP
C. OEM
D. CPL
Odpowiedź 'OEM' (Original Equipment Manufacturer) jest prawidłowa, ponieważ odnosi się do oprogramowania, które jest dostarczane razem z nowym sprzętem komputerowym. Licencje OEM są przypisane do konkretnego urządzenia i nie mogą być przenoszone na inne komputery, co ogranicza możliwość instalacji na nowym sprzęcie. Tego typu licencje są często tańsze niż tradycyjne licencje detaliczne i są skierowane do użytkowników, którzy nabywają sprzęt z wbudowanym oprogramowaniem. Przykładem może być system operacyjny Windows, który może być preinstalowany na laptopach lub stacjonarnych komputerach. W przypadku zmiany sprzętu, użytkownik nie może używać tej samej licencji, co prowadzi do konieczności zakupu nowej. Zrozumienie różnic między typami licencji, takimi jak OEM, jest kluczowe w zarządzaniu oprogramowaniem w firmach oraz w gospodarstwie domowym, ponieważ wpływa na koszty oraz zgodność z prawem. Warto także zauważyć, że licencje OEM mogą być ograniczone w zakresie wsparcia technicznego, co również należy uwzględnić przy podejmowaniu decyzji o zakupie.

Pytanie 25

Aby uzyskać optymalną wydajność, karta sieciowa w komputerze stosuje transmisję szeregową.

A. synchroniczną Simplex
B. synchroniczną Half duplex
C. asynchroniczną Simplex
D. asynchroniczną Full duplex
Odpowiedź 'asynchroniczna Full duplex' jest prawidłowa, ponieważ oznacza, że karta sieciowa może jednocześnie wysyłać i odbierać dane, co jest kluczowe dla uzyskania maksymalnej wydajności w komunikacji sieciowej. Asynchroniczne pełne dupleksy są powszechnie stosowane w nowoczesnych sieciach komputerowych, ponieważ umożliwiają bardziej efektywne wykorzystanie dostępnej przepustowości. W praktyce oznacza to, że podczas przesyłania danych można równocześnie odbierać nowe informacje, co znacząco przyspiesza komunikację. Na przykład, wiele nowoczesnych kart sieciowych Ethernet obsługuje tryb Full duplex, co pozwala na jednoczesne przesyłanie i odbieranie ramek danych bez kolizji, co jest zgodne z normami IEEE 802.3. Dodatkowo, asynchroniczny transfer danych jest elastyczny, co sprawia, że nadaje się do różnorodnych zastosowań, od prostych lokalnych sieci po złożone struktury w chmurze. Wdrożenie tej technologii przyczynia się do poprawy wydajności sieci, co z kolei wpływa na lepszą jakość usług oraz doświadczenie użytkowników.

Pytanie 26

Aby skonfigurować i dostosować środowisko graficzne GNOME w różnych dystrybucjach Linux, należy użyć programu

A. GIGODO Tools
B. GNOME Tweak Tool
C. GNOMON 3D
D. GNU Compiller Collection
GNOME Tweak Tool to kluczowy program umożliwiający konfigurację oraz personalizację środowiska graficznego GNOME w systemach Linux. Użytkownicy mogą za jego pomocą modyfikować różne aspekty interfejsu, takie jak motywy, ikony, czcionki, oraz ustawienia okien. Przykładowo, można zmienić motyw GTK, co natychmiastowo wpłynie na wygląd całego środowiska graficznego, czyniąc je bardziej estetycznym i dostosowanym do indywidualnych preferencji. Program ten jest zgodny z najlepszymi praktykami w zakresie użyteczności i dostępności, oferując użytkownikom intuicyjny interfejs z prostymi opcjami. Warto również zaznaczyć, że GNOME Tweak Tool jest nieocenionym narzędziem dla programistów i administratorów systemów, którzy chcą dostosować środowisko pracy do specyficznych potrzeb użytkowników lub wdrożyć konkretne standardy w organizacji. Dobrze skonfigurowane środowisko graficzne może zwiększyć produktywność i komfort pracy, co jest kluczowe w profesjonalnych zastosowaniach.

