Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 14:01
  • Data zakończenia: 8 grudnia 2025 14:28

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie parametry są najczęściej regulowane w systemach mechatronicznych z wykorzystaniem regulacji PID?

A. Wilgotność, napięcie, waga
B. Kolor, natężenie światła, zapach
C. Dźwięk, drgania, przyspieszenie
D. Prędkość, temperatura, ciśnienie
Regulacja PID, czyli proporcjonalno-całkująco-różniczkująca, jest jednym z najczęściej stosowanych algorytmów sterowania w mechatronice i automatyce. Jest używana do precyzyjnego utrzymania zadanych wartości parametrów procesowych, takich jak prędkość, temperatura czy ciśnienie. Przykładowo, w przemyśle produkcyjnym PID może kontrolować temperaturę pieca poprzez regulację dopływu paliwa lub prędkość taśmociągu poprzez kontrolę silnika napędowego. PID działa na zasadzie minimalizacji różnicy (błędu) pomiędzy wartością zadaną a rzeczywistą, wykorzystując trzy składowe: proporcjonalną, całkującą i różniczkującą, co pozwala na szybkie i stabilne osiągnięcie wartości zadanej. Algorytmy PID są powszechnie stosowane ze względu na swoją prostotę, efektywność i zdolność do adaptacji w różnych warunkach, a także na bazie ich solidnego wsparcia teoretycznego i łatwości implementacji w systemach cyfrowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką wartość częstotliwości powinno się ustawić w przetwornicy częstotliwości zasilającej silnik indukcyjny klatkowy z jedną parą biegunów, aby jego wał osiągał prędkość zbliżoną do 2400 obr./min?

A. 50 Hz
B. 40 Hz
C. 60 Hz
D. 30 Hz
Wybór innych częstotliwości, takich jak 30 Hz, 50 Hz czy 60 Hz, prowadzi do znacznych rozbieżności w osiąganej prędkości obrotowej silnika indukcyjnego klatkowego. Przy wyborze 30 Hz, zastosowany wzór na prędkość obrotową daje n = (120 * 30) / 1 = 3600 obr/min, co jest zbyt wysoką wartością, biorąc pod uwagę standardowe parametry pracy silników tego typu, które zwykle operują w zakresie do 2400 obr/min. W przypadku 50 Hz obliczenia wskazują na prędkość 6000 obr/min, co jest niemożliwe do osiągnięcia bez ryzyka uszkodzenia silnika, ponieważ nadmierne obroty mogą prowadzić do przegrzania i zniszczenia mechanizmów wewnętrznych. Z kolei 60 Hz, odpowiadające prędkości 7200 obr/min, zdecydowanie przekracza normalne operacyjne warunki dla standardowych silników jednofazowych i może prowadzić do awarii. Typowe błędy myślowe, które mogą prowadzić do takich nieprawidłowych wniosków, to ignorowanie zależności pomiędzy częstotliwością zasilania a wynikową prędkością obrotową oraz nieprawidłowe oszacowanie wpływu poślizgu, który zawsze występuje w silnikach indukcyjnych. Dla prawidłowego doboru częstotliwości zasilania kluczowe jest zrozumienie tych zależności oraz zastosowanie odpowiednich standardów przy pracy z falownikami i silnikami elektrycznymi.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Roboczej
B. Użytkowej
C. Programu
D. Systemowej
Poprawna odpowiedź to "Systemowej", ponieważ odwołania do stanów fizycznych wejść sterownika PLC są zarządzane w bloku pamięci systemowej. To właśnie w tym obszarze pamięci gromadzone są informacje o aktualnym stanie wszystkich wejść i wyjść urządzenia, co jest kluczowe dla prawidłowego działania aplikacji sterującej. Przykładowo, w aplikacjach automatyki przemysłowej, gdzie czas reakcji jest istotny, programista musi mieć pewność, że wszystkie odczyty stanów wejść są wykonywane w czasie rzeczywistym. Wykorzystanie pamięci systemowej pozwala na efektywne przetwarzanie informacji, co w konsekwencji prowadzi do szybszego podejmowania decyzji przez systemy sterujące. Dobrą praktyką w programowaniu PLC jest regularne monitorowanie i aktualizacja stanów wejść, aby zminimalizować ryzyko błędów operacyjnych. Dodatkowo, zgodnie z normami branżowymi, takie jak IEC 61131, zarządzanie pamięcią systemową powinno być dobrze udokumentowane, aby zapewnić łatwość w diagnostyce i konserwacji systemu.

