Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 10 lutego 2026 00:43
  • Data zakończenia: 10 lutego 2026 00:52

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,1 mm
B. 0,5 mm
C. 0,01 mm
D. 0,05 mm
Pojawia się wiele nieporozumień dotyczących dokładności pomiarowej mikrometrów, szczególnie w odniesieniu do parametrów takich jak skok śruby czy liczba nacięć na bębnie. Odpowiedzi sugerujące dokładność na poziomie 0,1 mm, 0,5 mm lub 0,05 mm bazują na błędnym oszacowaniu lub pomyłkach w obliczeniach. Na przykład, wybór 0,1 mm jako dokładności może wynikać z przeoczenia faktu, że mikrometr jest narzędziem, które służy do bardzo dokładnych pomiarów, a 0,1 mm byłoby zbyt dużym błędem w kontekście precyzyjnych aplikacji inżynieryjnych. Z kolei odpowiedź 0,5 mm w ogóle nie odnosi się do metody pomiarowej mikrometru, ponieważ wskazuje na wartość całkowitego skoku, a nie na rozdzielczość pomiarową. Odpowiedź 0,05 mm również nie uwzględnia liczby nacięć, prowadząc do mylnego przekonania, że taka wartość pomiaru jest odpowiednia dla narzędzi, które są zbudowane z myślą o znacznie większej precyzji. Wszelkie niepoprawne podejścia do tego tematu mogą prowadzić do istotnych błędów w projektach inżynieryjnych, gdzie precyzja jest kluczowa dla sukcesu operacji. W praktyce, właściwe zrozumienie zasad działania mikrometrów i ich dokładności pomiarowej jest niezbędne do efektywnego wykorzystania ich w różnych dziedzinach techniki.

Pytanie 2

Gdy zauważysz zbyt niską temperaturę pracy silnika (cieczy chłodzącej), w pierwszej kolejności powinieneś skontrolować

A. funkcjonowanie pompy cieczy
B. działanie wentylatora
C. temperaturę zamarzania cieczy chłodzącej
D. sprawność termostatu
Omawianie problemu niskiej temperatury eksploatacyjnej silnika nie może ograniczać się do sprawdzenia działania pompy cieczy chłodzącej, wentylatora lub temperatury zamarzania cieczy chłodzącej, ponieważ te elementy nie są kluczowymi przyczynami dla pierwszej diagnozy. Pompa cieczy chłodzącej, choć istotna, odpowiada głównie za cyrkulację cieczy w obiegu, a jej awaria zwykle skutkuje przegrzaniem silnika, a nie jego niedogrzaniem. Wentylator natomiast ma za zadanie schładzanie cieczy w chłodnicy, co jest procesem wtórnym, a nie bezpośrednim elementem kontroli temperatury silnika. Z kolei temperatura zamarzania cieczy chłodzącej jest ważna w kontekście zimowych warunków i eksploatacji, ale nie wpływa na osiąganie odpowiedniej temperatury roboczej silnika w normalnych warunkach. Typowym błędem myślowym jest utożsamianie objawów z ich przyczynami, co prowadzi do niewłaściwego rozwiązywania problemów. Aby skutecznie diagnozować system chłodzenia silnika, niezbędne jest zrozumienie podstawowych funkcji każdego elementu oraz ich wzajemnych interakcji. Zaleca się, aby technicy zaczynali analizę od najważniejszych komponentów, takich jak termostat, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 3

Regulator odśrodkowy oraz regulator podciśnieniowy stanowią składniki systemu

A. zasilania z wtryskiem wielopunktowym
B. zapłonowego
C. zasilania z wtryskiem jednopunktowym
D. rozrządu
Pojęcia związane z regulatorem odśrodkowym i podciśnieniowym są często mylone z innymi systemami w silnikach spalinowych, co może prowadzić do nieporozumień w zakresie ich zastosowania. W przypadku układu zasilania z wtryskiem jednopunktowym, który charakteryzuje się prostą konstrukcją, nie stosuje się osobnych regulatorów odśrodkowych ani podciśnieniowych. Wtrysk jednopunktowy wykorzystuje zazwyczaj jeden wtryskiwacz, co ogranicza potrzebę zaawansowanej regulacji zapłonu. Podobnie, układ rozrządu, odpowiedzialny za synchronizację ruchu zaworów, nie ma bezpośredniego związku z funkcjonowaniem regulatorów zapłonu. Takie pomylenie wynika często z niepełnego zrozumienia, jakie elementy odpowiadają za różne procesy w silniku. Układ zapłonowy jest odrębnym systemem, który niezależnie reguluje moment zapłonu w odpowiedzi na różne parametry pracy silnika. W przypadku układu zapłonowego, zarówno regulator odśrodkowy, jak i podciśnieniowy, są integralnymi częściami, które zapewniają optymalną pracę silnika w różnych warunkach. Wtryskiwanie paliwa, niezależnie od tego, czy jest jednopunktowe, czy wielopunktowe, również nie wpływa na działanie regulatorów zapłonu, ponieważ ich główną funkcją jest zapewnienie odpowiedniego momentu zapłonu, a nie kontrola procesu wtrysku. To zrozumienie różnic między tymi systemami jest kluczowe dla efektywnej diagnostyki i naprawy silników spalinowych. Wiedza o tym, jakie elementy są odpowiedzialne za konkretne funkcje w silniku, pozwala uniknąć nieporozumień oraz poprawia jakość wykonywanych napraw i usług serwisowych.

Pytanie 4

Który składnik występuje w największej ilości w spalinach z silników ZI oraz ZS?

A. Tlenu
B. Azotu
C. Węglowodorów
D. Dwutlenku węgla
W odpowiedziach dotyczących węglowodorów, tlenu i dwutlenku węgla pojawia się szereg nieporozumień. Węglowodory, które są organicznymi związkami chemicznymi, są obecne w spalinach, jednak ich zawartość jest znacznie mniejsza niż azotu. Spalanie paliwa prowadzi do ich emisji, ale ich stężenie w spalinach silnikowych jest tylko ułamkiem całkowitej objętości gazów spalinowych. Z kolei tlen, który jest niezbędny do procesu spalania, jest szybko zużywany w trakcie reakcji chemicznych i nie pozostaje w spalinach w znaczącej ilości. W atmosferze, po spaleniu, jego stężenie jest minimalne. Dwutlenek węgla, jako produkt końcowy spalania, jest również istotnym składnikiem, ale jego udział, mimo że rośnie w związku z rosnącym zużyciem paliw kopalnych, wciąż nie dorównuje objętości azotu. Warto zrozumieć, że te pomyłki wynikają często z braku znajomości procesu spalania oraz właściwości gazów. Analiza składu spalin powinna opierać się na danych pomiarowych oraz znajomości procesów chemicznych zachodzących podczas spalania, co pozwala na lepsze zrozumienie tych mechanizmów i ich wpływu na środowisko oraz technologie redukcji emisji.