Pytanie 27

Urządzenie pokazane na ilustracji to

Ilustracja do pytania
A. Tester diodowy kabla UTP
B. Tester długości przewodów
C. Zaciskarka do wtyków RJ45
D. Narzędzie do uderzeń typu krone
Tester diodowy przewodu UTP jest niezbędnym narzędziem w diagnostyce i weryfikacji poprawności połączeń w kablach sieciowych. Działanie tego urządzenia polega na sprawdzaniu ciągłości przewodów oraz wykrywaniu ewentualnych błędów takich jak przerwy zwarcia czy niewłaściwe skręcenia żył. W przypadku sieci Ethernet poprawne połączenia są kluczowe dla zapewnienia niezawodnego przesyłu danych i utrzymania wysokiej jakości usług sieciowych. Tester diodowy jest często wykorzystywany podczas instalacji okablowania w nowych lokalizacjach oraz w trakcie konserwacji już istniejących sieci. Przykładem zastosowania może być testowanie patch cordów oraz kabli w strukturach sieciowych budynków biurowych. Standardowe testery mogą również sprawdzać zgodność z normami sieciowymi takimi jak TIA/EIA-568 i pomagają uniknąć problemów związanych z nieprawidłową transmisją danych. Dzięki jego użyciu można zidentyfikować i zlokalizować błędy bez konieczności wprowadzania zmian w konfiguracji sieci co jest zgodne z dobrymi praktykami w zarządzaniu infrastrukturą IT.

Pytanie 28

ACPI to akronim, który oznacza

A. test weryfikacji funkcjonowania podstawowych komponentów
B. zestaw połączeń łączących równocześnie kilka elementów z możliwością komunikacji
C. program, który umożliwia znalezienie rekordu rozruchowego systemu
D. zaawansowany interfejs zarządzania konfiguracją i energią
ACPI, czyli Advanced Configuration and Power Interface, to taki standard, który pomaga w zarządzaniu energią i konfiguracją w komputerach. Dzięki niemu systemy operacyjne mogą lepiej radzić sobie z oszczędzaniem energii, co fajnie wpływa na to, jak długo działają nasze urządzenia. Na przykład, kiedy komputer 'widzi', że nic się nie dzieje, może przejść w stan uśpienia, co naprawdę zmniejsza zużycie energii. To jest super ważne, zwłaszcza w laptopach czy innych mobilnych sprzętach. ACPI też pozwala na dynamiczne zarządzanie zasobami, co znaczy, że system może dostosować, ile energii i zasobów potrzebuje w danym momencie. Można powiedzieć, że ACPI stało się standardem w branży, bo jest używane w większości nowoczesnych systemów operacyjnych, takich jak Windows, Linux czy macOS. To świadczy o jego dużym znaczeniu w kontekście efektywności energetycznej oraz zarządzania sprzętem. A tak na marginesie, używanie ACPI ułatwia też współpracę z innymi standardami, na przykład Plug and Play, co sprawia, że konfiguracja urządzeń w systemie jest prostsza.

Pytanie 29

Jakiego rodzaju wkręt powinno się zastosować do przymocowania napędu optycznego o szerokości 5,25" w obudowie, która wymaga użycia śrub do mocowania napędów?

Ilustracja do pytania
A. C
B. D
C. A
D. B
Odpowiedź B jest poprawna, ponieważ wkręt przedstawiony jako opcja B to typowy wkręt M3 używany do mocowania napędów optycznych 5,25 cala w komputerach stacjonarnych. Wkręty M3 są standardem w branży komputerowej, co jest poparte specyfikacją ATX oraz innymi normami dotyczącymi budowy komputerów osobistych. Ich średnica oraz skok gwintu są idealnie dopasowane do otworów montażowych w obudowach przeznaczonych dla napędów optycznych i twardych dysków, zapewniając stabilne mocowanie bez ryzyka uszkodzenia sprzętu. Użycie odpowiedniego wkrętu jest kluczowe dla zapewnienia odpowiedniej wentylacji oraz redukcji drgań, co wpływa na wydajność oraz żywotność sprzętu. Praktyczne zastosowania wkrętów M3 obejmują również montaż innych podzespołów, takich jak płyty główne czy karty rozszerzeń, co świadczy o ich uniwersalności. Dobre praktyki montażowe zalecają używanie odpowiednich narzędzi, takich jak wkrętaki krzyżakowe, aby uniknąć uszkodzenia gwintu, co dodatkowo podkreśla znaczenie wyboru odpowiedniego wkrętu dla danej aplikacji.