Pytanie 8

Jaką metodę uzyskiwania sprężonego powietrza należy zastosować, aby jak najlepiej usunąć olej z medium roboczego?

A. Odolejanie
B. Redukcję
C. Filtrację
D. Osuszanie
Szukając odpowiedzi na pytanie dotyczące oczyszczania sprężonego powietrza z oleju, często można napotkać nieporozumienia związane z innymi metodami, które nie są przeznaczone do eliminacji oleju. Osuszanie, na przykład, koncentruje się na usuwaniu wilgoci z powietrza, co jest kluczowe w zapobieganiu korozji i uszkodzeniom spowodowanym przez kondensat. Mimo że ma ono fundamentalne znaczenie w procesach pneumatycznych, nie rozwiązuje problemu obecności oleju, który może być szkodliwy. Z kolei redukcja ciśnienia sprężonego powietrza jest procesem, który może zmieniać charakterystykę pracy systemów, ale nie eliminuje zanieczyszczeń olejowych. Filtracja, choć potencjalnie skuteczna, nie zawsze skoncentrowana jest na usuwaniu oleju, a często odnosi się do ogólnego usuwania zanieczyszczeń, w tym kurzu i większych cząstek. Użytkownicy mogą błędnie zakładać, że te metody mogą zastąpić odolejanie, co jest niezgodne z najlepszymi praktykami w branży. Poznanie specyfiki każdej z tych metod oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego funkcjonowania systemów pneumatycznych. Użycie niewłaściwej metody może prowadzić do poważnych problemów eksploatacyjnych oraz obniżenia efektywności procesów produkcyjnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który komponent powinno się wykorzystać do galwanicznego oddzielenia wyjścia z PLC od elementów, które są nim sterowane?

A. Kondensator
B. Transformator
C. Transoptor
D. Dławik
Transoptor to element elektroniczny zaprojektowany w celu zapewnienia galwanicznej separacji sygnałów, co jest kluczowe w zastosowaniach automatyki i sterowania. Dzięki zastosowaniu transoptora, sygnały wejściowe są izolowane od sygnałów wyjściowych, co chroni wrażliwe komponenty sterujące przed niepożądanym wpływem zakłóceń lub awarii w obwodach wykonawczych. Przykładem zastosowania transoptora może być sytuacja, gdy sygnał z czujnika (np. fotokomórka) musi zostać przekazany do PLC, ale z uwagi na różnice poziomów napięcia lub ryzyko zakłóceń, konieczne jest zastosowanie izolacji. W takich przypadkach transoptor działa jako mostek, który pozwala na bezpieczne przekazywanie sygnału bez ryzyka uszkodzenia urządzenia. Ponadto, transoptory są wykorzystywane w systemach komunikacyjnych, gdzie wymagane jest zabezpieczenie przed zakłóceniami przesyłanymi przez medium transmisyjne. Przykładem dobrych praktyk w branży jest stosowanie transoptorów w kontrolerach, gdzie ich zastosowanie zwiększa niezawodność i bezpieczeństwo całego systemu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby zmierzyć wartość napięcia zmiennego, pokrętło multimetru powinno być ustawione na pozycję oznaczoną

