Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 23:22
  • Data zakończenia: 10 grudnia 2025 23:36

Egzamin niezdany

Wynik: 3/40 punktów (7,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Którego z mierników pokazanych na rysunku należy użyć do pomiaru impedancji pętli zwarcia obwodu elektrycznego?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innej odpowiedzi niż B może wskazywać na to, że nie do końca wiesz, jak ważny jest miernik pętli zwarcia w ocenie bezpieczeństwa. Inne urządzenia, jak multimetry czy oscyloskopy, nie są stworzone do mierzenia impedancji pętli zwarcia, więc mogą nie dać ci informacji, której potrzebujesz. To takie mylne przekonanie, że cokolwiek innego też się nada, jest naprawdę niebezpieczne! Bez zrozumienia norm, jak PN-IEC 60364, które regulują te pomiary i wymagania dotyczące zabezpieczeń, łatwo jest podjąć złe decyzje w eksploatacji instalacji. Pamiętaj, że niewłaściwe pomiary mogą prowadzić do poważnych problemów, jak porażenie prądem lub uszkodzenie sprzętu, więc korzystanie z odpowiednich narzędzi pomiarowych jest kluczowe w tej dziedzinie.

Pytanie 2

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Przymiar taśmowy, poziomnica, ołówek traserski
C. Przymiar kreskowy, ołówek traserski, rysik
D. Rysik, kątownik, punktak, młotek
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 3

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 40 mA
C. IΔ = 10 mA
D. IΔ = 30 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 4

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,37 mA
B. ±0,02 mA
C. ±2,35 mA
D. ±0,35 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 5

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 250 V
B. 500 V
C. 1000 V
D. 750 V
Wybór wyższych wartości napięcia pomiarowego, takich jak 1000 V, 500 V czy 750 V, jest niewłaściwy w kontekście obwodów SELV i PELV. Te obwody, które są projektowane z myślą o bezpieczeństwie, nie powinny być testowane przy użyciu napięć, które mogą prowadzić do sytuacji niebezpiecznych dla użytkowników. Przy pomiarze rezystancji izolacji w instalacjach niskonapięciowych, takich jak SELV i PELV, zastosowanie wyższego napięcia pomiarowego może nie tylko prowadzić do uszkodzeń izolacji, ale także stwarzać ryzyko porażenia prądem elektrycznym. W rzeczywistości, zastosowanie napięć wyższych niż 250 V w takich instalacjach nie jest zgodne z normami bezpieczeństwa. Często błędnie przyjmuje się, że wyższe napięcie pomiarowe pozwala na dokładniejszą ocenę stanu izolacji, co jest mylnym przekonaniem. W rzeczywistości, pomiary w wyższych zakresach napięć mogą dawać fałszywe wyniki, ponieważ mogą powodować uszkodzenia materiałów izolacyjnych, które w normalnych warunkach pracy nie występują. Stąd też kluczowe jest przestrzeganie standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 6

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór innej odpowiedzi prowadzi do nieporozumień dotyczących funkcji różnych typów łączników. Schematy oznaczone literami B, C i D odnoszą się do łączników krzyżowych, schodowych oraz dzwonkowych, co jest niezgodne z symbolem graficznym przedstawionym w pytaniu. Łącznik krzyżowy jest używany do sterowania jednym źródłem światła z dwóch lub więcej miejsc, co wymaga zastosowania odpowiednich schematów montażowych, a nie pojedynczego łącznika. Z kolei łącznik schodowy, stosowany w układach umożliwiających włączanie i wyłączanie oświetlenia z dwóch miejsc, również nie jest reprezentowany przez ten symbol. Zrozumienie różnicy między tymi typami łączników jest kluczowe, aby uniknąć błędów w instalacjach elektrycznych. Należy pamiętać, że stosowanie niewłaściwego schematu może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy niewłaściwe działanie systemu oświetleniowego. Przy wyborze odpowiedniej odpowiedzi warto kierować się nie tylko wyglądem symboli, ale także ich funkcjami i zastosowaniem w praktyce, co jest zgodne z zasadami bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 7

