Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 13 grudnia 2025 15:33
  • Data zakończenia: 13 grudnia 2025 16:01

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jeśli norma zużycia cegieł kratówek do postawienia 1 m2 ściany wynosi 50 sztuk, a koszt jednej cegły to 2 zł, to jaki będzie łączny koszt zakupu cegieł potrzebnych do budowy 10 m2 muru o grubości 25 cm?

A. 2 000 zł
B. 500 zł
C. 1 000 zł
D. 100 zł
Koszt zakupu cegieł do wykonania 10 m2 muru można łatwo obliczyć, stosując dane podane w pytaniu. Jeśli norma zużycia cegieł do wymurowania 1 m2 ściany wynosi 50 sztuk, to do wykonania 10 m2 potrzebujemy 500 cegieł (50 cegieł/m2 x 10 m2 = 500 cegieł). Każda cegła kosztuje 2 zł, więc całkowity koszt zakupu cegieł wyniesie 1000 zł (500 cegieł x 2 zł/cegła = 1000 zł). Tego typu obliczenia są standardową praktyką w budownictwie, gdzie precyzyjne oszacowanie kosztów materiałów ma kluczowe znaczenie dla planowania budżetu projektu. Przykładowo, w przypadku budowy ścian nośnych lub działowych, właściwe określenie liczby cegieł i ich kosztów pozwala na uniknięcie nieprzewidzianych wydatków oraz pozwala na lepsze zarządzanie finansami projektu budowlanego. Warto również zwrócić uwagę na możliwość zamówienia materiałów z wyprzedzeniem, co może przyczynić się do obniżenia kosztów poprzez negocjacje z dostawcami.

Pytanie 2

Tynk klasy 0, znany jako tynk rapowany, jest zaliczany do tynków

A. trójwarstwowych
B. dwuwarstwowych
C. jednowarstwowych
D. cienkowarstwowych
Tynk rapowany, zaliczany do kategorii 0, jest tynkiem jednowarstwowym, co oznacza, że jest aplikowany w jednej warstwie bez dodatkowych podkładów. Tynki jednowarstwowe charakteryzują się szybkim procesem aplikacji oraz wysoką efektywnością, co jest kluczowe w nowoczesnym budownictwie. Tynki tego typu są często stosowane na budynkach mieszkalnych i komercyjnych, gdzie ważne są zarówno walory estetyczne, jak i funkcjonalne. Do tynków rapowanych można stosować różne rodzaje materiałów, w tym produkty wykonane na bazie cementu, wapna czy gipsu. W praktyce, tynki jednowarstwowe zapewniają dobry poziom izolacji cieplnej oraz odporności na warunki atmosferyczne, co wpisuje się w aktualne standardy budowlane. Zastosowanie tynku rapowanego przyczynia się do redukcji kosztów robocizny oraz czasu realizacji budowy, co jest niezwykle istotne w kontekście współczesnych wymagań rynkowych. Dlatego znajomość tej kategorii tynków jest niezbędna dla profesjonalistów w branży budowlanej.

Pytanie 3

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. Akermana.
B. Teriva.
C. Fert.
D. DZ.
Odpowiedź Fert jest poprawna, ponieważ na rysunku przedstawiono charakterystyczny fragment stropu tego typu. Stropy Fert, znane z zastosowania prefabrykowanych belek kratownicowych oraz pustaków ceramicznych, są popularnym rozwiązaniem w budownictwie ze względu na swoją lekkość i wytrzymałość. Prefabrykowane belki kratownicowe pozwalają na osiągnięcie sporych rozpiętości, co jest istotne w nowoczesnych konstrukcjach budowlanych, gdzie często dąży się do otwartych przestrzeni. Pustaki ceramiczne, układane między belkami, nie tylko wspierają konstrukcję, ale również zapewniają odpowiednią izolację termiczną i akustyczną. Całość, po zalaniu betonem, tworzy trwałą i stabilną konstrukcję. W praktyce, stropy Fert często stosuje się w budynkach mieszkalnych i użyteczności publicznej, co podkreśla ich wszechstronność oraz zgodność z aktualnymi standardami budowlanymi.

Pytanie 4

Jakie typy rusztowań powinno się użyć do przeprowadzania drobnych napraw tynków zewnętrznych w budynkach wysokich?

A. Ramowe
B. Wiszące
C. Modułowe
D. Stojakowe
Wybór rusztowania ramowego czy modułowego do drobnych napraw na wysokich budynkach nie jest najlepszym pomysłem. Rusztowania ramowe są stabilne, ale potrzebują sporo miejsca na dole, co w miastach może być sporym problemem. Zajmowanie tego miejsca może zakłócać codzienne życie, a to raczej nie jest fajne. Z kolei rusztowania modułowe są bardziej elastyczne, ale trudniejsze w montażu i demontażu, co wydłuża czas pracy. A przy prostych naprawach to może być zbędne. Rusztowania stojakowe, choć przy niższych budynkach dają radę, to przy wysokich elewacjach mogą być niewystarczające. Ryzyko upadku i problem z dotarciem do wyższych miejsc to poważna sprawa. Dlatego, ważne jest, żeby dobrze przemyśleć, jakie rusztowanie wybrać, biorąc pod uwagę miejsce i rodzaj pracy.

Pytanie 5

Ile wyniesie całkowity koszt budowy 20 m2 muru z pustaków, jeśli wydatki na materiały to 80 zł/m2, a murarz dostaje 25 zł za postawienie 1 m2 ściany?

A. 105 zł
B. 2100 zł
C. 1625 zł
D. 500 zł
Koszt wykonania 20 m2 muru z pustaków oblicza się, sumując koszty materiałów oraz robocizny. Koszt materiałów wynosi 80 zł za m2, co daje 80 zł/m2 * 20 m2 = 1600 zł. Koszt robocizny za wymurowanie 1 m2 wynosi 25 zł, więc za 20 m2 to 25 zł/m2 * 20 m2 = 500 zł. Suma kosztów materiałów i robocizny to zatem 1600 zł + 500 zł = 2100 zł. Taki sposób kalkulacji jest standardem w branży budowlanej, gdzie precyzyjne określenie kosztów jest kluczowe dla zarządzania budżetem projektu. W praktyce, te obliczenia są wykorzystywane nie tylko w budownictwie, ale również w projektowaniu i planowaniu materiałów, co pozwala na efektywne zarządzanie finansami. Wiedza ta jest niezbędna dla profesjonalnych wykonawców, którzy muszą umieć przewidzieć całkowity koszt inwestycji oraz ocenić opłacalność realizacji projektu.

Pytanie 6

Cena jednego 25-kilogramowego worka suchej zaprawy tynkarskiej wynosi 9 zł. Jaka będzie suma wydatków na zaprawę potrzebną do otynkowania 52 m2ściany, jeśli jeden worek wystarcza na wykonanie tynku na powierzchni 1,3 m2ściany?

