Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 grudnia 2025 15:47
  • Data zakończenia: 16 grudnia 2025 16:00

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Schematy przedstawione w odpowiedziach A, B i D zawierają poważne błędy w podejściu do podłączania wyłączników RCD, które mogą prowadzić do niebezpieczeństw w eksploatacji instalacji elektrycznej. W przypadku odpowiedzi A, wyłączniki RCD są połączone w sposób, który nie oddziela obwodów, co narusza zasadę zapewnienia niezależnej ochrony. Taki układ może prowadzić do sytuacji, w której awaria w jednym obwodzie spowoduje wyłączenie zasilania w obu, co jest niepraktyczne i niebezpieczne. W odpowiedzi B, połączenie RCD nie zapewnia właściwego odseparowania obwodów, co jest kluczowe w lokalizacjach o zwiększonym ryzyku, jak łazienki. Odpowiedź D z kolei również nie spełnia wymagań dotyczących ochrony, ponieważ nie uwzględnia specyficznych potrzeb bezpieczeństwa w różnych pomieszczeniach. W każdej z tych odpowiedzi brak jest zrozumienia podstawowych zasad dotyczących ochrony przed porażeniem elektrycznym, co może prowadzić do poważnych konsekwencji zdrowotnych. W kontekście norm PN-IEC 61008, kluczowe jest, aby każdy obwód był chroniony oddzielnie, co nie tylko zwiększa bezpieczeństwo, ale także ułatwia identyfikację problemów w instalacji. Niezrozumienie tego aspektu prowadzi do błędnych wniosków i, co gorsza, do niebezpiecznych układów elektrycznych.

Pytanie 2

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór innej odpowiedzi może wynikać z tego, że nie wszyscy znają podstawowe funkcje narzędzi pomiarowych. Rysunki innych urządzeń pomiarowych mogą być mylące, bo każde z nich ma swoje konkretne zastosowanie. Na przykład, niektóre z nich mierzą wilgotność albo temperaturę, co kompletnie nie ma związku z lokalizowaniem przewodów. Czasami ludzie mylą różne urządzenia z funkcjami detektora, co jest typowym błędem. W praktyce, wiele osób może nie wiedzieć, że detektory przewodów są stworzone specjalnie do prac elektrycznych, więc to naprawdę kluczowe narzędzie w budownictwie. Ignorowanie faktu, że odpowiednie narzędzia są istotne podczas remontów, może powodować poważne skutki, jak uszkodzenie kabli, co może prowadzić do ryzyka pożaru. Normy bezpieczeństwa kładą duży nacisk na używanie odpowiednich urządzeń, co pokazuje, jak ważne jest, aby znać właściwe zastosowanie narzędzi w praktyce.

Pytanie 3

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę indukcyjną.
B. Żarówkę halogenową.
C. Lampę metalohalogenkową.
D. Świetlówkę kompaktową.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 4

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,0 MΩ
B. 1,5 MΩ
C. 0,5 MΩ
D. 2,0 MΩ
Odpowiedź 1,0 MΩ jest poprawna, ponieważ zgodnie z normami dotyczącymi izolacji przewodów, minimalna wymagana wartość rezystancji izolacji dla instalacji na napięcie znamionowe do 500 V, w tym dla systemów FELV, powinna wynosić co najmniej 1,0 MΩ. Wysoka wartość rezystancji izolacji jest kluczowa dla zapewnienia bezpieczeństwa operacyjnego instalacji, minimalizując ryzyko porażenia prądem oraz uszkodzenia sprzętu spowodowanego przebiciem. Przykładowo, w praktyce, przeprowadzanie regularnych pomiarów rezystancji izolacji w instalacjach elektrycznych może pomóc w wczesnym wykryciu problemów, takich jak degradacja izolacji z powodu starzenia, wilgoci czy uszkodzeń mechanicznych. Wartości poniżej 1,0 MΩ mogą wskazywać na konieczność wymiany przewodów lub przeprowadzenia naprawy. Dobre praktyki branżowe zalecają, aby przed oddaniem do użytku nowej instalacji przeprowadzić pomiary rezystancji izolacji oraz regularnie je kontrolować, aby zapewnić, że nie spadnie poniżej tej wartości.