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 40 A, 25 A
B. 40 A, 40 A
C. 25 A, 40 A
D. 25 A, 25 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 8

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 1.
Wybór innych ilustracji może wynikać z niedostatecznej znajomości zasad oznaczania przewodów ochronnych w instalacjach elektrycznych. Kluczowym błędem jest pomylenie symboli, które nie odnoszą się do przewodu ochronnego, lecz mogą być związane z innymi rodzajami przewodów, np. z przewodem fazowym lub neutralnym. Symbol graficzny przewodu ochronnego ma ściśle określoną formę, która różni się od innych oznaczeń, co sprawia, że ich rozróżnienie jest istotne dla bezpieczeństwa. Wiele osób nie zdaje sobie sprawy, że niewłaściwe oznaczenie przewodu ochronnego może prowadzić do poważnych konsekwencji, takich jak porażenie elektryczne lub uszkodzenie sprzętu. Przyczyną błędnych wyborów może być również zrozumienie funkcji przewodów, gdzie niektóre osoby nie mają pełnego obrazu roli przewodu ochronnego w systemie uziemienia. W praktyce, oznaczenia, które nie są zgodne z przyjętymi normami, mogą wprowadzać w błąd osoby pracujące z instalacjami elektrycznymi, dlatego tak ważne jest, aby korzystać z aktualnych standardów. Warto również zwrócić uwagę na regulacje prawne dotyczące bezpieczeństwa, które jasno określają, jakie oznaczenia powinny być stosowane w różnych kontekstach instalacji elektrycznych.

Pytanie 9

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 500 V
B. 1000 V
C. 250 V
D. 120 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 10

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 250 V
B. 1 000 V
C. 500 V
D. 750 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 11

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 1.
B. Schemat 2.
C. Schemat 3.
D. Schemat 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat 4. przedstawia powszechnie stosowany układ schodowy, który umożliwia efektywne i wygodne sterowanie oświetleniem z dwóch niezależnych lokalizacji. W tym układzie zastosowanie dwóch przełączników krzyżowych pozwala na pełną kontrolę nad oświetleniem, niezależnie od ich pozycji. Dzięki temu użytkownik może włączać oraz wyłączać światło zarówno z korytarza, jak i z pokoju, co znacząco poprawia komfort użytkowania oraz elastyczność systemu oświetleniowego. To podejście jest zgodne z normami i dobrymi praktykami stosowanymi w instalacjach elektrycznych, gdzie priorytetem jest zarówno funkcjonalność, jak i bezpieczeństwo. W praktyce, instalacje schodowe są szczególnie przydatne w dużych domach lub biurach, gdzie odległość między przełącznikami może być znaczna. Dodatkowo, poprzez odpowiednie planowanie i zastosowanie schematu schodowego, można uzyskać znaczną oszczędność energii, eliminując niepotrzebne pozostawianie włączonego oświetlenia. Warto także zaznaczyć, że prawidłowe wykonanie takiej instalacji wymaga znajomości zasad elektryki oraz umiejętności czytania schematów elektrycznych, co stanowi ważny element edukacji zawodowej w dziedzinie elektrotechniki.

Pytanie 12

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego - klasy II
B. przeważnie pośredniego - klasy IV
C. bezpośredniego - klasy I
D. pośredniego - klasy V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawa oświetleniowa przedstawiona na rysunku charakteryzuje się osłoną nieprzezroczystą, co ma kluczowe znaczenie dla klasyfikacji jej rodzaju. Oprawy pośrednie, do których ta należy, emitują światło w sposób rozproszony, co oznacza, że kierują je w dół, ale także odbijają od powierzchni, na które padają. Taki system oświetlenia jest szczególnie efektywny w przestrzeniach biurowych oraz handlowych, gdzie ważne jest równomierne oświetlenie, a nie bezpośrednie źródło światła, które mogłoby powodować olśnienie. W kontekście standardów oświetleniowych, oprawy pośrednie są zalecane w przypadku przestrzeni wymagających komfortu wizualnego, ponieważ minimalizują kontrast między oświetleniem a otoczeniem. Dodatkowo, zgodnie z normami EN 12464, oprawy klasy V zapewniają odpowiednią jakość światła, co jest kluczowe dla pracy i bezpieczeństwa użytkowników. Warto również wspomnieć o zastosowaniach dekoracyjnych takich opraw, które mogą wpływać na estetykę wnętrz, przyczyniając się do stworzenia przyjemnej atmosfery w przestrzeniach publicznych.