A. 468 zł
B. 225 zł
C. 625 zł
D. 360 zł
Koszt zaprawy tynkarskiej obliczamy na podstawie powierzchni ściany, którą chcemy otynkować, oraz wydajności jednego worka. W tym przypadku mamy 52 m² do otynkowania, a jeden worek wystarcza na 1,3 m². Aby obliczyć liczbę worków potrzebnych do pokrycia całej powierzchni, dzielimy 52 m² przez 1,3 m²: 52 / 1,3 ≈ 40 worków. Koszt jednego worka wynosi 9 zł, więc całkowity koszt uzyskujemy mnożąc liczbę worków przez cenę jednego worka: 40 * 9 zł = 360 zł. W praktyce, przy zakupach materiałów budowlanych, zazwyczaj warto uwzględnić dodatkową ilość materiału na ewentualne straty, co również potwierdza, że dobrze jest mieć zapas. Warto także zwrócić uwagę na to, że ceny materiałów budowlanych mogą się różnić w zależności od dostawcy i lokalizacji, dlatego zawsze warto porównać oferty przed zakupem. Standardy budowlane wskazują na konieczność przemyślanej kalkulacji kosztów, co jest kluczowym elementem zarządzania projektem budowlanym.

Pytanie 7

Na podstawie danych zawartych w tabeli oblicz, ile cegieł pełnych potrzeba do wymurowania ściany na zaprawie cementowej o grubości 38 cm i wymiarach 4 × 3 m.

Nakłady na 1 m² ścianyFragment tablicy 0103 z KNR 2-02
Lp.WyszczególnienieJednostki miary,
oznaczenia
Ściany na zaprawie
wapiennej
lub
cementowo-wapiennej
cementowej
Symbole
eto
Rodzaje
materiałów
cyfroweliteroweGrubość w cegłach
111/22111/22
abcde010203040506
201800199Cegły budowlane
pełne
020szt.92,70139,90186,10100,10150,30200,60
211800200Cegły dziurawki
pojedyncze
020szt.(93,40)(140,80)(187,60)---
2223808099Zaprawa0600,0840,1300,1760,0660,1060,143
2323808099Zaprawa060(0,091)(0,143)(0,194)---
A. 1 690 szt.
B. 2 408 szt.
C. 1 804 szt.
D. 1 679 szt.
W przypadku odpowiedzi, które wskazują na błędnie obliczoną ilość cegieł, najczęściej występującym problemem jest niewłaściwe zrozumienie zasad obliczania zapotrzebowania na materiały budowlane. Często pomijane jest uwzględnienie grubości zaprawy, co prowadzi do zaniżania liczby potrzebnych cegieł. Obliczenia powinny zaczynać się od dokładnego określenia powierzchni do pokrycia, a następnie przeliczenia na podstawie danych dotyczących konkretnego typu cegły, która różni się wymiarami oraz ilością, jaką można użyć na 1 m². Często występuje również mylne założenie, że można po prostu przyjąć liczby z tabel bez ich odpowiedniego dopasowania do wymiarów projektu, co skutkuje znacznymi odchyleniami w wynikach. W praktyce budowlanej, ignorowanie takich detali nie tylko wpływa na jakość wykonania, ale również może prowadzić do przekroczenia budżetu oraz harmonogramu. Świadomość tych aspektów jest kluczowa dla każdego specjalisty w dziedzinie budownictwa, dlatego tak istotne jest rzetelne podejście do obliczeń i ich weryfikacja.

Pytanie 8

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 1 680 zł
B. 3 600 zł
C. 2 520 zł
D. 1 800 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 9

Aby sprawdzić precyzję poziomego ustawienia kolejnych warstw cegieł, należy użyć

A. warstwomierza.
B. sznura murarskiego.
C. poziomicy.
D. łaty.
Poziomica to narzędzie niezbędne do zapewnienia, że warstwy cegieł są ułożone w poziomie, co jest kluczowe dla trwałości i estetyki budowli. Użycie poziomicy pozwala na dokładne pomiary, które wskazują, czy trzymana powierzchnia jest idealnie równa. Jest to szczególnie ważne w przypadku konstrukcji, gdzie nawet niewielkie odchylenia mogą prowadzić do problemów strukturalnych. Standardy budowlane zalecają używanie poziomicy do kontroli poziomu podłoża przed rozpoczęciem murowania oraz podczas układania kolejnych warstw. Przykładem zastosowania poziomicy może być postawienie pierwszej warstwy cegieł na fundamentach, gdzie jej użycie pozwala na uzyskanie idealnego poziomu, co jest podstawą dla kolejnych etapów budowy. Warto również pamiętać, że poziomica może być wykorzystana w różnych sytuacjach budowlanych, takich jak montaż okien czy drzwi, gdzie precyzyjne ułożenie ma kluczowe znaczenie dla funkcjonalności i wyglądu. W związku z tym, posługiwanie się poziomicą jest nie tylko dobrą praktyką, ale także niezbędnym standardem w branży budowlanej.

Pytanie 10

Jakie składniki należy podgrzać podczas przygotowywania zaprawy murarskiej w chłodnych miesiącach, gdy temperatura otoczenia spada poniżej +5°C?

A. Wodę i cement po ich wymieszaniu
B. Wodę i piasek po ich wymieszaniu
C. Piasek i wodę przed ich wymieszaniem
D. Piasek i cement przed ich wymieszaniem
Tu pojawił się błąd! Podgrzewanie wody i cementu po ich zmieszaniu nie jest zgodne z tym, co mówi technologia wiązania zaprawy. Cement potrzebuje dokładnej ilości wody, żeby dobrze działać. Jak dodasz wodę do już wymieszanej zaprawy, to może obniżyć efekt wiązania. A woda, która była podgrzana po zmieszaniu, nie pomoże, bo nie będzie miała odpowiedniego wpływu na proces hydratacji. Może to prowadzić do osłabionej wytrzymałości zaprawy. Poza tym, podgrzewanie piasku i cementu przed wymieszaniem może zmieniać ich właściwości przez niepożądane reakcje chemiczne. Cement nie powinien być poddawany wysokim temperaturom, bo traci swoją zdolność do wiązania z wodą. Generalnie, każdy etap przygotowania zaprawy powinien być przemyślany, a jak coś pójdzie nie tak, to może osłabić cały budynek i kosztować później dodatkowo. Lepiej trzymać się zalecanych procedur, które mówią o podgrzewaniu składników przed połączeniem.