Pytanie 5

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 25 A
B. 0,03 A
C. 230 A
D. 1000 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 6

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Indukcyjnego pierścieniowego.
C. Komutatorowego prądu stałego.
D. Jednofazowego z kondensatorem pracy.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 7

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Schodowy.
B. Krzyżowy.
C. Świecznikowy.
D. Grupowy.
Wybór łącznika grupowego, schodowego lub świecznikowego jako odpowiedzi na pytanie jest nieprawidłowy, ponieważ każdy z tych typów łączników ma swoje specyficzne zastosowania, które nie są zgodne z rolą łącznika oznaczonego literą P w układzie z trzema punktami sterowania. Łącznik grupowy służy do włączania lub wyłączania kilku punktów świetlnych jednocześnie z jednego miejsca, co nie odpowiada funkcji łącznika krzyżowego. Z kolei łączniki schodowe są używane na początku i końcu obwodu, umożliwiając jedynie sterowanie z dwóch miejsc. Nie można ich zastosować w układzie wymagającym przełączania z trzech lokalizacji. Łącznik świecznikowy, przeznaczony do sterowania oświetleniem z jednego miejsca, również nie jest odpowiedni w kontekście tego pytania. Osoby myślące, że wszystkie te łączniki mogą zastąpić krzyżowy, mogą nie dostrzegać różnic w ich funkcjonalności i zastosowaniach, co prowadzi do merytorycznych błędów w projektowaniu instalacji elektrycznych. W praktyce, nieznajomość typów łączników i ich funkcji może skutkować nieefektywnym rozwiązaniem, które nie spełnia wymagań użytkownika w zakresie wygody i funkcjonalności.

Pytanie 8

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 34 A
B. 25 A
C. 29 A
D. 30 A
Wybór niewłaściwej obciążalności przewodów, na przykład 29 A, 25 A czy 30 A, wynika często z niewłaściwego zrozumienia zasad doboru zabezpieczeń elektrycznych. Prąd znamionowy wyłącznika nadmiarowo-prądowego KS6 B32/3 wynosi 32 A, co oznacza, że obciążalność długotrwała przewodów musi być wyższa od tej wartości, aby uniknąć sytuacji, w której wyłącznik będzie się zbyt często wyzwalał podczas normalnej pracy. Wybór 29 A to minimalna wartość, która nie spełnia wymogu większej obciążalności długotrwałej, co może prowadzić do niepożądanych wyłączeń urządzenia. Z kolei 25 A jest jeszcze bardziej nieodpowiedni, ponieważ nie tylko nie przekracza prądu znamionowego wyłącznika, ale także stwarza ryzyko uszkodzenia instalacji w przypadku krótkotrwałego wzrostu obciążenia. Wybór 30 A również jest niewłaściwy, gdyż nie zapewnia odpowiedniego marginesu, co może prowadzić do nieefektywności systemu zabezpieczeń. Podstawową zasadą projektowania instalacji elektrycznych jest zapewnienie, że każdy element systemu jest dobrany z odpowiednim zapasem, co nie tylko zwiększa bezpieczeństwo, ale również stabilność i niezawodność całej instalacji. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji, w tym ryzyka uszkodzenia sprzętu oraz zagrożenia dla użytkowników.

Pytanie 9

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Nóż monterski, szczypce boczne, zestaw wkrętaków
B. Szczypce długie, nóż monterski, szczypce czołowe
C. Nóż monterski, szczypce boczne, szczypce monterskie
D. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 10