Pytanie 30

Ramka z informacjami przesyłanymi z komputera PC1 do serwera www znajduje się pomiędzy routerem R1 a routerem R2 w punkcie A). Jakie adresy są w niej zawarte?

Ilustracja do pytania
A. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
B. Źródłowy adres IP routera R1, docelowy adres IP routera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
C. Źródłowy adres IP komputera PC1, docelowy adres IP routera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
D. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC routera R1, adres docelowy MAC routera R1
Poprawna odpowiedź dotyczy adresów zawartych w ramce Ethernetowej, która przemieszcza się pomiędzy ruterami R1 i R2. W tym kontekście kluczowe jest zrozumienie roli adresów IP i MAC w sieciach komputerowych. Adresy IP służą do logicznej identyfikacji urządzeń w sieci, natomiast adresy MAC identyfikują fizyczne interfejsy sieciowe. Gdy pakiet IP przemieszcza się pomiędzy ruterami, ramka Ethernetowa zawiera adresy MAC odpowiednie dla następnego przeskoku. Tak więc, gdy dane przechodzą przez ruter R1, źródłowy adres MAC będzie adresem rutera R1, a docelowy adresem następnego rutera w ścieżce, czyli R1 do R2. Adresy IP pozostają niezmienione w całej trasie od PC1 do serwera WWW. Zrozumienie tego mechanizmu jest kluczowe w diagnostyce sieci i rozwiązywaniu problemów związanych z trasowaniem danych. Praktyczne zastosowanie tej wiedzy obejmuje konfigurację sieci i rozwiązywanie problemów z komunikacją sieciową, co jest niezbędne w zawodach związanych z administracją sieci.

Pytanie 31

Czynnikiem zagrażającym bezpieczeństwu systemu operacyjnego, który wymusza jego automatyczne aktualizacje, są

A. luki w oprogramowaniu systemowym
B. niewłaściwe hasła użytkowników posiadających prawa administratora
C. niepoprawnie zainstalowane sterowniki urządzeń
D. źle skonfigurowane uprawnienia do plików

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Luki w oprogramowaniu systemowym stanowią istotne zagrożenie dla bezpieczeństwa systemu operacyjnego, ponieważ mogą być wykorzystane przez złośliwe oprogramowanie lub atakujących do uzyskania nieautoryzowanego dostępu do systemu. Automatyczne aktualizacje są kluczowym elementem strategii bezpieczeństwa, ponieważ pozwalają na szybkie usunięcie lub załatanie tych luk. Na przykład, systemy operacyjne, takie jak Windows czy Linux, regularnie wydają aktualizacje, które eliminują znane podatności. W ciągu ostatnich lat wiele ataków, takich jak WannaCry, skorzystało z luk w zabezpieczeniach, które mogły być załatane poprzez aktualizacje systemowe. W związku z tym, organizacje powinny wdrożyć polityki automatycznych aktualizacji, zgodne z najlepszymi praktykami, aby minimalizować ryzyko ataków. Warto także monitorować i analizować raporty o bezpieczeństwie, takie jak CVE (Common Vulnerabilities and Exposures), aby być na bieżąco z zagrożeniami i odpowiednio dostosować swoje systemy.

Pytanie 32

Aby utworzyć programową macierz RAID-1, potrzebne jest minimum

A. 2 dysków
B. 3 dysków
C. 4 dysków
D. 1 dysku podzielonego na dwie partycje

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na konieczność użycia minimum dwóch dysków do zbudowania macierzy RAID-1 jest prawidłowa, ponieważ RAID-1, znany również jako mirroring, polega na tworzeniu dokładnej kopii danych na dwóch dyskach. W tej konfiguracji, dane zapisywane na jednym dysku są jednocześnie zapisywane na drugim, co zapewnia wysoką dostępność i bezpieczeństwo danych. Jeśli jeden z dysków ulegnie awarii, system może kontynuować działanie dzięki drugiemu dyskowi, co minimalizuje ryzyko utraty danych. W praktyce, RAID-1 jest często stosowany w systemach serwerowych oraz w desktopach, gdzie wysoka niezawodność danych jest kluczowa. Standardy i dobre praktyki branżowe, takie jak porady od organizacji takich jak Storage Networking Industry Association (SNIA), podkreślają znaczenie RAID-1 w kontekście redundancji i ochrony danych. Wybór tej konfiguracji jest często preferowany w środowiskach, gdzie dostępność danych i ich integralność są priorytetem.