A. DCV
B. ACV
C. DCA
D. ACA
Ustawienie multimetru na pozycji "ACV" jest kluczowe dla pomiaru napięcia zmiennego, które zmienia swoją wartość w czasie. W tej pozycji multimetr mierzy skuteczną wartość napięcia sinusoidalnego, co jest istotne w praktycznych zastosowaniach, takich jak pomiary w sieciach elektrycznych. Napięcie zmienne jest powszechnie używane w domowych instalacjach elektrycznych, a także w wielu urządzeniach elektronicznych. Użycie odpowiedniego ustawienia na multimetrze zapewnia dokładność pomiaru oraz umożliwia analizę parametrów napięcia, co jest zgodne z najlepszymi praktykami w zakresie elektroniki i elektryki. Warto również pamiętać, że niewłaściwe ustawienie multimetru, na przykład na "DCV" (napięcie stałe), może prowadzić do błędnych odczytów, co w dalszej perspektywie może skutkować uszkodzeniem urządzenia lub niewłaściwym działaniem instalacji. Dlatego tak ważne jest, aby przed wykonaniem pomiaru zawsze upewnić się, że multimetr jest ustawiony na odpowiedni zakres i typ pomiaru.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Podczas diagnostyki systemu mechatronicznego, co jest kluczowym parametrem do zmierzenia?

A. Napięcie zasilania
B. Materiał obudowy
C. Waga komponentów
D. Kolor przewodów
Napięcie zasilania jest kluczowym parametrem do zmierzenia podczas diagnostyki systemu mechatronicznego, ponieważ od jego poprawności zależy prawidłowe funkcjonowanie całego układu. W mechatronice urządzenia często opierają się na precyzyjnym zasilaniu poszczególnych komponentów, takich jak silniki, siłowniki czy czujniki. Niewłaściwe napięcie może prowadzić do nieprawidłowego działania lub nawet uszkodzenia tych elementów. Dlatego sprawdzenie napięcia jest jednym z pierwszych kroków diagnostycznych. Dodatkowo, zgodnie z dobrą praktyką inżynierską, systemy mechatroniczne są projektowane z określonymi zakresami napięcia roboczego, które muszą być dokładnie utrzymywane. W praktyce, pomiar napięcia zasilania może pomóc zidentyfikować problemy związane z zasilaniem, takie jak spadki napięcia, które są częstą przyczyną problemów w systemach mechatronicznych. Regularne monitorowanie tego parametru pozwala na wczesne wykrycie potencjalnych awarii i zapewnia niezawodność całego systemu.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie urządzenie napędowe ma następujące parametry: średnica tłoka – 42 mm, średnica tłoczyska – 32 mm, skok tłoka – 150 mm, ciśnienie nominalne – 24 MPa, maksymalna prędkość tłoka – 10 m/s, częstotliwość pracy – 10 Hz?

A. Silnik pneumatyczny
B. Siłownik pneumatyczny
C. Silnik hydrauliczny
D. Siłownik hydrauliczny
Wybór silnika pneumatycznego lub siłownika pneumatycznego byłby niewłaściwy z kilku kluczowych względów. Po pierwsze, pneumatyka opiera się na sprężonym powietrzu jako medium roboczym, co ogranicza siłę generowaną przez urządzenie w porównaniu do hydrauliki, gdzie wykorzystuje się ciecz pod dużym ciśnieniem. W przykładzie podano ciśnienie nominalne 24 MPa, co jest typowe dla systemów hydraulicznych, a nie pneumatycznych, gdzie maksymalne ciśnienia są zazwyczaj znacznie niższe, wynoszące kilka barów. Dodatkowo, siłowniki pneumatyczne mają inną charakterystykę działania, w której skok i prędkość tłoka mogą być znacznie ograniczone z uwagi na naturalne właściwości sprężonego powietrza - jego kompresyjność i podatność na zmiany objętości. Z kolei silnik hydrauliczny, mimo że również korzysta z ciśnienia hydraulicznego, ma na celu przekształcenie energii hydraulicznej na ruch obrotowy, co nie odpowiada właściwościom opisanym w pytaniu, gdyż dotyczy ono ruchu linearnego. Dlatego powszechnym błędem jest mylenie zastosowań i charakterystyk tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu w praktyce przemysłowej, a tym samym do obniżenia wydajności oraz zwiększenia kosztów eksploatacji.