Na rysunku przedstawiono

Ilustracja do pytania
A. badanie skuteczności ochrony podstawowej.
B. sprawdzanie ciągłości przewodów ochronnych.
C. pomiar impedancji pętli zwarcia.
D. pomiar rezystancji izolacji przewodów ochronnych.
Chociaż odpowiedzi dotyczące badania skuteczności ochrony podstawowej, pomiaru rezystancji izolacji przewodów ochronnych czy pomiaru impedancji pętli zwarcia są związane z instalacjami elektrycznymi, nie odnoszą się bezpośrednio do opisanej sytuacji. Badanie skuteczności ochrony podstawowej dotyczy oceny, czy system ochrony przed porażeniem prądem elektrycznym spełnia swoje funkcje, co jest analizowane w kontekście całej instalacji, a nie tylko pojedynczych przewodów. Z kolei pomiar rezystancji izolacji jest procedurą, która ma na celu wykrycie uszkodzeń izolacji, co również nie odnosi się do sprawdzania ciągłości przewodów ochronnych. Pomiar impedancji pętli zwarcia jest natomiast techniką służącą do oceny skuteczności zabezpieczeń przeciwzwarciowych i nie ma związku ze sprawdzaniem ciągłości przewodów. Często pojawiające się błędne rozumienie zasadności tych pomiarów wynika z mylnego utożsamiania różnych procedur kontrolnych. Należy pamiętać, że każda z tych metod ma swoje specyficzne zastosowanie i w kontekście przedstawionego rysunku, tylko sprawdzanie ciągłości przewodów ochronnych jest w pełni adekwatne. Przez nieprecyzyjne odpowiedzi możemy nieświadomie zignorować kluczowe aspekty bezpieczeństwa elektrycznego, co może prowadzić do poważnych konsekwencji.

Pytanie 11

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.

Pytanie 12

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
B. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
C. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
D. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
Podejście do rozkuwania ścian i podłóg w celu wymiany uszkodzonych odcinków instalacji elektrycznej jest nie tylko czasochłonne, ale również kosztowne i nieefektywne. Tego typu działanie może prowadzić do nadmiernych uszkodzeń w pomieszczeniu, co wymaga dodatkowych prac remontowych, takich jak tynkowanie i malowanie, co zwiększa całkowity koszt inwestycji. Ponadto, takie metody są wbrew zasadom dobrych praktyk budowlanych, które zalecają minimalizację prac demontażowych, aby uniknąć dodatkowych ryzyk związanych z remontami. Podejście polegające na wprowadzeniu nowych przewodów w ścianach i listwach przypodłogowych niesie ze sobą ryzyko uszkodzenia konstrukcji budowlanej oraz naruszenia istniejących instalacji, co może prowadzić do awarii. W przypadku wyciągania starych przewodów z rur, istnieje duże prawdopodobieństwo, że zapchają się one lub uszkodzą, co utrudni dalszą pracę. Takie metody nie tylko są nieefektywne, ale również mogą doprowadzić do poważnych problemów związanych z bezpieczeństwem instalacji elektrycznej, co jest szczególnie niebezpieczne w kontekście zagrożeń pożarowych. Dlatego kluczowe jest przyjęcie metody, która łączy efektywność z bezpieczeństwem i zgodnością z obowiązującymi standardami.

Pytanie 13

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Z PVC lub gumowe
B. Tylko metalowe
C. Metalowe lub gumowe
D. Tylko z PVC
Wybór rur z PVC czy gumy do układania przewodów na podłożu palnym to niezbyt mądra decyzja z kilku powodów. Po pierwsze, te materiały są palne, co naprawdę zwiększa ryzyko pożaru, jeśli instalacja się uszkodzi. PVC, mimo że jest popularne w budownictwie, nie spełnia wymogów bezpieczeństwa dla podłoży palnych, bo w wysokiej temperaturze może się deformować albo topnieć, przez co odsłania przewody elektryczne. Teoretycznie można by pomyśleć, że rury gumowe są jakąś alternatywą dla metalowych, ale w praktyce to się nie sprawdza, bo gumowe materiały, mimo że elastyczne i odporne na niektóre chemikalia, nie wytrzymują wysokich temperatur i są mniej trwałe. Normy, takie jak PN-IEC 60364 i przepisy przeciwpożarowe, jednoznacznie pokazują, że metalowe rury to najlepszy wybór tam, gdzie może wystąpić ryzyko pożaru. Wybierając złe materiały, narażamy nie tylko instalację, ale też zdrowie i życie ludzi w danym budynku, a to naprawdę nieodpowiedzialne podejście.