Pytanie 33

W terminalu systemu operacyjnego wydano komendę nslookup. Jakie dane zostały uzyskane?

Ilustracja do pytania
A. Adres serwera DNS
B. Adres serwera DHCP
C. Domyślną bramę sieciową
D. Numer IP hosta

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Polecenie nslookup jest narzędziem używanym w systemach operacyjnych do uzyskiwania informacji o serwerach DNS które są kluczowe dla procesu rozwiązywania nazw domenowych na adresy IP. Kiedy użytkownik wydaje polecenie nslookup w wierszu poleceń systemu operacyjnego narzędzie to łączy się z domyślnym serwerem DNS skonfigurowanym w systemie. Użytkownik dzięki temu otrzymuje informację o tym jaki serwer DNS jest wykorzystywany do przetwarzania zapytań DNS w sieci lokalnej. W praktyce wiedza o adresie serwera DNS jest użyteczna przy rozwiązywaniu problemów z połączeniem internetowym takich jak brak możliwości uzyskania dostępu do określonych stron internetowych czy opóźnienia w ładowaniu stron. Wiele firm stosuje własne serwery DNS aby poprawić bezpieczeństwo i wydajność operacji sieciowych. Zrozumienie i właściwe konfigurowanie serwerów DNS zgodnie z dobrymi praktykami takimi jak stosowanie bezpiecznych i szybkich serwerów zapasowych jest kluczowe dla zapewnienia stabilności i bezpieczeństwa infrastruktury IT. Dlatego posługiwanie się narzędziem nslookup i jego wynikami jest istotną umiejętnością w zarządzaniu sieciami komputerowymi.

Pytanie 34

Do konwersji kodu źródłowego na program wykonywalny używany jest

A. kompilator
B. interpreter
C. debuger
D. emulator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kompilator to narzędzie, które przekształca kod źródłowy, napisany w języku wysokiego poziomu, na kod maszynowy, który jest zrozumiały dla procesora. Proces ten jest kluczowy w programowaniu, ponieważ pozwala na uruchomienie aplikacji na sprzęcie komputerowym. Kompilatory analizują i optymalizują kod, co sprawia, że programy działają szybciej i bardziej efektywnie. Przykłady popularnych kompilatorów to GCC (GNU Compiler Collection) dla języka C/C++ oraz javac dla języka Java. Kompilacja przynosi korzyści takie jak sprawdzanie błędów na etapie kompilacji, co pozwala na wczesne wykrywanie problemów. Standardy takie jak ISO C++ oraz Java Language Specification definiują, jak powinny wyglądać języki oraz jak działa kompilacja, co zapewnia spójność i interoperacyjność w ekosystemie programistycznym. Kompilatory także często tworzą pliki wykonywalne, które są łatwe w dystrybucji i uruchamianiu na różnych systemach operacyjnych, co jest istotne w kontekście rozwijania oprogramowania.

Pytanie 35

Do stworzenia projektu sieci komputerowej dla obiektu szkolnego najlepiej użyć edytora grafiki wektorowej, którym jest oprogramowanie

A. Adobe Photoshop
B. MS Excel
C. AutoCad
D. MS Publisher

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
AutoCAD jest zaawansowanym narzędziem do projektowania i rysowania, które jest powszechnie wykorzystywane w branży architektonicznej oraz inżynieryjnej. To oprogramowanie pozwala na tworzenie precyzyjnych rysunków technicznych i schematów, co czyni je idealnym narzędziem do projektowania sieci komputerowych w budynkach, takich jak szkoły. Dzięki możliwości pracy w przestrzeni 2D oraz 3D, AutoCAD umożliwia projektantom dokładne odwzorowanie układu pomieszczeń, rozmieszczenia urządzeń sieciowych oraz sprawne planowanie tras kablowych. Dodatkowo, AutoCAD wspiera różne standardy branżowe, co pozwala na efektywną współpracę z innymi systemami i projektami. Przykładowo, w projekcie sieci szkolnej można wykorzystać AutoCAD do wizualizacji lokalizacji punktów dostępu Wi-Fi oraz switchy, co ułatwia późniejsze instalacje oraz konserwację sieci. Warto również zaznaczyć, że umiejętność posługiwania się AutoCAD-em jest często wymagana przez pracodawców w branży inżynieryjnej i budowlanej.