Pytanie 22

Przedstawione na rysunku okno dialogowe oprogramowania sterownika PLC wyświetlane jest podczas

Ilustracja do pytania
A. tłumaczenia programu na kod maszynowy.
B. zapisu programu na nośniku danych.
C. wykonywania programu w trybie pracy krokowej.
D. symulacji krokowej działania programu.
Poprawna odpowiedź to tłumaczenie programu na kod maszynowy. To jest mega ważny etap, bo wiąże się z kompilacją. Z tego okna dialogowego wynika, że w czasie kompilacji nie było błędów, co jest kluczowe gdy pracujemy z oprogramowaniem dla PLC. Jak przekształcamy kod źródłowy w języku programowania na coś, co rozumie procesor PLC, to właśnie jest ta kompilacja. Dzięki temu program działa lepiej i jest sprawdzany pod kątem błędów, co to są najlepsze praktyki w inżynierii. A dla PLC, kompilacja to też klucz do dodania funkcji bezpieczeństwa, co jest mega istotne w automatyce przemysłowej. Dlatego naprawdę warto zrozumieć, jak działa ten proces kompilacji i co oznacza to okno dialogowe, zwłaszcza dla inżynierów, którzy zajmują się programowaniem i konfiguracją systemów automatyki.

Pytanie 23

Podwyższenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy o 20 Hz spowoduje

A. wzrost prędkości obrotowej wirnika silnika
B. spadek prędkości obrotowej wirnika silnika
C. niestabilną pracę silnika
D. zatrzymanie działania silnika
Zwiększenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy prowadzi do zwiększenia prędkości obrotowej wirnika. Wynika to z zasady, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio związana z częstotliwością zasilania, określaną przez równanie: n = (120 * f) / p, gdzie n to prędkość w obrotach na minutę, f to częstotliwość zasilania, a p to liczba par biegunów. Wzrost częstotliwości o 20 Hz zwiększa liczbę zmian pola magnetycznego, co z kolei przyspiesza ruch wirnika. Przykładowo, w aplikacjach przemysłowych, takich jak napędy elektryczne w dźwigach lub taśmach produkcyjnych, odpowiednia regulacja częstotliwości zasilania pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymagań procesu technologicznego. Ponadto, w praktyce stosuje się inwertery, które umożliwiają płynną regulację częstotliwości, pozwalając na oszczędności energii oraz zwiększenie efektywności pracy silników. Warto również zauważyć, że zmiany te są zgodne z normami IEC dotyczących napędów elektrycznych, które podkreślają znaczenie optymalizacji i efektywności energetycznej.

Pytanie 24

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Czasem reakcji
B. Przewagą sygnałów Set i Reset
C. Ilością stanów pośrednich
D. Odwróceniem sygnałów Set i Reset
Zauważ, że wybrałeś poprawną odpowiedź, bo jest istotna różnica między przerzutnikiem RS a SR. W przerzutniku RS sygnał Set zawsze ma pierwszeństwo. To znaczy, że jak go aktywujesz, to wyjście idzie w stan wysoki. Dopiero gdy Set nie działa, możemy mówić o sygnale Reset. Ta zasada jest naprawdę ważna, zwłaszcza w automatyce. Na przykład, w różnych systemach sterowania, chcemy, żeby urządzenie znowu zaczęło działać po wyłączeniu. Dzięki przerzutnikowi RS to jest całkiem proste i bezpieczne. No i wiesz, standardy jak IEC 61131-3 mówią o tym, jak powinny działać programy do PLC, więc dobrze znać te różnice, żeby nie popełnić błędów przy projektowaniu systemów. Moim zdaniem, im lepiej rozumiesz te kwestie, tym lepiej zaprojektujesz swoje układy.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby przedstawić na schemacie pneumatycznym urządzenia mechatronicznego osuszacz powietrza, należy użyć