Pytanie 14

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innych opraw oświetleniowych, które nie są żyrandolami, może prowadzić do niewłaściwego oświetlenia pomieszczeń. Na przykład, jeżeli wybierzesz kinkiety, które są przeznaczone głównie do oświetlenia akcentującego, mogą one nie zapewnić wystarczającego rozproszenia światła w przestrzeni, co skutkuje niejednorodnym oświetleniem i tworzeniem cieni, które mogą być uciążliwe w codziennym użytkowaniu. Kinkiety są z reguły montowane na ścianach i skierowane na konkretne obszary, co sprawia, że są bardziej odpowiednie do podkreślania wybranych elementów dekoracyjnych lub do stworzenia przytulnej atmosfery, a nie do ogólnego oświetlenia. Ponadto, jeśli rozważasz zastosowanie lamp podłogowych, mogą one być niewystarczające, ponieważ często wymagają dodatkowego źródła światła, aby efektywnie oświetlić całe pomieszczenie. Typowe błędy myślowe związane z tymi wyborami polegają na nieuwzględnieniu faktu, że różne oprawy mają różne funkcje i zastosowania, co może prowadzić do nieefektywnego oświetlenia oraz niezadowolenia z komfortu użytkowania przestrzeni. Właściwe zrozumienie funkcji i zastosowania konkretnego rodzaju opraw oświetleniowych jest kluczowe dla osiągnięcia optymalnych warunków świetlnych w każdym pomieszczeniu.

Pytanie 15

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są przerwane.
B. Żyły a i b są przerwane.
C. Żyły c i a są zwarte ze sobą.
D. Żyły a i b są zwarte ze sobą.
Pomiary rezystancji mogą prowadzić do różnych błędów w wnioskowaniu, zwłaszcza jak się ich nie przeanalizuje odpowiednio. Na przykład, mówienie o przerwach w żyłach c i a czy a i b, to nie jest dobra sprawa. Pomiary mówią, że brak połączenia mamy tylko między a i c oraz b i c. Warto to zrozumieć jako brak elektrycznego połączenia, a nie jakiekolwiek inne założenie. Typowy błąd to myślenie, że jeśli rezystancja jest nieskończona, to żyły są przerwane. A to wprowadza w błąd. Nieskończona rezystancja tylko pokazuje, że nie ma połączenia między a i c oraz b. Natomiast a i b, mając skończoną rezystancję, są ze sobą zwarte. W praktyce każdy technik powinien wiedzieć, że interpretacja rezystancji to nie tylko teoria, ale też praktyka pomiarów. Dobre praktyki w diagnozowaniu usterek to konieczność dokładnych sprawdzeń i powtarzania pomiarów, żeby uniknąć fałszywych informacji, które mogą kosztować sporo w naprawach i konserwacji systemów elektrycznych.

Pytanie 16

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. przewietrznika
B. tabliczki znamionowej
C. wprowadzenia przewodu zasilającego
D. czopu
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 17

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. zaciskania końcówek oczkowych.
C. zdejmowania powłoki z przewodu.
D. profilowania żył przewodów.
Zarówno zdejmowanie powłoki z przewodu, zaciskanie końcówek oczkowych, jak i zaciskanie końcówek tulejkowych wymagają użycia innych rodzajów narzędzi. W przypadku zdejmowania powłoki z przewodu najczęściej stosuje się nożyce lub specjalistyczne narzędzia do ściągania izolacji, które są zaprojektowane tak, aby precyzyjnie usunąć zewnętrzną warstwę bez uszkadzania wrażliwych żył wewnętrznych. Użycie szczypiec okrągłych w tym kontekście jest niewłaściwe, ponieważ ich konstrukcja nie sprzyja precyzyjnemu ściąganiu izolacji. Z kolei zaciskanie końcówek oczkowych i tulejkowych z reguły wymaga użycia odpowiednich szczypiec zaciskowych, które są dedykowane do tego celu. Użycie niewłaściwych narzędzi może prowadzić do nieszczelnych połączeń elektrycznych, co zwiększa ryzyko awarii lub uszkodzeń w instalacji. Powszechnym błędem myślowym jest przekonanie, że jedno narzędzie może zastąpić inne, co wynika z braku świadomości na temat specyfiki i funkcji poszczególnych narzędzi. Dobrze zrozumiane różnice pomiędzy różnymi rodzajami narzędzi oraz ich dedykowanymi zastosowaniami są kluczowe dla zachowania bezpieczeństwa i efektywności w pracach elektrycznych.