Pytanie 11

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. krzemionkowych
B. ciepłochronnych
C. kwasoodpornych
D. szamotowych
Wybór złej odpowiedzi może oznaczać, że nie do końca rozumiesz, jakie właściwości ma perlit. To kruszywo jest znane przede wszystkim ze swoich niezwykłych właściwości cieplnych, co czyni je idealnym do zapraw ciepłochronnych. Szamotowe czy kwasoodporne zaprawy mają zupełnie inne zastosowania. Szamotowe są na przykład stosowane w miejscach narażonych na wysokie temperatury. A kruszywa krzemionkowe? Te są bardziej związane z produkcją betonu, a nie z izolacją, jaką daje perlit. Wydaje mi się, że niektóre materiały mają swoje specyficzne cechy, i to właśnie one decydują o tym, gdzie je użyjemy. Jak już wspomniałem, perlit jest super, jeżeli zależy nam na efektywnej izolacji termicznej, a to z kolei może pomóc w redukcji kosztów energii i zwiększeniu komfortu mieszkańców budynków. Dlatego dobrze jest znać właściwości materiałów, które wybieramy do różnych projektów.

Pytanie 12

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. pustaków żużlobetonowych
B. cegły pełnej
C. cegły wapienno-piaskowej
D. cegły dziurawki
Cegła pełna jest materiałem budowlanym o wysokiej odporności na działanie wysokich temperatur oraz agresywnych substancji chemicznych, co czyni ją idealnym wyborem do budowy przewodów dymowych i wentylacyjnych. Dzięki swojej gęstości i jednorodnej strukturze, cegła ta skutecznie izoluje oraz chroni przed rozprzestrzenianiem się ognia. W praktyce, przewody dymowe wykonane z cegły pełnej zapewniają nie tylko bezpieczeństwo, ale także długotrwałość, co jest kluczowe w kontekście przepisów budowlanych i norm bezpieczeństwa. Cegła pełna może być również stosowana w miejscach narażonych na intensywne działanie spalin, zapewniając ich prawidłowe odprowadzanie. W wielu krajach, zastosowanie cegły pełnej w takich konstrukcjach jest zgodne z obowiązującymi normami budowlanymi oraz zaleceniami, co dodatkowo podkreśla jej przydatność w budownictwie.

Pytanie 13

Na rysunku przedstawiono fragment ściany zewnętrznej z oblicówką konstrukcyjną. Wykonanie takiej ściany polega na wymurowaniu

Ilustracja do pytania
A. obu warstw jednocześnie na całej wysokości.
B. najpierw warstwy wewnętrznej, a po jej stwardnieniu, wykonaniu okładziny zewnętrznej.
C. ze szczeliną powietrzną pomiędzy warstwą wewnętrzną a zewnętrzną.
D. warstwy zewnętrznej, a po jej stwardnieniu, domurowaniu warstwy wewnętrznej.
Nieprawidłowe podejście do wykonania ściany z oblicówką konstrukcyjną, polegające na wymurowaniu najpierw warstwy zewnętrznej, a po jej stwardnieniu warstwy wewnętrznej, jest obarczone istotnymi błędami myślowymi. Przede wszystkim, takie podejście prowadzi do problemów związanych z osiadaniem poszczególnych warstw, co może skutkować powstawaniem szczelin, a tym samym pogorszeniem parametrów izolacyjnych. Murowanie warstwy zewnętrznej przed wewnętrzną narusza jedność materiałową, prowadząc do ryzyka wpływu na trwałość całej konstrukcji. Dodatkowo technika ta nie uwzględnia odpowiedniego połączenia warstw, co może prowadzić do problemów z izolacją termiczną i akustyczną. Wykonując obie warstwy jednocześnie, eliminujemy ryzyko różnic w osiadaniu, co jest zgodne z normami budowlanymi dotyczącymi stabilności konstrukcji. Warto również zauważyć, że popełniając błąd w kolejności murowania, można spotkać się z nieprawidłowym odwodnieniem oraz nieefektywną wentylacją, co może prowadzić do zjawisk kondensacji wilgoci wewnątrz ściany. Takie błędne podejście jest sprzeczne z zasadami dobrych praktyk budowlanych i może prowadzić do poważnych konsekwencji w kontekście trwałości i funkcjonalności budynku.

Pytanie 14

Układ cegieł, który zastosowano do wykonania parapetu przedstawionego na rysunku, jest rolką

Ilustracja do pytania
A. stojącą.
B. leżącą zazębioną.
C. leżącą.
D. stojącą zazębioną.
Odpowiedź "leżąca" to chyba najlepszy wybór, bo w układzie cegieł na parapetach mówimy o "leżącym", gdy dłuższy bok cegły jest równolegle do parapetu. Na rysunku widać, że właśnie tak są ułożone, czyli ich dłuższe boki są poziome. Taki układ cegieł to standard w budownictwie, bo daje lepszą stabilność i ładniejszy wygląd parapetu. Ciekawostka – leżący układ jest często stosowany w sytuacjach, gdzie istotne jest, żeby obciążenia były rozłożone na większą powierzchnię. Dzięki temu cegły są bardziej trwałe i nie pękają tak łatwo. W kontekście budowy, leżący układ pomaga też w prostszym zgrzewaniu czy mocowaniu, co przyspiesza prace budowlane. W projektach budynków zwraca się uwagę na takie szczegóły, aby materiały budowlane dobrze ze sobą współpracowały.

Pytanie 15

W murarskich mieszankach, które są narażone na działanie wilgoci, powinno się używać wapna

A. hydrauliczne
B. gaszone
C. hydratyzowane
D. palone
Wapno hydrauliczne jest materiałem budowlanym, który zyskuje swoje właściwości wiążące pod wpływem wody, co czyni je idealnym składnikiem zapraw murarskich narażonych na działanie wilgoci. W przeciwieństwie do wapna palonego i gaszonego, które mogą nie zapewniać odpowiedniej wytrzymałości w warunkach wilgotnych, wapno hydrauliczne reaguje z wodą, tworząc trwałe i mocne wiązania. W praktyce, użycie wapna hydraulicznego w zaprawach murarskich jest zgodne z normami budowlanymi, które wskazują na jego zalety w kontekście ochrony przed wilgocią i poprawy szczelności murów. Zaprawy z wapnem hydraulicznym są stosowane w konstrukcjach narażonych na działanie wilgoci, takich jak fundamenty, piwnice oraz obiekty budowlane w klimacie wilgotnym. Dzięki swojej odporności na działanie wody, zaprawy te poprawiają trwałość i stabilność budowli, co jest kluczowe w kontekście długoterminowego użytkowania.