Ilustracja do pytania
A. symbolu graficznego 3.
B. symbolu graficznego 1.
C. symbolu graficznego 4.
D. symbolu graficznego 2.
Symbol graficzny 3. został wybrany jako najbardziej odpowiedni do reprezentowania osuszacza powietrza na schematach pneumatycznych, ponieważ jest zgodny z normami ISO 1219 oraz DIN 24300, które regulują użycie symboli w dokumentacji pneumatycznej. Osuszacze powietrza odgrywają kluczową rolę w systemach pneumatycznych, eliminując wilgoć, która może powodować korozję, obniżenie wydajności, a nawet uszkodzenie komponentów pneumatycznych. Zastosowanie właściwego symbolu graficznego na schemacie umożliwia inżynierom oraz technikom szybką identyfikację i zrozumienie funkcji danego urządzenia, co jest istotne w kontekście konserwacji i diagnozowania usterek. Oprócz tego, praktyczne zastosowanie prawidłowych symboli pozwala na zachowanie spójności i profesjonalizmu w dokumentacji technicznej, co jest kluczowe w pracy inżynierskiej oraz w produkcji. Warto również pamiętać, że poprawne oznaczenie elementów na schematach wpływa na bezpieczeństwo i efektywność operacyjną całego systemu pneumatycznego.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką wartość napięcia znamionowego umieszcza się na tabliczkach trójfazowych silników prądu przemiennego?

A. Średnią całookresową
B. Średnią półokresową
C. Skuteczną fazową
D. Skuteczną międzyfazową
Wybór odpowiedzi dotyczącej "Skutecznej fazowej" lub "Średniej półokresowej" czy "Średniej całookresowej" jest błędny, ponieważ te terminy odnoszą się do innych koncepcji związanych z napięciami w układach elektrycznych. Napięcie skuteczne fazowe odnosi się do wartości napięcia mierzonych w odniesieniu do jednego punktu odniesienia, np. punktu neutralnego, podczas gdy w silnikach trójfazowych mówimy o napięciach międzyfazowych, które są istotne dla ich działania. Wartości średnie półokresowe i całookresowe są używane w kontekście analizy sygnałów, jednak nie mają zastosowania w kontekście napięcia znamionowego silników trójfazowych. W praktyce, błędne zrozumienie różnicy między napięciem fazowym a międzyfazowym może prowadzić do niewłaściwego doboru komponentów w instalacjach elektrycznych oraz do potencjalnych uszkodzeń silników. To może również wpłynąć na efektywność energetyczną systemów oraz zwiększyć ryzyko awarii, co w konsekwencji prowadzi do wyższych kosztów eksploatacji. Dlatego kluczowe jest, aby w kontekście silników trójfazowych skupiać się na napięciu międzyfazowym, które jest podstawą do obliczeń związanych z mocą i bezpieczeństwem pracy tych urządzeń.

Pytanie 34

Prawidłowo strukturę kinematyczną PPO (TTR) urządzenia manipulacyjnego przedstawiono na

Ilustracja do pytania
A. rysunku 2.
B. rysunku 1.
C. rysunku 4.
D. rysunku 3.
Prawidłowa odpowiedź wskazuje na rysunek 1, który dokładnie ilustruje kinematyczną strukturę PPO (TTR) urządzenia manipulacyjnego. W tym przypadku rysunek przedstawia dwa przeguby obrotowe, które są reprezentowane przez okręgi, oraz jeden przegub liniowy, oznaczony kwadratem. Taka konfiguracja jest typowa dla urządzeń manipulacyjnych, w których przeguby obrotowe zapewniają ruch w wielu kierunkach, a przegub liniowy umożliwia ruch wzdłuż prostej linii. Zrozumienie tej struktury jest kluczowe dla inżynierów zajmujących się projektowaniem robotów oraz automatyzacji procesów. W praktyce, projektowanie urządzeń manipulacyjnych zgodnie z tym modelem pozwala na zwiększenie efektywności operacyjnej, co jest zgodne z najlepszymi praktykami w branży robotyki, gdzie każda z tych konfiguracji jest dostosowywana w oparciu o konkretne wymagania aplikacji. Dodatkowo, znajomość struktur kinematycznych pozwala na lepsze modelowanie ruchów, co jest istotne w programowaniu robotów oraz w symulacjach ruchu.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. wyczyścić komutator i szczotki
B. przetrzeć komutator mokrą szmatką
C. oczyścić komutator i wypolerować papierem ściernym
D. nałożyć na komutator olej lub smar
Odpowiedź "oczyścić komutator i wypolerować papierem ściernym" jest prawidłowa, ponieważ usunięcie zabrudzeń z komutatora jest kluczowym krokiem w utrzymaniu silnika prądu stałego w dobrym stanie. Komutator, będący istotnym elementem silnika, pełni funkcję przełączania prądu w uzwojeniach wirnika. Zabrudzenia, takie jak resztki węgla ze szczotek czy inne zanieczyszczenia, mogą prowadzić do iskrzenia, co z kolei zwiększa ryzyko uszkodzenia zarówno komutatora, jak i szczotek. Wypolerowanie komutatora papierem ściernym pozwala na usunięcie nie tylko zabrudzeń, ale również nierówności, co zapewnia lepszy kontakt ze szczotkami. Ta procedura jest zgodna z najlepszymi praktykami w branży, które zalecają regularne czyszczenie i konserwację komutatorów w celu zapewnienia ich długotrwałej wydajności. Przykładem zastosowania tej techniki może być regularna konserwacja silników w aplikacjach przemysłowych, gdzie niezawodność pracy jest kluczowa. Dobrą praktyką jest również monitorowanie stanu komutatora i regularne jego czyszczenie, co pozwala na minimalizowanie ryzyka awarii oraz oszczędności związane z kosztami naprawy.