Pytanie 5

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w pompie tłoczkowej o niskim ciśnieniu
B. w rzędowej pompie wtryskowej
C. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
D. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
Każda z pozostałych opcji odnosi się do zastosowania pomp paliwowych w różnych kontekstach, ale nie uwzględnia kluczowej roli odśrodkowego regulatora prędkości obrotowej. Przeponowa pompa paliwa silnika z zapłonem iskrowym operuje na zupełnie innych zasadach; zazwyczaj jest stosowana w silnikach benzynowych i nie wymaga precyzyjnego dawkowania paliwa, co czyni zastosowanie odśrodkowego regulatora zbędnym. Pompy tłoczkowe niskiego ciśnienia, z kolei, służą do transportu paliwa z zbiornika do silnika, ale ich konstrukcja nie wymaga regulacji w oparciu o prędkość obrotową, co ogranicza ich zastosowanie w kontekście odśrodkowego regulatora. W przypadku pomp paliwowych wysokiego ciśnienia w układzie Common Rail, chociaż ich funkcja jest związana z precyzyjnym wtryskiem paliwa, to mechanizm działania opiera się na innych zasadach regulacji, takich jak elektroniczne sterowanie, co sprawia, że odśrodkowy regulator nie znajduje zastosowania w tym kontekście. Błędne założenie, że regulator może być użyty w tych typach pomp, wynika z mylnego zrozumienia zasad działania poszczególnych układów oraz funkcji, jakie pełnią w silnikach. Ważne jest zrozumienie, że różne systemy paliwowe mają swoje specyficzne wymagania dotyczące regulacji, które muszą być dostosowane do ich charakterystyki operacyjnej.

Pytanie 6

Aby pozbyć się nadmiernego luzu nowego sworznia tłokowego w główce korbowodu, konieczne jest wykonanie operacji na tulejce ślizgowej główki korbowodu

A. wymienić na nową
B. przetoczyć
C. szlifować
D. frezować
Przetaczanie tulejki ślizgowej główki korbowodu może wydawać się atrakcyjnym rozwiązaniem, jednak wiąże się z wieloma ryzykami. Przetoczenie polega na mechanicznym skrawaniu materiału, co może prowadzić do nierównomiernego zużycia oraz pogorszenia właściwości mechanicznych tulejki. Dodatkowo, przetoczenie nie gwarantuje, że osiągnięte w ten sposób wymiary będą zgodne z wymaganiami technicznymi, co w efekcie może prowadzić do dalszego luzu. Frezowanie, z kolei, również nie jest optymalnym rozwiązaniem, ponieważ może skutkować osłabieniem struktury materiału, zwłaszcza jeżeli nie jest przeprowadzane z należytą precyzją. Szlifowanie wydaje się lepszą opcją, jednak jest to proces czasochłonny i wymaga dużej staranności, a także nie zawsze zapewnia odpowiednią jakość powierzchni, co jest kluczowe dla prawidłowego funkcjonowania silnika. W praktyce, wiele osób wybiera te metody z zamiarem zaoszczędzenia na kosztach, nie zdając sobie sprawy, że mogą one prowadzić do poważniejszych awarii w przyszłości. Z perspektywy standardów branżowych, wymiana na nową część jest jedynym rozwiązaniem, które zapewnia długoterminową niezawodność oraz bezpieczeństwo eksploatacji pojazdu.

Pytanie 7

Pierwsza cyfra w oznaczeniu "9.8" widocznym na śrubach wskazuje

A. klasę wytrzymałości, która określa wytrzymałość na rozciąganie równą 900 N/mm2
B. klasę wytrzymałości, która definiuje stosunek granicy plastyczności do wytrzymałości wynoszący 90 N/mm2
C. moment dokręcenia 90 Nm
D. kod producenta
Wybierając odpowiedzi, które nie dotyczą wytrzymałości na rozciąganie, można popełnić kilka kluczowych błędów. Odpowiedzi wskazujące na klasę wytrzymałości z granicą plastyczności 90 N/mm2 błędnie interpretują oznaczenia, ponieważ nie są one zgodne z rzeczywistymi standardami klasyfikacji. Klasa wytrzymałości 9.8 jednoznacznie odnosi się do wytrzymałości na rozciąganie wynoszącej 900 N/mm2, a nie do granicy plastyczności. Moment dokręcenia 90 Nm z kolei jest związany z praktyką montażu, a nie z klasyfikacją materiału, co wyraźnie wskazuje na brak zrozumienia różnicy między parametrami mechanicznymi a wymaganiami montażowymi. Dodatkowo, twierdzenie, że '9.8' to kod producenta, jest mylne, ponieważ oznaczenia te są ustandaryzowane i nie są indywidualnymi kodami. W przemyśle, znajomość klasy wytrzymałości śrub jest kluczowa dla zapewnienia bezpieczeństwa konstrukcji, a niepoprawne interpretacje mogą prowadzić do niewłaściwego doboru komponentów, co w konsekwencji może zagrażać całym projektom inżynieryjnym.

Pytanie 8

Z rejonu mostu napędowego dochodzi do uciążliwego hałasu, który wzrasta podczas pokonywania zakrętów. Który z poniższych elementów może być jego przyczyną?

A. Przekładnia główna
B. Łożysko piasty koła
C. Półoś napędowa
D. Mechanizm różnicowy
Łożysko piasty koła, przekładnia główna i półoś napędowa są także istotnymi elementami układu napędowego, ale ich funkcje są inne niż mechanizmu różnicowego. Łożyska piasty są odpowiedzialne za wsparcie koła i umożliwiają jego swobodny obrót. Hałas wydobywający się z łożyska piasty może być spowodowany zużyciem lub brakiem smaru, co prowadzi do nadmiernego luzu i wibracji. Hałas ten jest zazwyczaj bardziej wyraźny podczas jazdy prosto, a niekoniecznie w zakrętach, co jest kluczowym wskaźnikiem, że nie jest to źródło problemu opisanego w pytaniu. Przekładnia główna natomiast odpowiada za przenoszenie momentu obrotowego z wału napędowego na mechanizm różnicowy. Problemy z przekładnią główną mogą prowadzić do hałasu, ale również są one często związane z nieprawidłowym ustawieniem lub zużyciem koła zębatego. Z kolei półoś napędowa, która łączy mechanizm różnicowy z kołami napędowymi, również może powodować hałas, zwłaszcza przy uszkodzeniach lub niewłaściwej instalacji, jednak hałas z niej wydobywający się niekoniecznie będzie się nasilał w zakrętach. Kluczowe jest właściwe zrozumienie, że różne źródła hałasu mogą sugerować różne problemy w układzie napędowym, a niepoprawne przypisanie źródła hałasu do konkretnego elementu może prowadzić do błędnych diagnoz i niewłaściwych napraw.

Pytanie 9

Dostosowanie współpracujących ze sobą w parze elementów samochodowych do wymiarów naprawczych polega na

A. wymianie obu elementów na nowe o większych rozmiarach i kształtach
B. wymianie jednego elementu na nowy o wymiarze naprawczym i obróbce drugiego na odpowiedni wymiar i kształt
C. obróbce jednego elementu na wymiar nominalny, a drugiego na wymiar naprawczy
D. obróbce obu elementów na nowe wymiary i przywróceniu każdemu z nich odpowiedniego pasowania
Wybór wymiany obu części na nowe o zwiększonych rozmiarach i kształtach jest nieefektywnym podejściem, które nie uwzględnia zasady właściwego doboru komponentów w systemie mechanicznym. Zwiększenie rozmiarów części może doprowadzić do niezgodności z innymi elementami układu, co w efekcie może prowadzić do poważnych awarii i problemów z funkcjonowaniem pojazdu. Zastosowanie nowych części o zmienionych wymiarach i kształtach może skutkować problemami z montażem, ponieważ istniejące tolerancje oraz pasowania nie będą już odpowiednie. W przypadku obróbki jednej części na wymiar nominalny, a drugiej na wymiar naprawczy, również pojawia się ryzyko, że nie zostanie osiągnięte właściwe dopasowanie, co jest kluczowe w mechanice. Dobór wymiarów nominalnych i naprawczych musi być przeprowadzony zgodnie z dokładnymi specyfikacjami i zaleceniami producenta, aby zapobiec problemom z wydajnością oraz żywotnością podzespołów. Ponadto, wymiana jednej części na nową o wymiarze naprawczym i obróbka drugiej na odpowiedni wymiar i kształt są bardziej efektywne ekonomicznie oraz technologicznie, co pozwala na optymalne wykorzystanie istniejących zasobów i minimalizację kosztów. W rzeczywistości, stosowanie właściwych metod naprawy zgodnych z zasadami inżynierii ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pojazdów.