Pytanie 16

Przedstawiony na rysunku pustak ceramiczny służy do wykonania

Ilustracja do pytania
A. przewodów wentylacyjnych.
B. obudowy pionów kanalizacyjnych.
C. ścian z pustką powietrzną.
D. obudowy rur centralnego ogrzewania.
Analizując inne odpowiedzi, można zauważyć kilka istotnych błędów myślowych, które prowadzą do niepoprawnych wniosków. Odpowiedź o obudowie pionów kanalizacyjnych jest nietrafiona, ponieważ do ich budowy stosuje się materiały o wysokiej odporności na wilgoć i chemikalia, a pustak ceramiczny nie spełnia tych wymagań ze względu na swoją porowatość. Podobnie, wybór pustaków do obudowy rur centralnego ogrzewania jest niewłaściwy, gdyż te materiały muszą charakteryzować się właściwościami izolacyjnymi, które są kluczowe dla efektywności energetycznej całego systemu grzewczego. Pustaki ceramiczne nie zapewniają wystarczającej izolacji termicznej, co może prowadzić do strat ciepła. Z kolei odpowiedź o ścianach z pustką powietrzną jest myląca, ponieważ w tym przypadku stosuje się zazwyczaj materiały o lepszych właściwościach izolacyjnych, takie jak bloczki silikatowe lub materiały kompozytowe. Stosowanie pustaków ceramicznych do tych celów nie tylko obniża efektywność energetyczną budynku, ale także może prowadzić do problemów konstrukcyjnych w dłuższej perspektywie. W rezultacie, ważne jest, aby przy wyborze materiałów budowlanych kierować się nie tylko ich dostępnością, ale także ich właściwościami i przewidywanym zastosowaniem w kontekście norm budowlanych oraz najlepszych praktyk inżynieryjnych.

Pytanie 17

Która z podanych zapraw cechuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-wapienna
B. Cementowo-gliniana
C. Wapienna
D. Gipsowa
Wybór innych zapraw, takich jak cementowo-wapienna, gipsowa czy cementowo-gliniana, prowadzi do kilku istotnych nieporozumień dotyczących ich właściwości plastycznych. Zaprawa cementowo-wapienna, mimo że łączy w sobie zalety obu materiałów, w praktyce charakteryzuje się mniejszą plastycznością w porównaniu do czystej zaprawy wapiennej. Cement, jako składnik, wprowadza twardość, co ogranicza elastyczność zaprawy, co jest niekorzystne w kontekście aplikacji wymagających łatwego formowania i deformations. Gipsowa zaprawa, choć posiada dobre właściwości plastyczne, ma ograniczone zastosowanie w wilgotnych warunkach, co czyni ją mniej uniwersalną. Ponadto, jej zdolność do twardnienia jest znacznie szybsza, co może prowadzić do problemów z równomiernym rozprowadzeniem i aplikacją. Cementowo-gliniana zaprawa z kolei, mimo że oferuje pewne właściwości plastyczne, nie osiąga poziomu elastyczności, jaki zapewnia wapno. W ogólnym ujęciu, powszechnym błędem jest zatem mylenie twardości z plastycznością, co prowadzi do niewłaściwych wyborów materiałowych w budownictwie. Dobór odpowiedniej zaprawy powinien być uzależniony od specyfiki projektu oraz warunków, w jakich ma być stosowana, a zaprawy oparte na wapnie są najbardziej odpowiednie do zastosowań wymagających wysokiej plastyczności i paroprzepuszczalności.

Pytanie 18

Stalowe elementy, które mają służyć jako podłoże pod tynk, powinny być przygotowane na całej powierzchni

A. owinąć siatką stalową ocynkowaną
B. obłożyć listewkami drewnianymi
C. wyłożyć matami trzcinowymi
D. pokryć mleczkiem cementowym
Owinięcie elementów stalowych siatką stalową ocynkowaną jest najlepszym rozwiązaniem przed nałożeniem tynku, ponieważ zabezpiecza stal przed korozją oraz zapewnia odpowiednią przyczepność tynku do powierzchni. Siatka stalowa działa jako zbrojenie, które zwiększa wytrzymałość tynku, minimalizując ryzyko pęknięć oraz odspajania materiału od podłoża. Zastosowanie siatki ocynkowanej jest zgodne z zasadami dobrych praktyk budowlanych, które zalecają stosowanie materiałów odpornych na działanie wilgoci oraz chemikaliów. W praktyce, siatka powinna być przytwierdzona do elementów stalowych w sposób zapewniający jej stabilność, co dodatkowo można osiągnąć przez użycie specjalnych kołków montażowych. Przykład zastosowania to budowa ścianek działowych, gdzie stalowa konstrukcja wymaga trwałego i solidnego podłoża do nałożenia tynku, co jest istotne w kontekście długoterminowej eksploatacji budynku oraz jego estetyki.

Pytanie 19

Podczas budowy ściany o wysokości do 2,5 m konieczne jest użycie rusztowania

A. ramowego
B. wiszącego
C. na wysuwnicach
D. na kozłach
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowania tego typu są najczęściej stosowane przy murowaniu ścian o wysokości do 2,5 m. Kozły zapewniają stabilność i umożliwiają swobodne poruszanie się pracowników podczas prac budowlanych. W przypadku murowania, gdzie precyzja i kontrola są kluczowe, kozły umożliwiają łatwe dostosowanie wysokości oraz zapewniają wystarczającą powierzchnię roboczą na materiał. Dobrze zbudowane kozły powinny posiadać odpowiednie certyfikaty zgodności z normami bezpieczeństwa, takimi jak PN-EN 12811, co gwarantuje ich wytrzymałość i bezpieczeństwo użytkowania. Przykładem zastosowania może być budowa domu jednorodzinnego, gdzie robotnicy mogą łatwo ustawiać kozły w różnych miejscach, co przyspiesza i ułatwia proces murowania. Dodatkowo, korzystając z kozłów, można efektywnie wykorzystać przestrzeń roboczą, co jest niezwykle istotne na małych placach budowy.

Pytanie 20

Który sposób przygotowania klejowej zaprawy wapiennej jest zgodny z przedstawioną instrukcją producenta?

Instrukcja producenta
PRZYGOTOWANIE KLEJOWEJ ZAPRAWY MURARSKIEJ
Należy przygotować 6 ÷ 7 litrów wody, do której wsypujemy zawartość worka (25 kg), a następnie za pomocą wiertarki z mieszadłem lub ręcznie urabiamy do momentu uzyskania odpowiedniej konsystencji. Zaprawę należy co pewien czas przemieszać. Tak przygotowaną mieszankę należy zużyć w ciągu 4 godzin
A. Wymieszać część suchej mieszanki z wodą, a następnie dodać pozostałą ilość suchej mieszanki.
B. Do wody dodać całą porcję suchej mieszanki i razem wymieszać.
C. Do porcji suchej mieszanki dodać wodę, a następnie wymieszać składniki.
D. Wymieszać część suchej mieszanki z małą ilością wody, a następnie dolewać stopniowo wodę i dodawać pozostałą ilość suchej mieszanki.
Wiesz, jak to jest, że błędne odpowiedzi często wynikają z niezrozumienia, jak właściwie mieszać te składniki. Sugerowanie, żeby dodawać wodę stopniowo do suchej mieszanki, może prowadzić do niejednorodności, co w budownictwie jest sporym błędem. Grudki mogą się pojawić i to może zepsuć przyczepność oraz czas wiązania zaprawy. W praktyce powinno być tak, że najpierw suche składniki lądują w wodzie, bo to zapewnia lepsze ich połączenie. Co do odpowiedzi, gdzie się najpierw miesza tylko część suchej mieszanki z wodą, a reszta idzie później – to ryzykowne, bo mogą się nie połączyć jak należy, a to potem wpływa na jakość zaprawy. No i pamiętaj, że każda różnica w proporcjach wody do suchej mieszanki może zmieniać właściwości. Dobrze jest robić to według wskazówek producenta, żeby mieć pewność, że wszystko będzie działało tak, jak powinno.