Pytanie 36

Do czego służy narzędzie 'ping' w sieciach komputerowych?

A. Zarządzania przepustowością sieci
B. Przesyłania plików między komputerami
C. Sprawdzania dostępności hosta w sieci
D. Tworzenia kopii zapasowych danych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie 'ping' jest podstawowym, lecz niezwykle użytecznym narzędziem w administracji sieci komputerowych. Służy do sprawdzania dostępności hosta w sieci oraz mierzenia czasu, jaki zajmuje przesłanie pakietów danych do tego hosta i z powrotem. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) echo request do wybranego adresu IP i oczekiwania na echo reply. Dzięki temu można zweryfikować, czy host jest osiągalny i w jakim czasie. Jest to szczególnie przydatne przy diagnozowaniu problemów z siecią, takich jak brak połączenia czy opóźnienia w transmisji danych. Umożliwia także identyfikację problemów związanych z routingiem. W praktyce, administratorzy sieci używają 'ping' do szybkiego sprawdzenia statusu urządzeń sieciowych oraz serwerów, co jest zgodne z dobrymi praktykami i standardami branżowymi. Narzędzie to jest dostępne w większości systemów operacyjnych i stanowi nieocenioną pomoc w codziennej pracy z sieciami.

Pytanie 37

Użytkownik zamierza zmodernizować swój komputer zwiększając ilość pamięci RAM. Zainstalowana płyta główna ma parametry przedstawione w tabeli. Wybierając dodatkowe moduły pamięci, powinien pamiętać, aby

Parametry płyty głównej
ModelH97 Pro4
Typ gniazda procesoraSocket LGA 1150
Obsługiwane procesoryIntel Core i7, Intel Core i5, Intel Core i3, Intel Pentium, Intel Celeron
ChipsetIntel H97
Pamięć4 x DDR3- 1600 / 1333/ 1066 MHz, max 32 GB, ECC, niebuforowana
Porty kart rozszerzeń1 x PCI Express 3.0 x16, 3 x PCI Express x1, 2 x PCI
A. były to trzy moduły DDR2, bez systemu kodowania korekcyjnego (ang. Error Correction Code).
B. dokupione moduły miały łączną pojemność większą niż 32 GB.
C. w obrębie jednego banku były ze sobą zgodne tak, aby osiągnąć najwyższą wydajność.
D. były to cztery moduły DDR4, o wyższej częstotliwości niż zainstalowana pamięć RAM.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś najbardziej sensowne podejście do rozbudowy pamięci RAM na tej płycie głównej. W praktyce, żeby osiągnąć maksymalną wydajność, kluczowe jest dobranie modułów, które są ze sobą zgodne w ramach tego samego banku. Chodzi tutaj o takie parametry jak pojemność, taktowanie (np. 1600 MHz), opóźnienia (CL) czy nawet producenta, choć nie zawsze to jest konieczne. Równie istotne jest, by wszystkie moduły miały ten sam typ – w tym przypadku DDR3, bo tylko ten typ obsługuje płyta główna H97 Pro4. Jeśli zainstalujesz np. dwa lub cztery identyczne moduły, płyta pozwoli na pracę w trybie dual channel lub nawet quad channel (jeśli chipset i system to obsługują), co daje realny wzrost wydajności – szczególnie w aplikacjach wymagających szybkiego dostępu do pamięci, jak gry czy obróbka grafiki. Moim zdaniem, z punktu widzenia technicznego i praktycznego, kompletowanie identycznych modułów (np. kupno zestawu „kitów”) zawsze się opłaca. Dodatkowo, unikasz problemów ze stabilnością i niepotrzebnych komplikacji przy konfiguracji BIOS-u. To tak naprawdę podstawa, jeśli zależy Ci na niezawodności i wydajności komputera w długiej perspektywie czasu. Branżowe standardy też to zalecają – zobacz chociażby dokumentacje producentów płyt głównych i pamięci RAM, zawsze radzą stosować takie same kości w jednej konfiguracji.