Pytanie 10

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. wymianą płynu hamulcowego
B. jednoczesną wymianą tarcz i klocków hamulcowych
C. dezaktywacją zacisków hamulcowych
D. odpowietrzeniem układu hamulcowego
Wymiana klocków hamulcowych tylnej osi w pojazdach z systemami EPB i SBC wymaga specjalistycznych procedur, które niestety nie są odpowiednio odzwierciedlone w innych odpowiedziach. Równoczesna wymiana tarcz i klocków hamulcowych jest często zalecana, ale nie jest wymagana w każdym przypadku. Tarczę hamulcową należy wymieniać tylko wtedy, gdy jest zużyta lub uszkodzona. Odpowietrzenie układu hamulcowego jest procedurą, która stosuje się zazwyczaj po wymianie elementów hydraulicznych lub w przypadku zassania powietrza do układu, a nie w kontekście wymiany klocków hamulcowych. Wymiana płynu hamulcowego jest również istotna, ale nie jest bezpośrednio związana z wymianą klocków w systemach EPB lub SBC. Płyn hamulcowy powinien być wymieniany regularnie, zazwyczaj co dwa lata, ale nie jest to wymóg związany z samą wymianą klocków. Te niepoprawne założenia mogą prowadzić do niepotrzebnych komplikacji i kosztów, a także do ryzykownych sytuacji na drodze, jeżeli nie zostaną uwzględnione odpowiednie procedury. Kluczową kwestią jest zrozumienie, że systemy hamulcowe w nowoczesnych pojazdach wymagają precyzyjnych działań i stosowania się do zaleceń producentów, aby zapewnić maksymalne bezpieczeństwo i efektywność działania. Ignorowanie tych zasad może prowadzić do poważnych awarii oraz obniżenia efektywności hamowania.

Pytanie 11

W trakcie serwisowania pojazdów obowiązkowe jest noszenie okularów ochronnych podczas

A. prac związanych ze szlifowaniem.
B. ładowania akumulatorów.
C. wymiany płynu chłodzącego.
D. naprawy opon.
Odpowiedź dotycząca obowiązkowego stosowania okularów ochronnych podczas prac szlifierskich jest prawidłowa, ponieważ tego typu działalność generuje znaczną ilość pyłu oraz drobnych cząstek, które mogą stanowić zagrożenie dla oczu. Podczas szlifowania materiałów, takich jak metal czy drewno, detale mogą być odrzucane z dużą prędkością, co zwiększa ryzyko urazu wzroku. Standardy BHP oraz zalecenia dotyczące ochrony osobistej wskazują na konieczność stosowania okularów ochronnych w takich sytuacjach, aby zminimalizować ryzyko uszkodzeń. Przykładem mogą być prace w warsztatach mechanicznych, gdzie szlifowanie komponentów silnika lub nadwozia pojazdów jest na porządku dziennym. Używanie okularów ochronnych nie tylko chroni oczy przed zranieniami, ale także przed działaniem pyłów chemicznych, które mogą występować w niektórych materiałach. Pracownicy powinni być również szkoleni w zakresie właściwego doboru okularów, które powinny spełniać normy ochrony osobistej PN-EN 166.

Pytanie 12

W pojeździe z doładowanym silnikiem diesla, po długotrwałej eksploatacji, przed zatrzymaniem silnika, powinno się

A. odłączyć wszystkie odbiorniki energii
B. otworzyć pokrywę silnika, aby przyspieszyć proces chłodzenia
C. włączyć ogrzewanie w celu szybszego schłodzenia silnika
D. zostawić auto na kilka minut na niskich obrotach
Odpowiedź polegająca na pozostawieniu pojazdu na wolnych obrotach przez kilka minut przed jego unieruchomieniem jest uzasadniona technicznie. Silniki wysokoprężne, zwłaszcza te z doładowaniem, generują znaczną ilość ciepła podczas długotrwałej jazdy. Kiedy silnik jest wyłączany natychmiast po zakończeniu jazdy, może to prowadzić do nadmiernego nagrzewania się niektórych komponentów, zwłaszcza turbosprężarki, co z kolei może skutkować ich uszkodzeniem. Pozostawienie silnika na wolnych obrotach pozwala na jego stopniowe schłodzenie, co sprzyja równomiernemu rozprowadzeniu temperatury oraz redukcji ryzyka uszkodzenia. To praktyka stosowana przez wielu doświadczonych kierowców oraz zalecana przez producentów pojazdów, co potwierdzają również standardy branżowe. Przykładem może być sytuacja, w której po długiej trasie kierowca dojeżdża do stacji benzynowej; zatrzymując się na wolnych obrotach, zmniejsza ryzyko awarii spowodowanych nagłym chłodzeniem silnika. Dobrze jest również pamiętać o systematycznym sprawdzaniu stanu oleju silnikowego, ponieważ odpowiednia jego jakość i poziom wpływają na efektywność chłodzenia silnika.

Pytanie 13

Przedstawione na ilustracji narzędzie służy do

Ilustracja do pytania
A. odkręcania filtra oleju.
B. ustawiania naciągu paska wielorowkowego.
C. zdejmowania przegubu z półosi.
D. blokowania rozrządu przy wymianie paska zębatego.
Wiele osób może pomylić zastosowanie narzędzia przedstawionego na ilustracji z innymi czynnościami serwisowymi, co prowadzi do nieprawidłowych wniosków. Na przykład, blokowanie rozrządu przy wymianie paska zębatego wymaga zupełnie innych narzędzi, takich jak blokady rozrządu, które precyzyjnie ustabilizują elementy silnika w odpowiedniej pozycji. Ustawianie naciągu paska wielorowkowego również nie ma związku z tym narzędziem, ponieważ do tego celu używane są narzędzia do pomiaru napięcia oraz specjalistyczne klucze. Zdejmowanie przegubu z półosi wymaga zastosowania narzędzi takich jak ściągacze, które są dostosowane do tego konkretnego zadania. Każde z tych narzędzi ma swoje specyficzne zastosowanie i nie można ich zamieniać ani mylić z kluczem do filtrów oleju. Typowe błędy myślowe, które prowadzą do takich nieporozumień, to brak zrozumienia specyfiki narzędzi mechanicznych oraz ich przeznaczenia. Klucz do filtrów oleju jest zaprojektowany do pracy z filtrami, które mają charakterystyczne kształty i rozmiary, co wyklucza jego użycie w opisanych powyżej zadaniach. Zrozumienie właściwego zastosowania narzędzi w mechanice jest kluczowe dla bezpieczeństwa oraz efektywności pracy w warsztacie.

Pytanie 14

Jakie jest typowe rozstawienie wykorbienia wału korbowego w silniku o trzech cylindrach w stopniach?

A. 120°
B. 180°
C. 90°
D. 270°
Odpowiedzi wskazujące na inne kąty rozstawienia wykorbienia, takie jak 90°, 180° czy 270°, są błędne z kilku istotnych powodów. Rozstawienie 90° mogłoby prowadzić do nadmiernych drgań i nierównomiernego rozkładu sił na wał korbowy, co negatywnie wpływałoby na żywotność silnika oraz komfort pracy. Kąt 180° sugerowałby, że cylindry są położone naprzeciwko siebie, co w przypadku silników 3-cylindrowych jest technicznie niemożliwe i nieefektywne, ponieważ wymagałoby to zastosowania dodatkowych mechanizmów do zrównoważenia jednostki. Z kolei rozstawienie 270° byłoby również niepraktyczne, ponieważ prowadziłoby do jeszcze większych nierówności w pracy silnika i zwiększonego zużycia paliwa. Takie błędne podejścia często wynikają z niepełnego zrozumienia zasad działania silników oraz mechaniki wykorbienia, co jest kluczowe w pracy inżyniera. Prawidłowe zrozumienie rozstawienia wykorbienia cylindrów jest niezbędne do projektowania silników o odpowiednich właściwościach dynamicznych i wydajnościowych. Dlatego ważne jest, aby przy projektowaniu silników kierować się sprawdzonymi normami i praktykami branżowymi, które zapewniają efektywność i niezawodność jednostek napędowych.