Pytanie 13

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz
A. 18 µF i połączyć szeregowo.
B. 4,5 µF i połączyć równolegle.
C. 18 µF i połączyć równolegle.
D. 4,5 µF i połączyć szeregowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź jest poprawna, ponieważ połączenie równoległe dwóch kondensatorów o pojemności 4,5 µF tworzy łączną pojemność równą 9 µF, co jest dokładnie wymagane do zastąpienia uszkodzonego kondensatora. W praktyce, w przypadku układów elektrycznych, zachowanie odpowiedniej pojemności jest kluczowe dla stabilności działania urządzenia. Połączenie równoległe jest również zgodne z dobrymi praktykami projektowania układów elektronicznych, gdyż pozwala na zwiększenie pojemności, podczas gdy napięcie pracy kondensatorów musi być zgodne z wymaganiami sieci, w tym przypadku 230 VAC. Wybierając kondensatory, zwróć uwagę na ich maksymalne napięcie pracy oraz pojemność. Takie podejście zapewnia nie tylko bezpieczeństwo, ale także długotrwałe i niezawodne działanie zasilanych układów. Upewnij się, że nowo zastosowane kondensatory są odpowiednio zabezpieczone przed przeciążeniem, co może znacząco wpłynąć na ich żywotność.

Pytanie 14

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. hotelowego.
B. jednobiegunowego.
C. dwubiegunowego.
D. schodowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "schodowego" jest poprawna, ponieważ na przedstawionym schemacie znajduje się symbol łącznika schodowego, który jest kluczowym elementem w systemach oświetleniowych. Łącznik schodowy umożliwia sterowanie oświetleniem z dwóch lub więcej miejsc, co jest szczególnie przydatne w korytarzach, na schodach czy w dużych pomieszczeniach. Istotnym elementem tego rozwiązania są dodatkowe styki krzyżowe, które pozwalają na wygodne przełączanie między różnymi punktami zasilania, co zwiększa komfort użytkowników. Przykładowo, w domach jednorodzinnych, łączniki schodowe są często instalowane na pierwszym i ostatnim piętrze schodów, umożliwiając włączanie i wyłączanie światła bez konieczności przechodzenia przez całe pomieszczenie. Zgodnie z normą PN-EN 60669, projektowanie obwodów oświetleniowych przy użyciu łączników schodowych jest uznawane za standardową praktykę, co dodatkowo potwierdza ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 15

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba niesprawne.
B. 1 - niesprawny, 2 - sprawny.
C. Oba sprawne.
D. 1 - sprawny, 2 - niesprawny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 16

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gB 20 A
C. aM 20 A
D. aR 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 17

Zdjęcie przedstawia

Ilustracja do pytania
A. Woltomierz probierczy.
B. Woltomierz.
C. Megaomomierz.
D. Techniczny mostek pomiarowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 18

Zdjęcie przedstawia

Ilustracja do pytania
A. wyłącznik schodowy.
B. wyłącznik krzyżowy.
C. łącznik żaluzjowy.
D. łącznik wielofunkcyjny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 19

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 16 mm2
B. 4,0 mm2
C. 25 mm2
D. 10 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 20