Pytanie 38

W programie PLC sygnały niskie lub wysokie przypisane m.in. do wejść i wyjść dyskretnych powinny być definiowane jako zmienne w formacie

A. B
B. b
C. W
D. D
Odpowiedź 'b' jest poprawna, ponieważ odnosi się do formatu bitowego, który jest najwłaściwszy do reprezentowania stanów dyskretnych w sterownikach PLC. Stany niski i wysoki są naturalnie reprezentowane przez bity, które mogą przyjmować tylko dwie wartości: 0 (niski) oraz 1 (wysoki). W kontekście programowania PLC, bity są kluczowe dla przechwytywania i przetwarzania sygnałów z dyskretnych wejść oraz sterowania wyjściami. Przy projektowaniu systemów automatyki, zgodnie z najlepszymi praktykami, zastosowanie bitów do reprezentacji prostych stanów pozwala na oszczędność pamięci oraz zwiększa efektywność obliczeniową. Warto także zwrócić uwagę, że użycie bitów jest zgodne z międzynarodowym standardem IEC 61131, który definiuje struktury danych dla systemów automatyki. W praktyce, w przypadku większych systemów, na przykład w automatyce przemysłowej, zaleca się organizowanie stanu wejść i wyjść w tablice bitowe, co upraszcza zarówno programowanie, jak i diagnostykę systemów. Przykładowo, w aplikacjach takich jak kontrola procesów, wyjścia mogą być używane do aktywacji przekaźników na podstawie odczytów z czujników, a stosowanie bitów zapewnia bezproblemowe zarządzanie tymi stanami.

Pytanie 39

Jakie dane powinny być zdefiniowane w programie sterującym jako dane typu BOOL?

A. Binarne
B. Heksadecymalne
C. Oktadecymalne
D. Dziesiętne
Odpowiedź "Binarne" jest poprawna, ponieważ dane typu BOOL są definiowane jako zmienne przyjmujące jedynie dwie wartości: prawda (true) oznaczona jako 1 oraz fałsz (false) oznaczona jako 0. W praktyce, w programowaniu i w systemach automatyki, zmienne typu BOOL są niezwykle użyteczne, gdyż pozwalają na podejmowanie decyzji oraz kontrolowanie przepływu programów. Na przykład, w instrukcjach warunkowych (if, switch) zmienne BOOL są wykorzystywane do decydowania, która część kodu powinna być wykonana. W kontekście automatyki przemysłowej, zmienne te mogą kontrolować stan urządzeń, takich jak czujniki czy siłowniki, co jest zgodne z najlepszymi praktykami projektowania systemów sterujących. Użycie danych typu BOOL w programach sterujących jest standardem, który zapewnia efektywne zarządzanie stanami systemu, co jest kluczowe dla zapewnienia jego niezawodności i bezpieczeństwa.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.