Pytanie 15

Oznaczenie na alternatorze: 14V, 90A wskazuje

A. sprawność alternatora
B. najmniejszy prąd wzbudzenia
C. maksymalne natężenie prądu dla akumulatora
D. najniższe zdolności produkcyjne prądu
Zrozumienie oznaczeń alternatora jest kluczowe dla właściwej interpretacji jego specyfikacji. Wiele osób może błędnie zinterpretować zapis 14V, 90A, myląc jego znaczenie z innymi parametrami. Przykładowo, nieodpowiednie zrozumienie mocy alternatora może prowadzić do założenia, że 90A odnosi się do minimalnego natężenia prądu na akumulatorze. W rzeczywistości alternator służy do dostarczania prądu, a jego wydajność jest mierzona w kategoriach maksymalnej wartości prądu, jaką może wygenerować. Innym częstym błędem jest przekonanie, że 14V odzwierciedla minimalne możliwości wytwórcze prądu. Napięcie 14V to typowe napięcie robocze dla alternatorów w pojazdach, ale nie oznacza to, że jest to dolna granica wydajności; to raczej wartość optymalna dla ładowania akumulatora. Ponadto, mylenie prądu wzbudzenia z całkowitą wydajnością alternatora prowadzi do nieporozumień dotyczących jego funkcji. Prąd wzbudzenia jest niezbędny do wytworzenia pola magnetycznego w alternatorze, ale nie jest bezpośrednio związany z jego maksymalną mocą. Dlatego ważne jest, aby zrozumieć, że każdy z tych parametrów ma swoje specyficzne znaczenie i nie powinno się ich mylić. Prawidłowe zrozumienie tych pojęć pozwala na lepsze dobieranie komponentów oraz ich efektywne wykorzystanie, co jest kluczowe dla zapewnienia niezawodności systemu elektrycznego w pojeździe.

Pytanie 16

Retarder to element charakterystyczny dla budowy pojazdów

A. hybrydowych
B. osobowych
C. ciężarowych
D. elektrycznych
Pojęcie retardera często jest mylone z funkcjami i systemami występującymi w innych typach pojazdów, co może prowadzić do błędnych wniosków. W przypadku pojazdów osobowych, standardowe systemy hamulcowe są zazwyczaj wystarczające do zapewnienia odpowiedniego hamowania, zwłaszcza w kontekście miejskiego ruchu czy jazdy po autostradach. Oczywiście, niektóre modele samochodów osobowych mogą mieć systemy wspomagające, jednak nie są one nazywane retarderami, ponieważ nie pełnią one tej samej funkcji co w pojazdach ciężarowych. W pojazdach hybrydowych czy elektrycznych, hamowanie regeneracyjne jest kluczowym elementem, ale również nie odnosi się bezpośrednio do działania retardera. Hamowanie regeneracyjne ma na celu odzyskiwanie energii, co jest zupełnie inną koncepcją niż opór hydrauliczny retardera, który działa na zasadzie przekształcania energii kinetycznej w ciepło. W rezultacie, interpretacja funkcji retardera w kontekście pojazdów osobowych, hybrydowych czy elektrycznych może prowadzić do mylnych wniosków, ponieważ te systemy nie są zaprojektowane z myślą o potrzebach i wymaganiach, które napotykają pojazdy ciężarowe, które transportują znaczne ładunki w trudnych warunkach.

Pytanie 17

Kontrolą obiegu cieczy w silniku, pomiędzy małym a dużym obiegiem układu chłodzenia, zajmuje się

A. wentylator
B. pompa wody
C. termostat
D. czujnik wody
Termostat odgrywa kluczową rolę w regulacji przepływu cieczy w układzie chłodzenia silnika. Jest to urządzenie odpowiedzialne za kontrolowanie temperatury płynu chłodzącego poprzez otwieranie i zamykanie obiegu. W przypadku, gdy silnik jest zimny, termostat pozostaje zamknięty, co umożliwia szybkie podgrzanie płynu chłodzącego i osiągnięcie optymalnej temperatury pracy. Gdy temperatura osiągnie ustalony poziom, termostat otwiera się, umożliwiając wypływ cieczy do większego obiegu, co zapobiega przegrzaniu silnika. Utrzymanie odpowiedniej temperatury jest niezbędne dla wydajności silnika, jego trwałości oraz ekonomiki paliwowej. W praktyce, nieprawidłowe działanie termostatu może prowadzić do przegrzewania lub niedogrzewania silnika, co wpływa na jego osiągi i może prowadzić do kosztownych napraw. W związku z tym, regularne sprawdzanie oraz ewentualna wymiana termostatu są zalecane jako część rutynowej konserwacji pojazdu, zgodnie z dobrymi praktykami branżowymi.

Pytanie 18

Z zamieszczonego rysunku montażowego przedniego zawieszenia pojazdu wynika, że nakrętki łącznika stabilizatora należy dokręcać z momentem

Ilustracja do pytania
A. 85 Nm
B. 45 Nm
C. 30 Nm
D. 20 Nm
Poprawna odpowiedź na pytanie to 45 Nm, co zostało jasno wskazane na diagramie montażowym przedniego zawieszenia pojazdu. Moment dokręcenia nakrętek łącznika stabilizatora jest kluczowy dla zapewnienia stabilności i bezpieczeństwa podczas jazdy. Nadmierne dokręcenie może prowadzić do uszkodzenia gwintów lub elementów zawieszenia, a zbyt luźne nakrętki mogą skutkować nieprawidłowym działaniem zawieszenia, co może prowadzić do niebezpiecznych sytuacji na drodze. W praktyce, stosowanie odpowiednich momentów dokręcania, jak te podane w dokumentacji pojazdu, jest niezbędne do utrzymania pojazdu w dobrym stanie technicznym. Producent pojazdu określa te wartości w oparciu o szczegółowe analizy obciążeń oraz wymagania materiałowe użytych komponentów, co jest zgodne z normami branżowymi. Pamiętajmy, że stosowanie odpowiednich narzędzi, takich jak klucz dynamometryczny, pozwala na precyzyjne osiągnięcie wymaganych wartości momentu, co jest niezbędne w profesjonalnej obsłudze samochodów.

Pytanie 19

W trakcie corocznego przeglądu serwisowego pojazdu należy zawsze przeprowadzić

A. wymianę oleju silnikowego i filtra oleju
B. wymianę piór wycieraczek
C. wymianę płynu hamulcowego
D. wymianę płynu chłodzącego
Wymiana płynu chłodzącego, płynu hamulcowego i piór wycieraczek są ważnymi czynnościami serwisowymi, ale nie są one kluczowymi elementami corocznego przeglądu pojazdu w kontekście silnika. Płyn chłodzący, chociaż istotny dla odprowadzania ciepła z silnika, nie jest wymieniany co roku w każdym pojeździe, a jego wymiana zależy od specyfikacji producenta oraz stanu eksploatacyjnego. Podobnie, płyn hamulcowy, choć niezwykle ważny dla bezpieczeństwa, nie wymaga tak częstych wymian jak olej silnikowy. W przypadku piór wycieraczek, ich wymiana powinna być uzależniona od stanu zużycia, a nie od corocznego przeglądu. Często kierowcy mylą te procedury z wymianą oleju, co może prowadzić do zaniedbań w konserwacji silnika. Dobrą praktyką jest zwracanie uwagi na poziom i jakość oleju oraz jego regularną wymianę, gdyż to bezpośrednio wpływa na wydajność i bezpieczeństwo pojazdu. Utrzymanie właściwego poziomu oleju oraz jego jakości powinno być priorytetem podczas serwisowania, gdyż ich zaniedbanie prowadzi do nieodwracalnych uszkodzeń silnika.