Pytanie 18

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,35 mA
B. ±2,35 mA
C. ±0,02 mA
D. ±0,37 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 19

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Reaktancję rozproszenia transformatora.
B. Rezystancję uziomu.
C. Rezystancję izolacji.
D. Impedancję pętli zwarcia.
Wybór niepoprawnych odpowiedzi wskazuje na pewne nieporozumienia dotyczące zastosowań różnych przyrządów pomiarowych. Reaktancja rozproszenia transformatora, na przykład, jest związana z parametrami indukcyjności i nie jest mierzona przyrządami przeznaczonymi do pomiaru rezystancji uziomu. Zamiast tego, mierniki LCR są używane do analizy części pasywnych obwodów, a ich funkcjonalność wykracza poza możliwości miernika rezystancji uziemienia. Kolejnym błędnym podejściem jest pomiar rezystancji izolacji, który wymaga zastosowania specjalistycznych mierników, najczęściej o wyższych napięciach pomiarowych, aby ocenić jakość izolacji kabli i urządzeń. W kontekście impedancji pętli zwarcia, musimy pamiętać, że jest to parametr krytyczny dla systemów ochrony przeciwporażeniowej, który również wymaga innego typu sprzętu, zazwyczaj mierników pętli zwarcia. Często osoby przystępujące do pomiarów mylą różne urządzenia i ich funkcje, co może prowadzić do błędnych wniosków. Zrozumienie, jakie parametry można i należy mierzyć danym przyrządem, jest kluczowe dla efektywności przeprowadzanych pomiarów oraz bezpieczeństwa całej instalacji elektrycznej. Rekomenduje się przekazywanie wiedzy na temat funkcji różnych przyrządów w kontekście ich zastosowań ze względu na ich specyfikę i przeznaczenie.

Pytanie 20

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innej opcji niż A może wynikać z kilku nieporozumień dotyczących interpretacji symboli graficznych w schematach instalacji elektrycznych. Symbol graficzny łącznika jest wyraźnie zdefiniowany w normach branżowych, co oznacza, że każda niepoprawna odpowiedź może być rezultatem błędnej analizy rysunku lub niewłaściwego skojarzenia z innymi symbolami. Wiele osób mylnie może interpretować inne symbole, takie jak te używane do reprezentacji innych elementów elektrycznych, na przykład wyłączników, co prowadzi do zamieszania. Ponadto, w przypadku schematów wieloliniowych, istotne jest zrozumienie, że każdy element powinien być przedstawiony w sposób umożliwiający łatwe zrozumienie jego roli w instalacji. Błędem jest również brak znajomości standardów, co prowadzi do mylnych wniosków o funkcji poszczególnych symboli. Często zdarza się, że osoby analizujące rysunki schematów nie zwracają uwagi na szczegóły, takie jak kierunki linii czy sposób łączenia symboli, co jest kluczowe dla prawidłowego odczytu i interpretacji. Aby poprawić swoje umiejętności w tej dziedzinie, warto zapoznać się z dokumentacją techniczną oraz normami, które dokładnie opisują każdy element i jego graficzną reprezentację.

Pytanie 21

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Wyładowcze wysokoprężne.
C. Półprzewodnikowe.
D. Żarowe.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 22

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. wyłącznie przewody fazowe.
B. wyłącznie przewód neutralny.
C. przewód fazowy i przewód neutralny.
D. przewody fazowe i przewód neutralny.
Odpowiedź wskazująca na włączenie ochronnika przeciwprzepięciowego między uziemienie a przewody fazowe oraz przewód neutralny jest poprawna, ponieważ zgodnie z normami, takimi jak PN-EN 62305, ochronniki SPD powinny być instalowane w taki sposób, aby efektywnie odprowadzać nadmiar energii spowodowane przepięciami do ziemi. Ochronnik SPD jest kluczowym elementem ochrony instalacji elektrycznych przed skutkami przepięć atmosferycznych oraz wywołanych przez inne źródła. W praktyce oznacza to, że zarówno przewody fazowe, jak i neutralny mogą być narażone na różnego rodzaju zakłócenia, które mogą prowadzić do uszkodzenia sprzętu czy zagrożenia dla użytkowników. Umieszczając ochronnik w opisanej konfiguracji, zapewniamy optymalny poziom bezpieczeństwa. Przykłady zastosowania obejmują instalacje w budynkach mieszkalnych, biurach oraz obiektach przemysłowych, gdzie ochrona przed przepięciami ma kluczowe znaczenie dla ciągłości działania urządzeń elektrycznych oraz bezpieczeństwa ludzi.