Pytanie 38

Wskaż sygnał informujący o błędzie karty graficznej w komputerze z BIOS POST od firmy AWARD?

A. 1 długi, 5 krótkich
B. 1 długi, 1 krótki
C. 1 długi, 2 krótkie
D. 1 długi, 5 krótkich

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1, czyli '1 długi, 2 krótkie', jest poprawna, ponieważ są to sygnały diagnostyczne wskazujące na błąd karty graficznej w systemach wyposażonych w BIOS POST firmy AWARD. W przypadku problemów z kartą graficzną, BIOS generuje ten specyficzny zestaw dźwięków, co pozwala użytkownikowi na szybkie zidentyfikowanie problemu bez potrzeby zagłębiania się w ustawienia systemowe. Przykładem zastosowania wiedzy na temat sygnałów POST jest sytuacja, w której komputer nie uruchamia się lub wyświetla błędy obrazu. W takich przypadkach, znajomość kodów sygnalizacyjnych pozwala na diagnozę i ewentualne podjęcie odpowiednich działań, jak na przykład sprawdzenie połączeń karty graficznej czy jej wymiana. W branży komputerowej standardy BIOS są powszechnie stosowane, a znajomość sygnałów POST jest kluczowa dla efektywnego rozwiązywania problemów związanych z hardwarem. Użytkownicy powinni być świadomi, że różne wersje BIOS mogą generować inne kody, dlatego warto zapoznawać się z dokumentacją konkretnego producenta.

Pytanie 39

Jak w systemie Windows zmienić port drukarki, która została zainstalowana?

A. Ostatnia znana dobra konfiguracja
B. Ustawienia drukowania
C. Właściwości drukarki
D. Menedżer zadań

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zmienić port zainstalowanej drukarki w systemie Windows, należy skorzystać z opcji "Właściwości drukarki". W tej sekcji użytkownik ma możliwość dostosowania różnych ustawień drukarki, w tym konfiguracji portów. W praktyce, zmiana portu jest istotna, gdy drukarka jest podłączona do innego portu fizycznego, na przykład w przypadku zmiany kabla USB do innego gniazda lub przełączenia się na drukowanie w sieci. Właściwości drukarki umożliwiają także dostęp do informacji o sterownikach, preferencjach jakości druku oraz innych zaawansowanych ustawieniach. Standardem w branży jest upewnienie się, że wszystkie zmiany w konfiguracji sprzętowej są także odzwierciedlane w oprogramowaniu, aby uniknąć problemów z komunikacją i wydajnością. Dlatego znajomość tej funkcji jest kluczowa dla efektywnego zarządzania drukarkami w środowisku biurowym.

Pytanie 40

Komunikat "BIOS checksum error" pojawiający się w trakcie startu komputera zazwyczaj wskazuje na

A. wadliwy wentylator CPU
B. błąd pamięci RAM
C. uszkodzoną lub wyczerpaną baterię na płycie głównej
D. brak urządzenia z systemem operacyjnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Komunikat "BIOS checksum error" mówi nam, że coś jest nie tak z pamięcią CMOS, która trzyma ustawienia BIOS. Kiedy bateria na płycie głównej padnie lub jest uszkodzona, CMOS nie da rady zapisać danych, stąd pojawia się ten błąd. W praktyce to znaczy, że komputer nie może się uruchomić, bo mu brakuje ważnych danych do startu. Wymiana baterii na płycie głównej to prosta sprawa, którą można ogarnąć samemu. Fajnie jest też regularnie sprawdzać, w jakim stanie jest ta bateria, zwłaszcza u starszych komputerów. Warto również zapisywać ustawienia BIOS-u przed ich zmianą, w razie gdyby trzeba było je przywrócić. Jeśli ten komunikat się powtarza, to możliwe, że trzeba będzie zaktualizować BIOS, żeby wszystko działało stabilniej. Moim zdaniem, to bardzo przydatna wiedza dla każdego użytkownika komputera.