Pytanie 20

Jaką metodą realizuje się planowanie głowicy?

A. honowania
B. toczenia
C. rozwiercania
D. frezowania
Wybór niewłaściwych metod obróbczych, takich jak honowanie, rozwiercanie czy toczenie, często wynika z niepełnego zrozumienia specyfiki procesów obróbczych. Honowanie jest techniką, która służy głównie do poprawy jakości powierzchni w otworach cylindrycznych oraz do osiągania wysokiej precyzji wymiarowej, a nie do formowania kształtów głowic. Używane zazwyczaj na końcowym etapie obróbki, honowanie ma na celu eliminację mikrouszkodzeń i zapewnienie idealnego wykończenia, co czyni tę metodę nieodpowiednią w kontekście planowania głowicy, gdzie wymagana jest głównie obróbka kształtowa. Rozwiercanie z kolei to proces przeznaczony do zwiększania średnicy otworów w obrabianych materiałach, co nie jest kluczowym elementem w produkcji głowic, gdzie bardziej istotne jest kształtowanie ich konturów. Toczenie, mimo że jest skuteczną metodą obróbczo-formującą, także nie nadaje się do precyzyjnego planowania głowic, zwłaszcza w kontekście ich złożonej geometrii. Zrozumienie, które procesy obróbcze są właściwe do danego zastosowania, jest kluczowe w projektowaniu i produkcji, a wybór odpowiedniej metody ma bezpośredni wpływ na jakość oraz efektywność produkcji. W przemyśle stosuje się różne standardy, takie jak ISO 9001, które podkreślają znaczenie odpowiedniego doboru technologii obróbczej w odniesieniu do specyfiki produkcji.

Pytanie 21

Do warsztatu zgłosił się klient w celu wymiany łożysk tylnych kół w samochodzie. W tabeli zamieszczono ceny części na 1 koło. Jeżeli cena roboczogodziny wynosi 40 zł netto, podatek VAT 23%, a czas wykonania naprawy 2 godziny, to koszt naprawy wyniesie

CzęśćCena
zł netto
komplet łożysk35,00
pierścień uszczelniający – 1szt.8,00
nakrętka zabezpieczająca2,00
A. 153,75 zł
B. 170,00 zł
C. 196,80 zł
D. 209,10 zł
Jasne, żeby zobaczyć, dlaczego inne opcje są błędne, warto spojrzeć na to, jak się liczy te koszty naprawy. Często ludzie zapominają uwzględnić wszystkie składowe kosztów, jak części i robociznę. Czasami można nie zauważyć, że cena za łożyska dotyczy tylko jednego koła, przez co całkowity koszt jest zaniżony. Też często pomijają VAT w swoich obliczeniach, co też nie jest dobre, bo końcowa kwota wychodzi nieprawidłowa. Na przykład, jeśli ktoś liczy tylko 80 zł za robociznę, to kwota przed VAT nie ma sensu. Dodatkowo, błędy w szacowaniu czasu na naprawę czy stawki za roboczogodzinę mogą wprowadzać dużą różnicę. W praktyce, dobrze jest umieć te rzeczy policzyć, bo to wpływa na to, jak warsztat jest postrzegany przez klientów. Dlatego bardzo ważne, żeby każdy, kto robi wyceny, znał się na tych standardach i wiedział, co dokładnie wliczać w koszty.

Pytanie 22

Podwyższona temperatura pracy silnika może być efektem

A. zbyt niskiej temperatury powietrza zewnętrznego
B. luźnego paska napędu pompy cieczy chłodzącej
C. nieustannie działającego wentylatora chłodnicy
D. zablokowania termostatu w pozycji otwartej
Zbyt niska temperatura zewnętrzna powietrza nie jest przyczyną podwyższonej temperatury roboczej silnika. Wręcz przeciwnie, niskie temperatury zewnętrzne często prowadzą do obniżenia temperatury pracy silnika, co może być korzystne w kontekście efektywności paliwowej. Silnik potrzebuje optymalnej temperatury do efektywnego spalania paliwa, a zbyt niskie temperatury mogą powodować większe zużycie paliwa oraz zwiększone emisje spalin. Zablokowanie termostatu w pozycji otwartej również nie jest powodem podwyższonej temperatury. W takiej sytuacji silnik nie osiąga optymalnej temperatury roboczej, co skutkuje długotrwałym przegrzewaniem się silnika w warunkach obciążenia, ale nie w sposób bezpośredni prowadzi do podwyższenia temperatury roboczej. Stale pracujący wentylator chłodnicy może wpływać na efektywność chłodzenia, ale nie jest źródłem problemu z podwyższoną temperaturą. Wentylator włącza się w zależności od temperatury płynu chłodzącego. Jego ciągła praca może być wynikiem problemu, ale nie jest to przyczyna podwyższonej temperatury. Właściwa diagnostyka wymaga zrozumienia złożonej interakcji pomiędzy różnymi komponentami silnika i układu chłodzenia, co jest kluczowe dla zapobiegania awariom i utrzymania silnika w dobrym stanie technicznym.

Pytanie 23

Działanie stetoskopu opiera się na zjawisku

A. akustycznym
B. elektrycznym
C. grawitacyjnym
D. hydraulicznych
Wybór innych zjawisk, takich jak grawitacyjne, hydrauliczne czy elektryczne, jako podstawy działania stetoskopu jest nieprawidłowy z kilku powodów. Zjawisko grawitacyjne odnosi się do przyciągania mas, a w kontekście stetoskopu nie ma znaczenia dla analizy dźwięków. W rzeczywistości, grawitacja nie wpływa na to, jak dźwięki są przenoszone przez powietrze czy inną substancję, dlatego nie może być uznana za podstawę jego działania. Podobnie, zjawisko hydrauliczne, które odnosi się do przepływu cieczy, nie ma zastosowania w kontekście stetoskopu, który zajmuje się falami dźwiękowymi w gazie, a nie w cieczy. Poza tym, wybór elektrycznego zjawiska również jest mylny, ponieważ choć niektóre nowoczesne stetoskopy mogą mieć funkcje elektroniczne, ich podstawowa zasada działania opiera się na akustyce. Błędem myślowym jest zatem zakładanie, że jedynie nowoczesne technologie lub zasady fizyczne związane z cieczami mogą być podstawą działania tak prostego, ale zarazem skutecznego narzędzia. Rzeczywistość jest taka, że skuteczność stetoskopu w diagnostyce medycznej opiera się na umiejętności wykrywania i analizy dźwięków, co czyni zjawisko akustyczne jego kluczowym elementem.

Pytanie 24

Jaką częstotliwość powinny mieć błyski świateł kierunkowskazów?