Który z przedstawionych wyłączników należy zastosować do wykrywania prądów różnicowych przemiennych o zwiększonej częstotliwości, zawierających wyższe harmoniczne w układach energoelektronicznych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy oznaczony literą C. jest właściwym wyborem do detekcji prądów różnicowych o zwiększonej częstotliwości, które zawierają wyższe harmoniczne. W kontekście układów energoelektronicznych, które często operują przy dużych częstotliwościach, standardowe wyłączniki mogą nie być wystarczające. Wyłącznik C. został zaprojektowany zgodnie z normami EN 61008 i EN 61009, które określają wymagania dla wyłączników różnicowoprądowych. Jego budowa umożliwia wykrywanie różnic prądowych przy częstotliwościach, które są typowe dla aplikacji przemysłowych czy systemów zasilania opartego na falownikach. Takie wyłączniki są często stosowane w instalacjach zasilających silniki elektryczne, gdzie prądy harmoniczne generowane przez przetwornice częstotliwości są powszechne. Dzięki odpowiedniej konstrukcji i oznaczeniom, wyłącznik C. skutecznie chroni przed ryzykiem pożaru i porażenia prądem, co czyni go kluczowym elementem bezpieczeństwa w nowoczesnych systemach energoelektronicznych.

Pytanie 21

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Zwarcie międzyfazowe
C. Skok napięcia
D. Upływ prądu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 22

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 23

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. A.
B. C.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to B. Kolejność demontażu elementów stojana silnika indukcyjnego jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności podczas przezwojenia. Proces zaczyna się od odcięcia połączeń czołowych, co pozwala na bezpieczne wyłączenie zasilania i ograniczenie ryzyka porażenia prądem. Następnie przystępuje się do usunięcia uzwojenia, co jest istotne, aby uzyskać dostęp do wnętrza stojana. W tym etapie należy zachować ostrożność, aby nie uszkodzić struktury żłobka. Ostatnim krokiem jest usunięcie izolacji żłobkowej, co umożliwia dokładne oczyszczenie elementów i przygotowanie ich do ponownego nawinięcia. Przestrzeganie tej sekwencji demontażu jest zgodne z dobrymi praktykami w branży elektrycznej i mechaniczej, a także z normami bezpieczeństwa, co zapewnia, że proces przezwojenia będzie przeprowadzony w sposób profesjonalny i skuteczny. Właściwe podejście do tych czynności wpływa na wydajność i żywotność silnika.

Pytanie 24

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do wzmacniaczy maszynowych
B. Do prądnic tachometrycznych
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do transformatorów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 25

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. przewód ochronny.
B. przewody zasilające.
C. żyrandol.
D. łącznik.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 26

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 27

Na rysunku przedstawiono sposób podłączenia miernika MZC-201 do pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia.
B. rezystancji uziomu.
C. rezystancji izolacji.
D. ciągłości połączeń ochronnych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uziomu jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Miernik MZC-201, podłączony w przedstawiony sposób, umożliwia dokładne określenie wartości rezystancji uziomu (Ru). W praktyce, niska rezystancja uziomu jest niezbędna, aby zapewnić skuteczne odprowadzanie prądów awaryjnych do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364, wartość rezystancji uziomu powinna być jak najniższa, a zaleca się, aby nie przekraczała 10 ohmów w przypadku instalacji do ochrony przeciwporażeniowej. Dodatkowo, pomiar rezystancji uziomu powinien być regularnie wykonywany, szczególnie w obiektach komercyjnych i przemysłowych, aby zapewnić ciągłość działania systemów ochrony przed przepięciami. Prawidłowe podłączenie dodatkowego pręta pomiarowego (Rr) umożliwia uzyskanie dokładniejszych wyników, co jest zgodne z najlepszymi praktykami w dziedzinie elektroenergetyki.