Pytanie 21

Pomieszczenie o wymiarach przedstawionych na rysunku i o wysokości 2,5 m należy przedzielić ścianką działową o grubości 1/2 cegły na zaprawie cementowo-wapiennej. Ile m2 ścianki działowej ma wykonać murarz?

Ilustracja do pytania
A. 5,0 m2
B. 10,0 m2
C. 24,0 m2
D. 15,0 m2
Wybór niewłaściwej odpowiedzi może wynikać z kilku typowych błędów myślowych związanych z obliczaniem powierzchni ścian działowych. Często myli się grubość ścianki z jej powierzchnią, co prowadzi do błędnych kalkulacji. Na przykład, odpowiedzi 5,0 m2 i 15,0 m2 mogą sugerować niepoprawne podejście do obliczeń, gdzie brano pod uwagę inne wymiary lub pomijano fakt, że w przypadku ścianki działowej istotne są jedynie jej wysokość oraz długość. Warto również zauważyć, że obliczanie powierzchni wymaga szczegółowej analizy rysunków oraz wymiarów pomieszczenia, co jest kluczowe w praktyce budowlanej. Często spotykanym błędem jest także niezrozumienie roli grubości materiału, która wpływa na wytrzymałość, ale nie na wymiar powierzchni. Aby uniknąć takich nieporozumień, należy zwrócić szczególną uwagę na podstawowe zasady geometria oraz na normy budowlane, które jasno określają metodologię obliczenia powierzchni ścian działowych. Dobrym przykładem jest przemyślenie całego procesu budowy, od fazy projektowania po realizację, co pozwala na lepsze zrozumienie potrzeb i wymagań budowlanych.

Pytanie 22

Który z elementów budynku przedstawiono na zdjęciu?

Ilustracja do pytania
A. Wieniec.
B. Nadproże.
C. Gzyms.
D. Cokół.
Cokół, nadproże i wieniec to budowlane elementy, które mogą się wydawać podobne do gzymsu, ale właściwie różnią się w tym, co robią. Cokół, to ta dolna część budynku, która ma za zadanie bronić ściany przed wilgocią i uszkodzeniami. Nie jest tak ozdobny jak gzyms, bo zwykle jest twardszy i bardziej solidny. Nadproże to z kolei coś, co jest nad drzwiami i oknami, i pomaga rozłożyć ciężar nad nimi, co jest mega ważne dla stabilności budynku. A wieniec, no to pozioma część stropu, która łączy ściany, ale pełni inną rolę – wspiera strop i przekazuje obciążenia. Często ludzie mylą gzyms z tymi innymi elementami, bo nie do końca znają ich rolę w architekturze. Ważne, żeby wiedzieć, że każdy z tych elementów ma swoją unikalną funkcję, bo błędy w ich zrozumieniu mogą prowadzić do problemów w projektowaniu i budowie.

Pytanie 23

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Wytrzymałość na ściskanie i nasiąkliwość
B. Nasiąkliwość oraz urabialność
C. Proporcje oraz urabialność
D. Wytrzymałość na ściskanie i proporcje
Stwardniała zaprawa murarska jest kluczowym elementem w budownictwie, a jej cechy techniczne mają istotny wpływ na trwałość oraz stabilność konstrukcji. Wytrzymałość na ściskanie odnosi się do zdolności materiału do wytrzymywania dużych obciążeń bez deformacji czy zniszczenia. W praktyce oznacza to, że zaprawa murarska musi być w stanie utrzymać ciężar elementów budowlanych, na przykład cegieł czy bloczków, co jest fundamentem dla wszelkiego rodzaju budowli. Nasiąkliwość z kolei odnosi się do zdolności zaprawy do absorbowania wody, co jest kluczowe w kontekście ochrony przed wilgocią. Nasiąkliwość wpływa na długoterminową trwałość zaprawy, ponieważ zbyt wysoka nasiąkliwość może prowadzić do powstawania pęknięć i osłabienia struktury. Przykładowo, w normach budowlanych, takich jak PN-EN 998-2, podkreśla się znaczenie wytrzymałości i nasiąkliwości w kontekście oceny zapraw murarskich, co potwierdza ich praktyczne zastosowanie w budownictwie. Również w standardach jakości, takich jak ISO 9001, te cechy są uwzględniane, co pokazuje ich fundamentalne znaczenie w zapewnianiu wysokiej jakości materiałów budowlanych.

Pytanie 24

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 45 zł
B. 48 zł
C. 60 zł
D. 30 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 25

Na ilustracji przedstawiono sposób wykonania

Ilustracja do pytania
A. hydroizolacji.
B. paroizilacji.
C. izolacji cieplnej.
D. izolacji akustycznej.
Izolacja akustyczna, paroizolacja i izolacja cieplna to różne techniki w budownictwie, ale tak naprawdę nie mają nic wspólnego z hydroizolacją. Izolacja akustyczna polega na redukcji hałasu, który może przenikać przez ściany czy podłogi. Materiały takie jak wełna mineralna czy płyty akustyczne są wykorzystywane do tłumienia dźwięków, ale nie chronią przed wodą. Paroizolacja działa na innej zasadzie – ma za zadanie blokować parę wodną, żeby uniknąć kondensacji wewnątrz budynków. Tu przydają się folie paroizolacyjne, szczególnie podczas ocieplania poddaszy. Z kolei izolacja cieplna zatrzymuje ciepło w budynku, co wpływa na komfort cieplny i efektywność energetyczną. Stosuje się tu styropian czy wełnę mineralną. W dzisiejszym budownictwie trzeba brać pod uwagę wszystkie te aspekty, żeby wszystko działało jak należy. Jak się pominie ich odpowiednie zastosowanie może to prowadzić do błędnych wniosków o efektywności budowli, a to już może zagrażać bezpieczeństwu i komfortowi osób korzystających z budynków.

Pytanie 26

Na rysunku przedstawiono stosowane w dokumentacji projektowej oznaczenie graficzne betonu

Ilustracja do pytania
A. zwykłego zbrojonego.
B. lekkiego niezbrojonego.
C. lekkiego zbrojonego.
D. zwykłego niezbrojonego.
Wybór betonu lekkiego niezbrojonego, zwykłego niezbrojonego lub zwykłego zbrojonego wskazuje na brak zrozumienia podstawowej różnicy między tymi rodzajami betonu oraz ich właściwościami. Beton lekki niezbrojony, mimo że charakteryzuje się niską gęstością, nie ma zbrojenia, co czyni go mniej odpornym na obciążenia rozciągające. W praktyce stosuje się go głównie w elementach, gdzie nie są przewidywane duże naprężenia, co czyni go nieodpowiednim wyborem dla konstrukcji wymagających wytrzymałości. Z kolei beton zwykły niezbrojony cechuje się większą gęstością i nie ma zastosowania zbrojenia, co sprawia, że jest stosunkowo cięższy i mniej odporny na rozciąganie. W przypadku zwykłego betonu zbrojonego, zbrojenie nie jest tylko kwestią graficzną, ale oznacza zastosowanie stali, co również wpływa na właściwości mechaniczne betonu. Wybór niewłaściwego rodzaju betonu może prowadzić do poważnych konsekwencji w konstrukcji budowlanej, takich jak pęknięcia czy nawet zawalenia się elementów. Dostrzeganie różnic w oznaczeniach jest kluczowe dla inżynierów oraz projektantów w celu zapewnienia trwałości i bezpieczeństwa budowli.