A. 90 ± 30 błysków w ciągu minuty
B. 100 ± 30 błysków w ciągu minuty
C. 120 ± 30 błysków w ciągu minuty
D. 60 ± 30 błysków w ciągu minuty
Wybór częstotliwości błysków kierunkowskazów różniący się od 90 ± 30 błysków na minutę może prowadzić do wielu problemów związanych z komunikacją na drodze. Na przykład, wybór wartości 60 ± 30 błysków na minutę oznacza, że kierunkowskazy będą świecić znacznie wolniej, co może być mylące dla innych uczestników ruchu. Taki wolny rytm może nie zapewniać wystarczającej widoczności sygnału, zwłaszcza w sytuacjach o dużym natężeniu ruchu, gdzie czas reakcji jest kluczowy. Z drugiej strony, częstotliwość 100 ± 30 błysków na minutę może być zbyt szybka, przez co inne pojazdy mogą mieć problemy z zauważeniem sygnału, co zwiększa ryzyko wypadków. Częstość 120 ± 30 błysków na minutę nie tylko narusza zasady dotyczące ergonomii, ale także może być postrzegana jako niepokojąca przez innych kierowców. Często, wybór nieodpowiedniej częstotliwości wynika z błędnych założeń, które prowadzą do niskiego poziomu bezpieczeństwa na drogach. Dlatego ważne jest, aby stosować się do uznawanych standardów branżowych, które zapewniają optymalną widoczność i łatwość w interpretacji sygnałów kierunkowskazów.

Pytanie 25

W trakcie inspekcji głowicy silnika zauważono jej deformację, która polegała na zniekształceniu powierzchni styku z kadłubem. Odzyskanie właściwego kształtu głowicy jest możliwe poprzez przeprowadzenie obróbki

A. mechanicznej w temperaturze pokojowej
B. mechanicznej w wysokiej temperaturze
C. plastycznej w wysokiej temperaturze
D. plastycznej w temperaturze pokojowej
Wybór związany z obróbką plastyczną na zimno czy gorąco oraz mechanicznej na gorąco nie jest dobry, bo pomija kilka kluczowych rzeczy. Obróbka plastyczna zmienia strukturę materiału, co może osłabić głowicę, a tego nie chcemy, zwłaszcza że takie elementy muszą być mocne i odporne na trudne warunki, jak wysoka temperatura czy ciśnienie. Obróbka na gorąco, gdzie podgrzewamy materiał przed przetwarzaniem, też może prowadzić do niekorzystnych zmian, co w przypadku głowicy nie będzie dobre. Znajomość tych zasad jest mega ważna, gdy mówimy o naprawach i wyborze odpowiednich metod obrabiania, bo chodzi o to, żeby części silnika były trwałe i niezawodne.

Pytanie 26

Przegub homokinetyczny zapewnia

A. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
B. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
C. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
D. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 27

W trakcie pracy w warsztacie powłoki ochronne, stosowane na powierzchni elementów karoserii pojazdu, uzyskuje się poprzez

A. platerowanie
B. natryskiwanie
C. fosforanowanie
D. metalizowanie ogniowe
Platerowanie, fosforanowanie i metalizowanie ogniowe to różne techniki, które nie są bezpośrednio związane z optymalnym zastosowaniem powłok antykorozyjnych na elementach nadwozia pojazdów. Platerowanie polega na nakładaniu cienkowarstwowych powłok metalowych na podłoże, co może nie zapewniać odpowiedniej ochrony przed korozją w dłuższym okresie. Ta metoda jest stosunkowo kosztowna i nie zawsze gwarantuje równomierne pokrycie, co jest kluczowe w kontekście ochrony przed czynnikami atmosferycznymi. Fosforanowanie, z drugiej strony, jest procesem chemicznym, który tworzy na powierzchni metalowej cienką warstwę fosforanów. Choć ta technika może poprawić przyczepność powłok malarskich, to sama w sobie nie jest wystarczająca jako samodzielna forma ochrony przed korozją, szczególnie w trudnych warunkach eksploatacyjnych. Metalizowanie ogniowe, które polega na pokrywaniu elementów metalowych stopionym metalem, również ma swoje ograniczenia, ponieważ może prowadzić do nierównomiernego pokrycia oraz problemów z przyczepnością. Użytkownicy mogą mylnie sądzić, że te metody oferują podobny poziom ochrony jak natryskiwanie, co jest nieprecyzyjne. W rzeczywistości, natryskiwanie pozwala na uzyskanie znacznie lepszej jakości powłok, co jest kluczowe dla długotrwałej ochrony przed korozją i zapewnienia bezpieczeństwa eksploatacji pojazdów.

Pytanie 28

Całkowity wydatek na naprawę samochodu według kosztorysu wynosi 1 550,00 zł, z czego 950,00 zł to koszt wymienionych elementów. Jaką kwotę powinno się wpisać na paragon, biorąc pod uwagę 20% zniżkę dla klienta na usługi w tym warsztacie?

A. 1430,00 zł
B. 1240,00 zł
C. 1470,00 zł
D. 1360,00 zł
Obliczenia dotyczące rabatów mogą być mylące, zwłaszcza jeśli nie uwzględnia się, która część całkowitego kosztu podlega rabatowi. W przypadku tego pytania, niepoprawne odpowiedzi mogą wynikać z błędnego założenia, że rabat należy stosować do całkowitej kwoty naprawy, włącznie z kosztami części. Takie podejście nie uwzględnia faktu, że rabaty zazwyczaj przyznawane są jedynie na usługi, a nie na części zamienne. Warto również zauważyć, że niektórzy mogą błędnie pomyśleć, że rabat można zastosować do kosztów części, co prowadzi do obliczeń, które nie odzwierciedlają rzeczywistości. Typowym błędem jest także pomijanie etapów obliczeniowych, jak na przykład, nieuzyskanie rabatu przed jego odjęciem od całkowitych kosztów. Przy obliczaniu rabatu kluczowe jest zrozumienie, na jaką część kosztorysu jest on naliczany. W praktyce, właściwe zrozumienie i obliczenie rabatów jest kluczowe dla utrzymania przejrzystości finansowej oraz skuteczności działań marketingowych w serwisach samochodowych. Dlatego tak istotne jest, aby dokładnie analizować każdy element kosztorysu przed podjęciem decyzji o rabacie.

Pytanie 29

Współczesne bloki silników z zapłonem wewnętrznym przeważnie są produkowane z

A. stopowego żeliwa
B. węglowego staliwa
C. nierdzewnej stali
D. stopów aluminium
Nowoczesne bloki silników spalinowych najczęściej wykonuje się ze stopów aluminium, co wynika z ich korzystnych właściwości mechanicznych oraz niskiej masy. Aluminium charakteryzuje się doskonałą odpornością na korozję, co jest kluczowe w przypadku silników narażonych na działanie różnych substancji chemicznych oraz wysokich temperatur. Wykorzystanie stopów aluminium pozwala na redukcję masy silnika, co przekłada się na poprawę efektywności paliwowej i zwiększenie dynamiki pojazdu. W praktyce, bloki silników wykonane z aluminium są stosowane w wielu nowoczesnych samochodach osobowych oraz wyścigowych, gdzie redukcja masy jest kluczowym czynnikiem. Ponadto, nowoczesne technologie produkcji, takie jak odlewanie ciśnieniowe, pozwalają na uzyskanie skomplikowanych kształtów z wysoką precyzją, co jest istotne dla optymalizacji wydajności silnika. Dzięki tym właściwościom, aluminium stało się standardem w branży motoryzacyjnej, a jego stosowanie wspiera dążenie do zmniejszenia zużycia paliwa oraz emisji spalin.