Pytanie 28

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
C. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
D. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to odłączenie odbiorników oraz zapewnienie skutecznej ochrony przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego. Zgodnie z PN-HD 60364-6:2008, przed przystąpieniem do pomiaru rezystancji izolacji, należy bezwzględnie odłączyć wszelkie odbiorniki elektryczne od instalacji. Takie działanie ma na celu uniknięcie ryzyka porażenia prądem oraz uszkodzenia urządzeń podczas pomiaru. Kluczowym aspektem jest także zapewnienie skutecznej ochrony, co często realizuje się poprzez zastosowanie odpowiednich zabezpieczeń mechanicznych lub elektronicznych, które blokują możliwość przypadkowego włączenia zasilania. Przykładem może być użycie blokady na rozdzielnicy. W praktyce, pomiar rezystancji izolacji wykonuje się najczęściej przy użyciu megomierza, który generuje wysokie napięcie, co może być niebezpieczne dla osób i sprzętu, jeśli nie zostaną podjęte odpowiednie środki ochrony. Prawidłowe przygotowanie do pomiaru jest kluczowe, aby zapewnić bezpieczeństwo oraz dokładność wyników. Dobrą praktyką jest także dokumentacja stanu wyłączenia oraz przeprowadzonych działań, co jest przydatne w kontekście inspekcji i audytów.

Pytanie 29

Który z podanych symboli oznacza urządzenie, którym należy zastąpić element instalacji elektrycznej przedstawiony na rysunku?

Ilustracja do pytania
A. CF16-25/2/003
B. SM 320 230-2z
C. FAZ B10/1
D. S 191 B20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "S 191 B20" jest poprawna, ponieważ idealnie odpowiada charakterystyce urządzenia widocznego na zdjęciu. Na rysunku przedstawiono aparat nadprądowy z oznaczeniem "L 20A", co wskazuje, że mamy do czynienia z wyłącznikiem automatycznym o charakterystyce B i prądzie znamionowym 20A. W kontekście stosowania w instalacjach elektrycznych, wyłączniki automatyczne o charakterystyce B są powszechnie używane do ochrony obwodów z urządzeniami elektrycznymi, które nie mają dużych prądów rozruchowych. Przykładem zastosowania wyłączników B20 są obwody oświetleniowe, gniazdka elektryczne oraz obwody z małymi silnikami. Ważne jest, aby dobierać urządzenia zabezpieczające zgodnie z ich oznaczeniem, co pomaga uniknąć przeciążeń oraz zapewnia bezpieczeństwo użytkowników. Zgodnie z normą PN-EN 60898, wyłączniki te oferują niezawodne zabezpieczenie przed skutkami zjawisk takich jak zwarcia czy przeciążenia, co czyni je niezbędnym elementem każdej instalacji elektrycznej.

Pytanie 30

Aby zmierzyć częstotliwość, należy użyć

A. watomierza
B. częstościomierza
C. waromierza
D. fazomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 31

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. lokalizacji przewodów w instalacji elektrycznej.
B. bezdotykowego pomiaru rezystancji przewodów.
C. sprawdzania ciągłości połączeń w instalacji.
D. pomiaru parametrów oświetlenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 32

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TN-C
B. IT
C. TN-S
D. TT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "TT" jest poprawna, ponieważ schemat przedstawia charakterystyczne cechy układu TT. W pierwszej kolejności należy zwrócić uwagę na bezpośrednie uziemienie punktu neutralnego źródła zasilania, co jest kluczowe dla funkcjonowania tego układu. Uziemienie to zapewnia, że wszelkie potencjalne różnice napięcia są szybko i skutecznie wyładowywane do ziemi, co minimalizuje ryzyko porażenia prądem. Ponadto, w układzie TT każdy odbiornik ma swoje własne uziemienie, co zapewnia dodatkowe bezpieczeństwo – w przypadku uszkodzenia izolacji, prąd nie przemieszcza się przez konstrukcję budynku. Ważnym aspektem jest również brak połączenia między przewodem neutralnym (N) a przewodem ochronnym (PE) w instalacji odbiorczej, co jest zgodne z normami, takimi jak PN-IEC 60364, które podkreślają konieczność niezależnych uziemień dla poprawy bezpieczeństwa elektrycznego. Dzięki tym cechom, układ TT jest często stosowany w instalacjach budowlanych, zwłaszcza w budynkach mieszkalnych, gdzie zapewnienie bezpieczeństwa użytkowników jest absolutnym priorytetem.