Pytanie 27

Zgodnie z zasadami przedmiarowania robót tynkarskich z powierzchni tynków nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. Oblicz powierzchnię ściany pokazanej na rysunku, zakładając, że ościeża będą otynkowane.

Ilustracja do pytania
A. 18,8 m2
B. 20,8 m2
C. 22,0 m2
D. 24,0 m2
Odpowiedź 20,8 m2 jest prawidłowa, ponieważ zgodnie z zasadami przedmiarowania robót tynkarskich, nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. W omawianym przypadku mamy do czynienia z dwoma otworami okiennymi, każdy o powierzchni 1 m2, które nie są odliczane od całkowitej powierzchni ściany. Natomiast otwór drzwiowy o powierzchni 3,2 m2 jest większy niż 3 m2, co oznacza, że jego powierzchnia powinna zostać odjęta. Całkowita powierzchnia ściany przed odliczeniem otworów wynosi 24 m2. Po odjęciu 3,2 m2 uzyskujemy wynik 20,8 m2, co jest powierzchnią do tynkowania. Praktyczne zastosowanie tych zasad jest kluczowe w procesie kosztorysowania robót budowlanych, gdzie precyzyjne obliczenia wpływają na efektywność finansową projektu. Wiedza ta jest także istotna w kontekście przepisów budowlanych i standardów branżowych, które zalecają uwzględnianie tylko istotnych powierzchni w kosztorysach.

Pytanie 28

Której kielni należy użyć do spoinowania fug?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Kielnia oznaczona literą C jest odpowiednim narzędziem do spoinowania fug, co jest kluczowym etapem w pracach budowlanych i wykończeniowych. Jej charakterystyczny zakrzywiony kształt umożliwia precyzyjne nakładanie zaprawy pomiędzy powierzchniami, co jest istotne dla uzyskania estetycznego i trwałego efektu. W praktyce, kielnia ta pozwala na równomierne rozłożenie materiału, co minimalizuje ryzyko powstawania pęknięć i osłabień w strukturze. Warto także zwrócić uwagę, że odpowiednie spoinowanie jest zgodne z normami budowlanymi, które wymagają zachowania określonych standardów jakości w zakresie materiałów i technologii. Użycie właściwej kielni wpływa nie tylko na wygląd, ale także na funkcjonalność i trwałość wykonanych prac. Na przykład, stosując kielnię C w trakcie układania płytek ceramicznych, można łatwiej dostosować grunt do różnorodnych kształtów i wielkości fug, co jest istotne w przypadku skomplikowanych wzorów. W związku z tym, wybór kielni C jest zgodny z najlepszymi praktykami w branży budowlanej.

Pytanie 29

Przedstawione na rysunku narzędzia służą do

Ilustracja do pytania
A. zwilżenia powierzchni zaprawy w spoinie.
B. rozprowadzania zaprawy do cienkich spoin.
C. nabierania większej ilości zaprawy.
D. przenoszenia zaprawy na większe odległości.
Niestety, ta odpowiedź jest błędna. Mówiłeś o zwilżeniu zaprawy w spoinie i przenoszeniu zaprawy na większe odległości, ale to nie to, co te narzędzia robią. Kielnia trójkątna i prostokątna nie są do zwilżania zaprawy; one są zaprojektowane do rozprowadzania materiału budowlanego w precyzyjny sposób. Używanie ich do zwilżania zaprawy nie ma sensu, bo są inne sposoby na to, jak na przykład pędzle czy gąbki. A przenoszenie zaprawy na większe odległości? Lepiej używać wiader czy taczki, bo te narzędzia nie są do transportu, a bardziej do dokładnej pracy. Też nie ma sensu myśleć, że kielnie mają nabierać dużą ilość zaprawy, bo mają dość ograniczone pojemności i ich kształt jest taki, żeby łatwo nimi manewrować i precyzyjnie nakładać materiał. Ważne jest, żeby rozumieć, do czego służą różne narzędzia, bo inaczej można zrobić bałagan w pracy budowlanej i jakość nie będzie taka, jak powinna być.

Pytanie 30

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 30 mm
B. 10 mm
C. 7 mm
D. 5 mm
Wybór odpowiedzi 30 mm, 5 mm lub 10 mm jest niewłaściwy, ponieważ nie spełniają one wymogów dotyczących odchyleń promieni krzywizny dla tynków kategorii II i III. Odpowiedź 30 mm wprowadza poważny błąd, gdyż tak duże odchylenie może prowadzić do znacznych zaburzeń estetycznych oraz funkcjonalnych. W praktyce budowlanej, nadmierne odchylenia mogą skutkować zbieraniem się wody w zakamarkach, co z kolei prowadzi do degradacji tynku, a nawet korozji elementów budowlanych. Odpowiedź 5 mm, mimo że jest mniejsza niż 7 mm, również nie jest odpowiednia, ponieważ nie spełnia wymogów projektowych, które zostały jasno określone dla tynków tej kategorii. Tynki muszą być aplikowane z zachowaniem precyzyjnych wymiarów, aby zapewnić trwałość oraz estetykę wykonania. Przykłady nieprawidłowych podejść w aplikacji tynków mogą prowadzić do powstawania szczelin, pęknięć oraz innych defektów, które są nieakceptowalne w kontekście standardów budowlanych. Ostatecznie, wybór odpowiednich wartości odchyleń jest kluczowy dla osiągnięcia wysokiej jakości wykończenia oraz długotrwałej użyteczności, co jest istotne dla każdego projektu budowlanego.