Pytanie 23

Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór odpowiedzi innej niż B może wynikać z nieporozumienia co do funkcji narzędzi przedstawionych na pozostałych rysunkach. Często ludzie mylą szczypce do zdejmowania izolacji z innymi narzędziami, takimi jak szczypce uniwersalne czy obcinaki, które nie są przeznaczone do precyzyjnego usuwania izolacji z przewodów. Szczypce uniwersalne mogą być używane do różnych zadań, ale nie są zoptymalizowane do formowania oczek, co może prowadzić do uszkodzenia rdzenia przewodu. Zastosowanie niewłaściwego narzędzia może skutkować nieodpowiednim przygotowaniem przewodów, co w konsekwencji wpływa na jakość połączenia elektrycznego i może prowadzić do awarii instalacji. Ponadto, istnieje ryzyko, że użycie takich narzędzi może naruszyć normy bezpieczeństwa, co jest niezgodne z praktykami branżowymi. Kluczowym błędem myślowym jest założenie, że każde narzędzie do cięcia lub obróbki przewodów może być stosowane zamiennie bez względu na jego specyfikę, co zdecydowanie nie jest zgodne z najlepszymi praktykami w dziedzinie elektryki.

Pytanie 24

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły a i b są zwarte ze sobą.
B. Żyły c i a są zwarte ze sobą.
C. Żyły c i a są przerwane.
D. Żyły a i b są przerwane.
Wnioski wyciągnięte z pomiarów rezystancji są kluczowe dla właściwego diagnozowania stanu kabli. Nieprawidłowe interpretacje mogą prowadzić do fałszywych diagnoz, co z kolei może skutkować nieefektywnym użytkowaniem sprzętu lub nawet poważnymi awariami. Na przykład, uznanie, że żyły c i a są przerwane, pomija fakt, że w pierwszej serii pomiarów rezystancja była niska, co wskazuje na ich sprawność. Takie wnioski mogą wynikać z niepełnego zrozumienia zasad działania rezystancji i wpływu zwarcia na pomiary. Z kolei założenie, że żyły a i b są przerwane, jest również błędne, ponieważ ich rezystancja w drugiej serii była zbliżona do wartości ze pierwszej serii, co sugeruje ich zwarte połączenie. Dlatego kluczowe jest, aby technicy byli świadomi różnicy między pomiarami w trybie zwarcia i rozłączenia oraz umieli prawidłowo interpretować otrzymane wyniki. Używanie standardowych procedur pomiarowych, takich jak te określone w normach branżowych, może znacznie zwiększyć dokładność diagnoz. Należy unikać pułapek, w które wpadali technicy, którzy, zamiast analizować dane w kontekście całości, skupili się jedynie na fragmentarycznych wynikach, co prowadzi do błędnych konkluzji.

Pytanie 25

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. odgromowy.
B. neutralny.
C. wyrównawczy.
D. ochronny.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 26

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-PE
B. Z L-L
C. Z L-N
D. Z L-PE(RCD)
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 27

Układ przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. prądu zadziałania wyłącznika różnicowoprądowego.
B. napięcia zadziałania wyłącznika różnicowoprądowego.
C. rezystancji przewodów.
D. obciążenia układu.
Układ przedstawiony na rysunku rzeczywiście służy do pomiaru prądu zadziałania wyłącznika różnicowoprądowego (RCD). W tym układzie amperomierz jest podłączony szeregowo z rezystorem Rp, a obciążenie zostało odłączone. Taki sposób podłączenia pozwala na dokładne zbadanie prądu, przy którym wyłącznik różnicowoprądowy zareaguje, odłączając obwód. Prąd zadziałania RCD jest kluczowy dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, ponieważ jego zadaniem jest wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co może wskazywać na obecność prądu upływowego. W praktyce, odpowiedni dobór wartości prądu zadziałania jest określony w normach, takich jak PN-EN 61008-1, które regulują działanie wyłączników różnicowoprądowych. Przykładem zastosowania jest montaż RCD w obwodach zasilających urządzenia o zwiększonym ryzyku porażenia prądem, takich jak urządzenia elektryczne w łazienkach czy na zewnątrz budynków. RCD przyczynia się do minimalizacji ryzyka porażenia prądem, a także pożarów spowodowanych zwarciem prowadzącym do przegrzania. Dlatego testowanie prądu zadziałania jest kluczowym elementem konserwacji i przeglądów instalacji elektrycznych.