Pytanie 33

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Wykonując kontrolne doziemienie
C. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
D. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 34

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Za pomocą kombinerek w braku napięcia
B. Uchwytem izolacyjnym pod obciążeniem
C. Uchwytem izolacyjnym bez obciążenia
D. Przy użyciu kombinerek, pod napięciem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 35

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,5% + 3 cyfry
C. ±1,0% + 4 cyfry
D. ±2,0% + 2 cyfry

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 36

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TT
B. TN-C-S
C. TN-S
D. IT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IT' jest prawidłowa, ponieważ rysunek ilustruje charakterystyczny sposób instalacji urządzenia ochronnego różnicowoprądowego w sieci typu IT. W systemie IT punkty neutralne źródła zasilania są izolowane od ziemi, co minimalizuje ryzyko zwarć i zwiększa bezpieczeństwo użytkowników. Zastosowanie impedancji o dużej wartości w połączeniu z punktem neutralnym pozwala na ograniczenie prądów upływowych do poziomu, który nie stwarza zagrożenia, a jednocześnie umożliwia wykrycie uszkodzeń izolacji. W praktyce, aby zapewnić ciągłość zasilania, w systemach IT częstym elementem jest urządzenie do kontrolowania stanu izolacji, co pozwala na szybką detekcję potencjalnych usterek. Dzięki tej architekturze, w przypadku uszkodzenia jednego z przewodów, drugi pozostaje na stałym poziomie napięcia względem ziemi, co zapobiega poważnym awariom. Takie rozwiązanie jest często stosowane w przemyśle oraz w obiektach wymagających wysokiego poziomu niezawodności zasilania, takich jak szpitale czy centra danych.

Pytanie 37

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 38

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Liczba urządzeń zasilanych z tej instalacji
B. Kształt budynku w przestrzeni
C. Metoda montażu instalacji
D. Warunki zewnętrzne, którym instalacja jest poddawana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 39

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy przedstawiony na zdjęciu D jest właściwym rozwiązaniem do monitorowania prądu upływu w instalacji elektrycznej. Posiada on wskaźnik prądu upływu, który jest kluczowy dla bezpiecznej eksploatacji systemów elektrycznych. W praktyce, posiadając wyłącznik z takim wskaźnikiem, użytkownik jest w stanie na bieżąco śledzić ewentualne nieprawidłowości w działaniu instalacji, co może zapobiec poważnym uszkodzeniom sprzętu lub zagrożeniu dla życia. Standardy, takie jak PN-EN 61008, podkreślają konieczność stosowania wyłączników różnicowoprądowych dla zwiększenia bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania może być system monitorowania w budynkach mieszkalnych, gdzie wyłącznik D informuje o wszelkich problemach związanych z prądem upływu, co pozwala na szybsze reakcje i zminimalizowanie ryzyka. Posiadanie takiego wskaźnika jest zgodne z najlepszymi praktykami w zakresie ochrony przeciwnapięciowej i bezpieczeństwa elektrycznego.

Pytanie 40

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 4.
B. Symbol 3.
C. Symbol 1.
D. Symbol 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol 1 jest prawidłowym przedstawieniem graficznego symbolu przycisku zwiernego. Graficzne oznaczenie to jest zgodne z międzynarodowymi standardami, takimi jak IEC 60417, które definiują symbole dla urządzeń elektrycznych. Przyciski zwierne są powszechnie stosowane w różnych aplikacjach, takich jak systemy alarmowe, automatyka budynkowa i interfejsy użytkownika w urządzeniach elektronicznych. Ich funkcjonowanie polega na zamykaniu obwodu elektrycznego po naciśnięciu przycisku, co powoduje rozpoczęcie określonego działania, na przykład włączenie światła lub aktywację alarmu. W praktycznej aplikacji, przyciski zwierne mogą być używane w różnych konfiguracjach, takich jak przyciski chwilowe, które wracają do stanu początkowego po zwolnieniu, lub przyciski z latarką, które mogą być używane do aktywacji procedur awaryjnych. Zrozumienie tego symbolu jest więc kluczowe dla projektantów systemów elektrycznych i automatyki, ponieważ umożliwia im prawidłowe dobieranie elementów w projekcie oraz zapewnienie zgodności z wiodącymi normami branżowymi.