Pytanie 31

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyrównanie powierzchni płyt styropianowych.
B. Nakładanie tynku cienkowarstwowego.
C. Wtapianie siatki zbrojącej.
D. Nakładanie zaprawy klejowej.
Nakładanie tynku cienkowarstwowego to kluczowy etap w procesie ocieplania ścian budynku metodą lekką mokrą. W tej fazie, po uprzednim przygotowaniu powierzchni, na którą nałożono warstwę styropianu i siatkę zbrojącą, aplikowany jest tynk o jednolitej, gładkiej konsystencji. Tynk cienkowarstwowy ma na celu nie tylko estetyczne wykończenie, ale również ochronę przed warunkami atmosferycznymi. Właściwe nałożenie tynku pozwala na uzyskanie odpowiedniej paroprzepuszczalności oraz odporności na czynniki zewnętrzne. W standardach budowlanych, takich jak PN-EN 998-1, tynki powinny spełniać określone wymagania dotyczące wytrzymałości i trwałości. Zastosowanie tynku cienkowarstwowego jest szczególnie zalecane w budownictwie energooszczędnym, gdzie istotne jest ograniczenie strat ciepła oraz poprawa komfortu termicznego. Dobrą praktyką jest stosowanie tynków w harmonii z systemem ociepleniowym, co zapewnia długotrwałe efekty izolacyjne.

Pytanie 32

Korzystając z danych zawartych w tabeli wskaż najmniejszą dopuszczalną grubość tynku z izolacją termiczną.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków wewnętrznych z fabrycznie suchej zaprawy105
dla jednowarstwowych tynków chroniących przed wodą z fabrycznie suchej zaprawy1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 10 mm
B. 20 mm
C. 15 mm
D. 5 mm
Wybierając odpowiedź 20 mm, wskazujesz na zgodność z wymaganiami dotyczącymi tynków z izolacją termiczną. Zgodnie z danymi zawartymi w tabeli, ta wartość jest najmniejszą dopuszczalną grubością, co jest kluczowe dla zapewnienia odpowiednich właściwości izolacyjnych. Tynki o grubości 20 mm są zgodne z normami budowlanymi, które określają minimalne parametry dla zapewnienia efektywności energetycznej budynków. Przykładowo, w budownictwie pasywnym, odpowiednia grubość izolacji jest niezbędna do osiągnięcia niskiego zapotrzebowania na energię do ogrzewania. Warto także zwrócić uwagę na to, że zbyt cienkie warstwy tynku mogą prowadzić do mostków termicznych, co skutkuje stratami ciepła oraz zwiększonymi kosztami ogrzewania. Dlatego też, stosowanie tynków o grubości 20 mm jest zasadne z perspektywy zarówno efektywności energetycznej, jak i długoterminowej trwałości budynku.

Pytanie 33

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. ciepłochronnych
B. szamotowych
C. krzemionkowych
D. kwasoodpornych
Wybór odpowiedzi dotyczących zapraw szamotowych, krzemionkowych czy kwasoodpornych nie jest uzasadniony w kontekście właściwości keramzytu. Zaprawy szamotowe są stosowane głównie w budowie pieców i kominków, gdzie kluczowe są ich właściwości ogniotrwałe, co nie ma związku z lekkim kruszywem, jakim jest keramzyt. Z kolei zaprawy krzemionkowe, charakteryzujące się dużą odpornością na działanie wysokich temperatur, są dedykowane dla struktur wymagających specyficznych właściwości termicznych, co nie odpowiada funkcji izolacyjnej, jaką pełni keramzyt. Odpowiedzi wskazujące na zaprawy kwasoodporne są równie nietrafione, gdyż te materiały mają zastosowanie w warunkach, gdzie występuje kontakt z agresywnymi chemikaliami, a nie w kontekście właściwości cieplnych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie właściwości materiałów budowlanych oraz ich zastosowania w różnych kontekstach. Ważne jest zrozumienie, że wybór materiałów budowlanych powinien być oparty na ich specyficznych zastosowaniach oraz wymaganiach projektowych, co potwierdzają standardy branżowe oraz dobre praktyki inżynieryjne.

Pytanie 34

Odczytaj z rysunku grubość ściany, w której umieszczony jest otwór drzwiowy

Ilustracja do pytania
A. 14,5 cm
B. 81,0 mm
C. 80,0 mm
D. 25,0 cm
Odpowiedź 25,0 cm jest całkiem dobra, bo dokładnie pokazuje, jak gruba jest ta ściana przy otworze drzwiowym, według rysunku. W budownictwie grubość ścian, zarówno zewnętrznych, jak i wewnętrznych, jest mega ważna, bo wpływa na stabilność i energooszczędność budynku. Oczywiście, grubości mogą się różnić w zależności od materiałów, ale 25 cm to naprawdę popularny wymiar w tradycyjnym budownictwie, zwłaszcza przy użyciu bloczków betonowych czy cegieł. Pamiętaj też, żeby nie zapominać o dobrze dobranych izolacjach, bo te też wpływają na ostateczną grubość ścian. W praktyce, określenie tej grubości jest kluczowe, bo ma duży wpływ na obliczenia statyczne, które są niezbędne dla bezpieczeństwa i trwałości budynków.

Pytanie 35

Który z wymienionych typów tynków kwalifikuje się jako tynki szlachetne?

A. Nakrapiany
B. Ciepłochronny
C. Wodoszczelny
D. Pocieniony
Tynki wodoszczelne, ciepłochronne oraz pocienione, mimo że pełnią ważne funkcje, nie są klasyfikowane jako tynki szlachetne. Tynki wodoszczelne, stosowane głównie w obszarach narażonych na działanie wody, jak piwnice czy fundamenty, mają na celu ochronę przed wilgocią. Jednak ich funkcjonalność nie obejmuje estetycznych aspektów, które są kluczowe dla tynków szlachetnych. Z kolei tynki ciepłochronne, zaprojektowane z myślą o poprawie izolacyjności termicznej, skupiają się na efektywności energetycznej budynku, a nie na jego wyglądzie. Co więcej, tynki pocienione, które mają na celu zmniejszenie ciężaru powłok tynkarskich, również nie są uznawane za szlachetne, gdyż ich właściwości estetyczne są ograniczone. Typowe błędne podejście polega na utożsamianiu wszelkich tynków spełniających określone funkcje z tynkami szlachetnymi, co wynika z braku zrozumienia różnorodności i specyfiki zastosowań tynków. Tynki szlachetne są przede wszystkim cenione za swoje walory estetyczne oraz zdolność do nadawania unikalnego charakteru budynkom, co w przypadku wymienionych rodzajów tynków nie występuje.