Pytanie 28

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Omomierza
B. Megawoltomierza
C. Megaomomierza
D. Watomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 29

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Sprawdzając napięcie oraz prąd wyłącznika
C. Tworząc zwarcie w obwodzie zabezpieczonym
D. Zmieniając ustawienie dźwigni "ON-OFF"
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 30

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 450/750 V
C. 100/100 V
D. 300/500 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 31

Na podstawie przedstawionego schematu, przy odłączonych łącznikach, można wykonać pomiar

Ilustracja do pytania
A. stanu izolacji uzwojeń silnika.
B. asymetrii napięcia zasilającego.
C. stanu izolacji przewodów.
D. skuteczności samoczynnego wyłączenia napięcia.
Wybranie złej odpowiedzi, jak pomiar stanu izolacji uzwojeń silnika czy skuteczności samoczynnego wyłączenia napięcia, może wynikać z nieporozumień w temacie instalacji elektrycznych. Tak naprawdę, nie da się zmierzyć izolacji uzwojeń silnika, gdy łączniki są odłączone, bo silnik jest wtedy martwy, więc wyniki takich pomiarów nie miałyby sensu. Poza tym, żeby ocenić, jak działa samoczynne wyłączanie, trzeba mieć podłączone zasilanie, bo wtedy można to wszystko sprawdzić. Jeżeli chodzi o asymetrię napięcia, to też potrzebujemy, żeby system działał, a przy odłączonych łącznikach to nie jest możliwe. Te błędy często wynikają z braku zrozumienia podstawowych zasad elektryki. Ważne, żeby odróżniać różne pomiary i stosować odpowiednie metody, bo to jest kluczowe, nie tylko do robienia dobrych testów, ale też dla bezpieczeństwa i konserwacji instalacji elektrycznych.

Pytanie 32

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Elektromagnes.
B. Transformator.
C. Wzbudnik indukcyjny.
D. Dławik magnetyczny.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 33

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Użycie odbiorników II klasy ochronności.
B. Samoczynne wyłączenie zasilania.
C. Połączenie wyrównawcze.
D. Separację odbiornika.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 34

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. amperomierz oraz woltomierz
B. cyfrowy watomierz
C. analogowy omomierz
D. watomierz oraz amperomierz
Wykorzystanie watomierza cyfrowego do pomiaru rezystancji przewodów jest nieodpowiednie, ponieważ watomierz służy do pomiaru mocy elektrycznej, a nie do oceny rezystancji. Watomierz mierzy moc czynną, wyrażoną w watach, na podstawie pomiaru napięcia i natężenia prądu oraz współczynnika mocy. Użycie tego narzędzia w kontekście pomiaru rezystancji prowadzi do mylnych rezultatów, ponieważ nie uwzględnia ono specyfiki rezystancji, która jest niezależna od mocy. Podobnie, połączenie amperomierza i woltomierza również nie jest właściwe, gdyż te urządzenia mierzą natężenie prądu i napięcie, a do obliczenia rezystancji potrzebne jest odniesienie do wartości mierzonej bezpośrednio, co wymaga zastosowania omomierza. W przypadku watomierza i amperomierza, pomiar rezystancji wymagałby dodatkowego przeliczenia, co wprowadza niepotrzebne komplikacje i możliwość błędów. Coraz częściej w praktyce inżynierskiej wykorzystuje się zalecenia dotyczące stosowania omomierzy, które zapewniają dokładność i prostotę pomiarów. Zrozumienie tego, że każdy instrument ma swoje specyficzne zastosowanie, jest kluczowe dla przeprowadzania efektywnych i dokładnych pomiarów w elektrotechnice.