Pytanie 30

Zjawisko, w którym siła hamująca osłabia się, a następnie zanika w wyniku przegrzania, na przykład podczas długotrwałego hamowania, to

A. fading
B. honowanie
C. pochłanianie
D. przyczepność
Fading to proces, który zachodzi w układach hamulcowych, polegający na osłabieniu siły hamującej w wyniku ich przegrzania. W praktyce oznacza to, że podczas długotrwałego hamowania, na przykład w trakcie intensywnego zjazdu ze wzniesienia, materiały hamulcowe mogą osiągnąć temperatury, które prowadzą do zmiany ich właściwości. W przypadku hamulców tarczowych, nadmierne ciepło może powodować, że klocki hamulcowe tracą skuteczność, co jest szczególnie niebezpieczne w sytuacjach wymagających dużej precyzji i odpowiedzialności, jak np. na torze wyścigowym czy w transporcie publicznym. W branży motoryzacyjnej stosuje się różne materiały, takie jak węgiel lub ceramika, które mają lepsze właściwości cieplne, zmniejszając ryzyko fadingu. Praktyczne zrozumienie tego zjawiska jest kluczowe dla inżynierów projektujących systemy hamulcowe oraz dla kierowców, którzy muszą być świadomi ograniczeń swoich pojazdów, szczególnie w trudnych warunkach drogowych.

Pytanie 31

Na fotografii numerem "3" zaznaczono wałek

Ilustracja do pytania
A. zdawczy.
B. główny.
C. sprzęgłowy.
D. pośredni.
Odpowiedź 'sprzęgłowy' jest jak najbardziej trafna. Patrząc na zdjęcie numer 3, ten wałek naprawdę ma ważną rolę w przenoszeniu napędu. Łączy sprzęgło z skrzynią biegów, co jest kluczowe, żeby wszystko działało płynnie. Tak w praktyce, jak wałek sprzęgłowy zawodzisz, to problemy z biegami mogą być na porządku dziennym, a do tego wszystko się szybciej zużywa. Dobrze skonstruowany wałek powinien mieć wysoką odporność na obciążenia, a także odpowiednią sztywność, żeby wytrzymać te wszystkie siły generowane podczas pracy silnika. Przemysłowi często podkreślają, że jakość wykonania tych komponentów jest mega ważna dla bezpieczeństwa i niezawodności pojazdów. Jak chcesz być dobrym mechanikiem, musisz wiedzieć, jaką rolę pełni wałek sprzęgłowy w całym układzie napędowym.

Pytanie 32

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. zamienić miejscami
B. zregenerować, gdy uległy zniszczeniu
C. pozostawić w oryginalnych gniazdach
D. wymienić na nowe
Wymiana pierścieni uszczelniających Simmera na nowe jest niezbędna, ponieważ te elementy są kluczowe dla zapewnienia szczelności układów mechanicznych, w tym skrzyń biegów. Uszczelnienia te często narażone są na działanie wysokich temperatur, ciśnień oraz substancji chemicznych, co prowadzi do ich zużycia i degradacji. Nowe uszczelnienia zapewniają optymalną funkcjonalność i minimalizują ryzyko wycieków oleju lub innych płynów eksploatacyjnych, co mogłoby prowadzić do poważnych uszkodzeń mechanicznych. Stosowanie nowych pierścieni jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie używania oryginalnych lub wysokiej jakości zamienników. Na przykład, w przypadku wymiany uszczelnień w samochodach, producenci zalecają stosowanie elementów zgodnych z ich specyfikacjami, co ma na celu zapewnienie długotrwałej i niezawodnej pracy pojazdu. Oprócz tego, wymiana starych uszczelnień na nowe w trakcie przeglądów technicznych lub napraw zwiększa bezpieczeństwo i efektywność urządzeń, co jest niezbędne w kontekście utrzymania właściwego stanu technicznego pojazdów.

Pytanie 33

Jak dokonuje się odczytu ustawienia geometrii kół?

A. przy skręcie kół o 30 stopni
B. wyłącznie w przypadku pojazdu nieobciążonego
C. wyłącznie w przypadku pojazdu obciążonego
D. zgodnie z wytycznymi producenta
Odpowiedź "zgodnie z zaleceniami producenta" jest prawidłowa, ponieważ ustawienia geometrii kół powinny być dokonywane zgodnie z zaleceniami producenta pojazdu. Każdy producent definiuje specyficzne parametry dla ustawienia geometrii, takie jak kąt nachylenia, zbieżność czy kąt wyprzedzenia sworznia zwrotnicy, które są optymalne dla danego modelu pojazdu. Przykładowo, niewłaściwe ustawienie geometrii kół może prowadzić do nadmiernego zużycia opon, problemów z układem kierowniczym, a także wpływać na stabilność pojazdu podczas jazdy. Użycie odpowiednich narzędzi i technik, jak np. laserowych systemów do pomiaru geometrii, umożliwia precyzyjne ustawienie, co jest kluczowe dla bezpieczeństwa i komfortu jazdy. W praktyce, zaleca się przeprowadzanie tych regulacji podczas rutynowych przeglądów technicznych, szczególnie po zmianie zawieszenia, wymiany opon lub kolizji. Regularne sprawdzanie geometrii kół pozwala na utrzymanie właściwych parametrów, co przekłada się na lepszą wydajność paliwową oraz dłuższą żywotność komponentów zawieszenia.

Pytanie 34

Podczas inspekcji układu zawieszenia zauważono odkształcenie wahacza koła. W tej sytuacji mechanik powinien

A. wygięty wahacz naprawić na zimno
B. wykonać kompleksową regulację geometrii zawieszenia
C. wygięty wahacz naprawić na gorąco
D. uszkodzony wahacz wymienić na nowy
W przypadku stwierdzenia skrzywienia wahacza koła, najlepszym rozwiązaniem jest jego wymiana na nowy. Wahacz jest kluczowym elementem układu zawieszenia, który odpowiada za stabilność pojazdu, a także zapewnia odpowiednią geometrię kół. Skrzywienie wahacza może prowadzić do nieprawidłowego ustawienia kół, co z kolei wpływa na bezpieczeństwo jazdy, zużycie opon oraz komfort podróżowania. Wymiana wahacza jest zgodna z zasadami dobrych praktyk w branży motoryzacyjnej, które zalecają stosowanie nowych, oryginalnych lub wysokiej jakości zamienników, aby zapewnić pełną funkcjonalność i bezpieczeństwo. W sytuacjach, gdy wahacz uległ uszkodzeniu, jego regeneracja poprzez prostowanie może wprowadzić dodatkowe ryzyko, gdyż nie gwarantuje to przywrócenia pierwotnych właściwości mechanicznych materiału. Przykładem może być sytuacja, w której po prostowaniu wahacza następuje jego dalsza deformacja podczas eksploatacji pojazdu. Dlatego zaleca się wymianę uszkodzonego wahacza na nowy, co zapewnia długoterminowe bezpieczeństwo oraz niezawodność układu zawieszenia.

Pytanie 35

Aby zmierzyć odległość między elektrodami świecy zapłonowej, należy zastosować

A. wzorcową płytkę.
B. mikrometr do średnic.
C. suwmiarkę.
D. szczelinomierz.
Pomiar przerwy między elektrodami świecy zapłonowej to zadanie wymagające precyzyjnego narzędzia. Płytka wzorcowa, choć może wydawać się użyteczna, nie jest odpowiednia do pomiarów w tym kontekście, ponieważ nie pozwala na dokładne i powtarzalne odczyty. Użycie płytki może prowadzić do subiektywnych osądów, co jest niezgodne z wymaganiami technicznymi. Suwmiarka, z drugiej strony, jest narzędziem bardziej ogólnym, które choć może oferować przyzwoitą dokładność, nie jest zoptymalizowane do pomiarów szczelin o małych wymiarach, co czyni ją mniej odpowiednią do tej specyficznej aplikacji. Średnicówka mikrometryczna, mimo że jest narzędziem precyzyjnym, została zaprojektowana do pomiaru średnic i nie jest przystosowana do pomiaru szczelin. W przypadku pomiaru szczeliny między elektrodami, ważne jest, aby narzędzie miało możliwość wprowadzenia pomiaru bezpośrednio do szczeliny, co jest cechą charakterystyczną szczelinomierzy. Błędne rozumienie zastosowania odpowiednich narzędzi może prowadzić do niepoprawnych pomiarów, co z kolei wpłynie na ogólną wydajność silnika. W branży motoryzacyjnej precyzja pomiarów jest kluczem do optymalizacji osiągów pojazdów, dlatego wybór odpowiednich narzędzi jest niezwykle istotny.