Pytanie 36

Na rysunku przedstawiono izolację przeciwwilgociową

Ilustracja do pytania
A. poziomą z folii polietylenowej.
B. poziomą z papy.
C. pionową z folii kubełkowej.
D. pionową z emulsji asfaltowej.
Izolacja przeciwwilgociowa jest kluczowym elementem w budownictwie, jednak niektóre z zaproponowanych rozwiązań nie spełniają wymogów skutecznej ochrony przed wilgocią. Odpowiedzi dotyczące poziomej izolacji z papy oraz folii polietylenowej są nieprawidłowe z uwagi na ich zastosowanie i efektywność w kontekście przeciwwilgociowym. Izolacja pozioma z papy, choć popularna, nie jest odpowiednia do stosowania w miejscach narażonych na wysokie ciśnienie wody, ponieważ może ulegać uszkodzeniu lub deformacji pod wpływem obciążenia. Ponadto, nie jest ona w stanie skutecznie odprowadzać wody, co prowadzi do gromadzenia się wilgoci. Z kolei pozioma folia polietylenowa, mimo że jest stosunkowo łatwa w instalacji, także nie jest wskazana w sytuacjach, gdzie istnieje wysokie ryzyko kontaktu z wodą gruntową. Folia ta nie zapewnia wystarczającej paroprzepuszczalności, co może skutkować zawilgoceniem materiałów budowlanych oraz rozwojem pleśni. W przypadku pionowej izolacji z emulsji asfaltowej, chociaż może być stosowana, nie oferuje ona tej samej skuteczności jak folia kubełkowa. Emulsja asfaltowa, w przeciwieństwie do folii kubełkowej, nie tworzy skutecznej przestrzeni odprowadzającej wodę, co w dłuższym czasie prowadzi do jej degradacji. Zrozumienie różnic między tymi materiałami oraz ich właściwościami jest kluczowe dla zapewnienia efektywnej ochrony w budownictwie.

Pytanie 37

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości mniejszej niż 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Rysunki B, C i D przedstawiają kształty rys, które nie spełniają wymogów dotyczących naprawy tynków wewnętrznych. Kształt rysy ma kluczowe znaczenie dla powodzenia naprawy. W przypadku rys przedstawionych w tych odpowiedziach można zauważyć, że są one zbyt wąskie lub mają kształt zamknięty, co prowadzi do osłabienia przyczepności zaprawy. Tego rodzaju geometria rysy może powodować, że zaprawa nie będzie mogła się skutecznie wtopić w podłoże, co zwiększa ryzyko oderwania się materiału naprawczego w przyszłości. Często popełniane błędy w ocenie kształtu rysy to nieuwzględnienie zasady, że rysa powinna być rozwarta, aby umożliwić materiałowi naprawczemu swobodne wnikanie i zakotwiczenie. Ponadto, w przypadku napraw tynków wewnętrznych, ważne jest, aby stosować materiały zgodne z obowiązującymi normami, takimi jak PN-EN 13914-1, które wskazują na konieczność odpowiedniego przygotowania rysy oraz doboru materiałów naprawczych. Ignorowanie tych zasad prowadzi do błędnych wniosków i może skutkować koniecznością ponownej naprawy, co wiąże się z dodatkowymi kosztami oraz czasem. Dlatego tak istotne jest, aby dokładnie analizować kształt rysy przed przystąpieniem do prac naprawczych.

Pytanie 38

Który etap naprawy spękanego tynku przedstawiono na ilustracji?

Ilustracja do pytania
A. Poszerzanie rysy.
B. Oczyszczanie obrzeża rysy.
C. Nakładanie zaprawy szpachlowej.
D. Gruntowanie obrzeża rysy.
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia procesu naprawy spękanego tynku. Gruntowanie obrzeża rysy, które może wydawać się odpowiednim krokiem, jest jednak etapem, który następuje po poszerzeniu rysy. To działanie ma na celu zwiększenie przyczepności nowej zaprawy do powierzchni tynku, ale bez wcześniejszego poszerzenia rysy i usunięcia luźnych fragmentów, gruntowanie nie przyniesie oczekiwanych rezultatów. Nakładanie zaprawy szpachlowej bez odpowiedniego przygotowania rysy również jest niewłaściwe, ponieważ może prowadzić do osłabienia struktury naprawy i szybszego pojawienia się pęknięć. Oczyszczanie obrzeża rysy jest ważne, lecz nie jest to pierwszy krok naprawy - ma ono na celu jedynie przygotowanie rysy do dalszych działań, ale bez poszerzenia nie będzie skuteczne. Typowym błędem jest mylenie kolejności wykonywanych prac; każdy etap ma swoje przeznaczenie i wykonać go należy w odpowiedniej kolejności, aby zapewnić trwałość i estetykę naprawy. Nieprawidłowe podejście do kolejności etapów naprawy tynku może prowadzić do nieefektywnych i nietrwałych rozwiązań, co jest sprzeczne z zasadami profesjonalnego rzemiosła budowlanego.

Pytanie 39

Na rysunku przedstawiono elementy rusztowania

Ilustracja do pytania
A. rurowo-złączkowego.
B. warszawskiego.
C. na kozłach.
D. choinkowego.
Rusztowanie warszawskie to jedno z najczęściej stosowanych rozwiązań w budownictwie, które charakteryzuje się prostą konstrukcją złożoną z pionowych i poziomych rur oraz złączek. Na przedstawionym rysunku dokładnie widać te elementy, co potwierdza, że mamy do czynienia z rusztowaniem warszawskim. Jego konstrukcja pozwala na szybką i efektywną budowę, co jest kluczowe w kontekście realizacji projektów budowlanych. Dzięki modułowości i łatwości montażu, rusztowanie warszawskie jest szczególnie cenione w pracach, które wymuszają częste zmiany w konfiguracji. W praktyce, stosuje się je nie tylko w budownictwie mieszkalnym, ale również w obiektach komercyjnych, gdzie wymagana jest wysoka elastyczność projektu. Dodatkowo, rusztowanie warszawskie spełnia normy bezpieczeństwa, co jest istotne w kontekście ochrony pracowników na budowie. Zastosowanie odpowiednich materiałów oraz technik montażu zgodnych z zaleceniami branżowymi zapewnia stabilność i bezpieczeństwo konstrukcji, co czyni je dobrym wyborem dla wielu inwestycji budowlanych.

Pytanie 40

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. rusztu konstrukcyjnego
B. kratek odpowietrzających
C. wełny mineralnej
D. izolacji wiatrowej
Montaż izolacji wiatrowej, kratek odpowietrzających czy wełny mineralnej jako pierwszych elementów w systemie dociepleń jest nieprawidłowy, ponieważ nie uwzględnia podstawowych zasad budowy rusztu konstrukcyjnego. Izolacja wiatrowa, która ma na celu ochronę przed wpływem wiatru, jest stosowana zwykle na etapie finalnym, aby zminimalizować straty ciepła, jakie mogą wynikać z nieszczelności. Kratki odpowietrzające są elementami, które mają za zadanie umożliwić wentylację i odpływ skroplin, co jest istotne w kontekście dbałości o materiał izolacyjny, ale nie są pierwszym krokiem w procesie docieplenia. Wełna mineralna, jako materiał izolacyjny, powinna być umieszczona na ruszcie po jego zainstalowaniu, ponieważ bez odpowiedniego wsparcia strukturalnego nie będzie w stanie spełniać swoich funkcji. Kluczowym błędem myślowym jest przekonanie, że można pominąć etapy montażu konstrukcji nośnej, co prowadzi do nieprawidłowego rozkładu obciążeń i potencjalnych uszkodzeń systemu ociepleń. W związku z tym, każda inwestycja w ocieplenie budynku powinna być realizowana zgodnie z ustalonymi standardami i technologią, aby zapewnić jej efektywność i trwałość.