Pytanie 35

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 36

Na którym rysunku przedstawiono schemat układu do wykonania pomiaru impedancji pętli zwarcia instalacji w układzie TN?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
W celu zrozumienia, dlaczego inne schematy nie przedstawiają poprawnego układu pomiarowego, należy przyjrzeć się ich elementom oraz zastosowaniom. Wiele osób może błędnie zakładać, że jakiekolwiek układy z miernikami elektrycznymi mogą być użyte do pomiaru impedancji pętli zwarcia. W przypadku schematów A, C i D, brak jest kluczowych elementów, które są niezbędne do przeprowadzenia pomiarów w układzie TN. Na przykład, jeśli rysunek A przedstawia układ bez odpowiedniego uziemienia lub izolacji, to może prowadzić do nieprawidłowych wskazań pomiarowych. Często występującym błędem jest mylenie pomiaru impedancji z pomiarami innych parametrów elektrycznych, takich jak napięcie czy prąd. Pomiar impedancji wymaga specyficznej konfiguracji, aby zapewnić dokładność i bezpieczeństwo, a brak zasilania odpowiednich elementów prowadzi do niewłaściwych odczytów. Kolejnym typowym błędem myślowym jest ignorowanie standardów branżowych, takich jak PN-EN 61557-3, które wyraźnie określają, jakie komponenty powinny być użyte w tego rodzaju pomiarach. Dlatego ważne jest, aby dobrze rozumieć rolę każdego elementu w układzie pomiarowym i ich wpływ na bezpieczeństwo i dokładność pomiaru w instalacjach TN.

Pytanie 37

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
B. Najwyższy czas zadziałania
C. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
D. Maksymalny prąd zwarciowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 38

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. C.
B. D.
C. A.
D. B.
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 39

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Żaluzjowy.
B. Świecznikowy.
C. Schodowy.
D. Dwubiegunowy.
Wybór innych rodzajów łączników, takich jak świecznikowy, schodowy czy dwubiegunowy, jest błędny z kilku powodów. Łącznik świecznikowy jest używany do załączania i wyłączania obwodu oświetleniowego i nie ma zastosowania w sterowaniu silnikami. Jego funkcja ogranicza się do prostego włączania światła, co wyklucza jakiekolwiek złożone sterowanie ruchem, które jest kluczowe w przypadku żaluzji. Z kolei łącznik schodowy, stosowany w systemach oświetleniowych, pozwala na kontrolowanie jednego źródła światła z dwóch różnych miejsc, jednak również nie nadaje się do sterowania silnikami. Jego konstrukcja i zasada działania są zupełnie inne, co prowadzi do nieprawidłowego wnioskowania. Podobnie łącznik dwubiegunowy, który może być używany do załączania i wyłączania urządzeń napięciowych, nie jest przystosowany do sterowania ruchem w górę i w dół, co jest niezbędne w systemach żaluzjowych. Wybór odpowiedniego łącznika jest kluczowy dla prawidłowej funkcjonalności instalacji, a błędne myślenie o tych urządzeniach prowadzi do niewłaściwych instalacji i potencjalnych problemów w działaniu urządzeń. Dlatego istotne jest zrozumienie różnic między różnymi typami łączników oraz ich zastosowaniem, co pozwala na lepsze projektowanie i efektywne wykorzystanie technologii w automatyce budynkowej.

Pytanie 40

Na rysunku przedstawiono sposób podłączenia miernika MZC-201 do pomiaru

Ilustracja do pytania
A. rezystancji izolacji.
B. ciągłości połączeń ochronnych.
C. impedancji pętli zwarcia.
D. rezystancji uziomu.
Pomiar rezystancji uziomu jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Miernik MZC-201, podłączony w przedstawiony sposób, umożliwia dokładne określenie wartości rezystancji uziomu (Ru). W praktyce, niska rezystancja uziomu jest niezbędna, aby zapewnić skuteczne odprowadzanie prądów awaryjnych do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364, wartość rezystancji uziomu powinna być jak najniższa, a zaleca się, aby nie przekraczała 10 ohmów w przypadku instalacji do ochrony przeciwporażeniowej. Dodatkowo, pomiar rezystancji uziomu powinien być regularnie wykonywany, szczególnie w obiektach komercyjnych i przemysłowych, aby zapewnić ciągłość działania systemów ochrony przed przepięciami. Prawidłowe podłączenie dodatkowego pręta pomiarowego (Rr) umożliwia uzyskanie dokładniejszych wyników, co jest zgodne z najlepszymi praktykami w dziedzinie elektroenergetyki.