Pytanie 36

Klucze przedstawione na ilustracji służą do demontażu i montażu

Ilustracja do pytania
A. sondy λ.
B. przewodów hamulcowych.
C. nakrętek felg ze stopów lekkich.
D. czujników ABS.
Klucze przedstawione na ilustracji, znane jako klucze płaskie, są szeroko stosowane w mechanice samochodowej, szczególnie do demontażu i montażu przewodów hamulcowych. Ich rozmiary (10, 11, 12, 13 mm) są standardowe dla wielu komponentów układu hamulcowego. Właściwe użycie kluczy o tych wymiarach zapewnia bezpieczeństwo i efektywność przy pracy z przewodami, które muszą być odpowiednio dokręcone, aby uniknąć wycieków płynów hamulcowych. W przypadku nieprawidłowego montażu można narazić się na poważne problemy z bezpieczeństwem pojazdu. Przewody hamulcowe są krytycznymi elementami wpływającymi na działanie układu hamulcowego, dlatego użycie właściwych narzędzi jest kluczowe w zgodności z normami branżowymi. Warto zwrócić uwagę, że klucze te nie są używane do demontażu czujników ABS czy sond λ, które wymagają innych narzędzi, często specjalistycznych. Zapewnienie prawidłowego montażu i demontażu przewodów hamulcowych to nie tylko kwestia zgodności z normami, ale przede wszystkim bezpieczeństwa użytkowników pojazdów.

Pytanie 37

Charakterystykę zewnętrzną silnika wykonuje się podczas

A. testu dymomierzem
B. badania skanerem diagnostycznym
C. testu na hamowni
D. próby drogowej
Test dymomierzem, próba drogowa oraz badanie skanerem diagnostycznym to metody, które mają swoje specyficzne zastosowania, ale nie są odpowiednie do określania charakterystyki zewnętrznej silnika w kontekście wydajności i mocy. Test dymomierzem koncentruje się na pomiarze emisji spalin, co jest istotne w kontekście oceny ekologicznej, ale nie dostarcza informacji o mocy czy momencie obrotowym silnika. Próba drogowa z kolei dostarcza informacji o zachowaniu pojazdu w realnych warunkach, jednak wyniki mogą być zafałszowane przez zmienne zewnętrzne, takie jak warunki atmosferyczne czy stan nawierzchni, przez co nie można uzyskać precyzyjnych danych dotyczących wydajności silnika. Badanie skanerem diagnostycznym skupia się na analizie błędów systemów elektronicznych i nie jest właściwym narzędziem do oceny charakterystyki silnika. Te podejścia mogą prowadzić do mylnego wniosku, że są one wystarczające do oceny silnika, co jest błędne. Zrozumienie różnicy między tymi metodami jest kluczowe dla profesjonalistów w dziedzinie mechaniki i inżynierii samochodowej, aby właściwie dobierać narzędzia do analizy silników i ich parametrów.

Pytanie 38

W przypadku silnika czterosuwowego, gdy prędkość obrotowa wału korbowego wynosi 3000 obr/min, jaka jest prędkość obrotowa wałka rozrządu?

A. 3 000 obr/min
B. 750 obr/min
C. 6 000 obr/min
D. 1 500 obr/min
W silniku 4-suwowym jest taka zasada, że wał korbowy i wałek rozrządu obracają się w różny sposób. Wałek rozrządu kręci się z prędkością połowy prędkości wału korbowego. To dlatego, że każdy cykl silnika (ssanie, sprężanie, praca, wydech) wymaga dwóch obrotów wału korbowego. Czyli jak wał korbowy ma 3000 obr/min, to wałek rozrządu będzie miał 1500 obr/min. Ta wiedza to podstawa dla każdego mechanika czy inżyniera, bo od tego zależy, jak dobrze współpracują części silnika. W praktyce, jeśli wał korbowy i wałek rozrządu nie są dobrze zsynchronizowane, to silnik może się psuć i nie działać jak należy. Uważam, że to ważne info, żeby zrozumieć, jak to wszystko działa w silniku.

Pytanie 39

Podczas analizy kąta wyprzedzenia wtrysku paliwa, zmierzona wartość wynosiła od 7° do 12°. Powodem nieustalonej wartości kąta wyprzedzenia wtrysku paliwa może być

A. zbyt wysokie ciśnienie otwarcia wtryskiwacza
B. niewystarczające ciśnienie otwarcia wtryskiwacza
C. zużycie elementów napędu pompy wtryskowej
D. zużycie komponentów napędu układu rozrządu
Analizując pozostałe odpowiedzi, można zauważyć, że zbyt małe ciśnienie otwarcia wtryskiwacza może prowadzić do obniżonej ilości paliwa dostarczanego do komory spalania, co skutkuje niższą efektywnością pracy silnika. Jednakże, brak stałej wartości kąta wyprzedzenia wytrysku nie jest bezpośrednio związany z tym problemem. Działa to w przeciwnym kierunku, gdyż niewystarczające ciśnienie wtrysku spowoduje raczej stałe opóźnienie wtrysku niż jego zmienność. Z kolei zbyt duże ciśnienie otwarcia wtryskiwacza może prowadzić do nadmiaru paliwa, co również skutkuje problemami, ale ponownie nie jest to przyczyna wahań kąta wyprzedzenia. Zużycie elementów napędu układu rozrządu, choć może wpływać na synchronizację pracy silnika, to sama zmiana kąta wyprzedzenia wtrysku jest bardziej bezpośrednio związana z parametrami wtrysku paliwa. W rzeczywistości, jeśli układ rozrządu działa poprawnie, to zmiany w wtrysku wynikające z ciśnienia paliwa mają znacznie większy wpływ na kąt wyprzedzenia. Rozumienie tych zjawisk jest kluczowe dla diagnostyki i naprawy systemów wtryskowych oraz dla zapewnienia efektywności energetycznej silników spalinowych.

Pytanie 40

Zasilanie silnika z nadmiernie bogatą mieszanką paliwowo-powietrzną skutkuje pokryciem izolatora świecy zapłonowej osadem o kolorze

A. błękitnym
B. białoszarym
C. brunatnym
D. czarnym
Zasilanie silnika zbyt bogatą mieszanką paliwowo-powietrzną prowadzi do powstawania charakterystycznego osadu na izolatorze świecy zapłonowej, który przyjmuje kolor czarny. Taki stan rzeczy wynika z niepełnego spalania paliwa, co prowadzi do wzrostu ilości węgla i innych zanieczyszczeń. Gdy silnik nie otrzymuje odpowiedniej proporcji powietrza w stosunku do paliwa, efektywność spalania maleje, a nadmiar paliwa ulega rozkładowi, tworząc osad. Osad czarny na świecy zapłonowej może wskazywać na problemy z silnikiem, takie jak nieszczelności w układzie dolotowym, zanieczyszczone filtry powietrza lub zły stan wtryskiwaczy. W praktyce, aby poprawić efektywność pracy silnika, zaleca się regularne monitorowanie składu mieszanki paliwowo-powietrznej oraz stosowanie odpowiednich procedur diagnostycznych, takich jak analiza spalin czy inspekcja układów wtryskowych, zgodnie z normami Euro i wytycznymi producentów pojazdów.