Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 18:26
  • Data zakończenia: 17 grudnia 2025 18:32

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które z wymienionych działań podczas instalacji elektrycznych do 1 kV wymagają wydania polecenia?

A. Związane z ochroną zdrowia i życia ludzi
B. Związane z ochroną urządzeń przed zniszczeniem
C. Codzienne, wskazane w instrukcji eksploatacji
D. Okresowe, określone w planie przeglądów
Odpowiedź wskazująca na konieczność wydania polecenia przy okresowych przeglądach instalacji elektrycznych do 1 kV jest zgodna z obowiązującymi standardami oraz regulacjami prawnymi w zakresie bezpieczeństwa eksploatacji urządzeń elektrycznych. Okresowe przeglądy, wpisane w planie przeglądów, mają na celu weryfikację stanu technicznego instalacji oraz wykrywanie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Wydanie polecenia w tym kontekście jest niezbędne, aby formalnie zlecić te działania odpowiedniemu personelowi, który ma kompetencje oraz uprawnienia do ich przeprowadzenia. Przykładem zastosowania może być sytuacja, w której po przeprowadzeniu przeglądu instalacji wykryto nieprawidłowości, co wymaga szybkiego podjęcia działań naprawczych w celu uniknięcia awarii. Warto również podkreślić, że systematyczne przeglądy są rekomendowane przez Polskie Normy oraz przepisy prawa budowlanego, co potwierdza ich istotność w kontekście bezpieczeństwa elektrycznego.

Pytanie 2

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Prądu stałego
B. Dwufazowa z wirnikiem klatkowym
C. Synchroniczna
D. Dwufazowa z wirnikiem kubkowym
Odpowiedzi, które wskazały na tachoprądnice synchroniczne, dwufazowe z wirnikiem klatkowym i z wirnikiem kubkowym są błędne, bo te urządzenia działają na innych zasadach. Tachoprądnice synchroniczne mogą mierzyć prędkość, ale nie rozróżniają kierunku obrotów. Działa to tak, że są zasilane prądem AC i nie mają możliwości uzyskania polaryzacji sygnału wyjściowego. Jeśli chodzi o tachoprądnice dwufazowe z wirnikiem klatkowym, to ich mechanizm pomiarowy bazuje na wirniku kaskadowym i też nie odróżnia kierunków obrotów, bo sygnał wyjściowy dostajemy tylko w kontekście prędkości. Podobnie jest z tachoprądnicami dwufazowymi z wirnikiem kubkowym, bo ich sygnały są symetryczne i nie dają informacji o kierunku obrotów. Zrozumienie, że do pomiaru kierunku obrotów potrzeba specyficznej konstrukcji, jest istotne przy doborze urządzeń do zastosowań przemysłowych. Często myli się funkcje pomiarowe różnych tachoprądnic, co prowadzi do nieporozumień.

Pytanie 3

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
B. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
C. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
D. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
Wybór niewłaściwej kolejności działań w trakcie lokalizacji uszkodzenia silnika jednofazowego z kondensatorem rozruchowym może prowadzić do poważnych konsekwencji, zarówno w zakresie bezpieczeństwa, jak i efektywności naprawy. Rozpoczynanie odkręcania pokrywy tabliczki zaciskowej bez wcześniejszego odłączenia napięcia zasilania jest rażącym naruszeniem zasad bezpieczeństwa. Taki błąd może narazić technika na porażenie prądem, nawet jeśli nie zamierza on pracować na aktywnych elementach, ze względu na potencjalny ładunek zgromadzony w kondensatorze. Z tego powodu, procedura powinna zawsze zaczynać się od odłączenia zasilania, co jest standardem w branży. Kolejnym błędem jest rozładowanie kondensatora przed dostępem do niego, co również stwarza zagrożenie, jeżeli nie jest zachowana odpowiednia kolejność działań. Oględziny powinny być przeprowadzane dopiero po zapewnieniu bezpieczeństwa, co wymaga zachowania odpowiednich norm i wskazówek producenta. Przykładowo, w wielu przypadkach standardy branżowe zalecają stosowanie osobnych narzędzi do odłączania napięcia oraz do rozładowywania kondensatorów, aby uniknąć wypadków. Niezastosowanie się do tych zasad może prowadzić do niepełnej diagnostyki uszkodzenia, a w konsekwencji do niewłaściwych napraw, co zwiększa ryzyko dalszych awarii oraz generuje niepotrzebne koszty.

Pytanie 4

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. 5 lat
B. 3 lata
C. miesiąc
D. rok
Odpowiedź "5 lat" jest zgodna z wymaganiami określonymi w polskich przepisach dotyczących eksploatacji i utrzymania instalacji elektrycznych. Zgodnie z normą PN-IEC 60364 oraz wytycznymi URE (Urząd Regulacji Energetyki), okresowe oględziny instalacji u odbiorców mocy powinny być przeprowadzane nie rzadziej niż co pięć lat. Taki cykl przeglądów ma na celu zapewnienie bezpieczeństwa użytkowników, identyfikację potencjalnych usterek oraz utrzymanie instalacji w odpowiednim stanie technicznym. Przykładowo, regularne przeglądy mogą pomóc w wykryciu uszkodzeń izolacji kabli czy awarii zabezpieczeń, co w dłuższej perspektywie może zapobiec poważniejszym awariom oraz obniżyć ryzyko pożarów. W praktyce, wiele firm stosuje systemy zarządzania utrzymaniem ruchu, w których terminy przeglądów są udokumentowane i monitorowane, co sprzyja lepszemu zarządzaniu bezpieczeństwem energetycznym. Ostatnie badania pokazują, że zaniechanie regularnych przeglądów może prowadzić do wzrostu liczby awarii oraz zwiększenia kosztów napraw, dlatego przestrzeganie pięcioletniego cyklu przeglądów jest kluczowe.

Pytanie 5

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 0,8
B. 1,4
C. 1,1
D. 2,2
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 6

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. przerwę w uzwojeniu U1 — U2
B. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
C. zwarcie międzyzwojowe w uzwojeniu W1 — W2
D. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
Twój wybór odpowiedzi, która wskazuje na zwarcie międzyzwojowe w uzwojeniu W1 — W2 lub przerwę w uzwojeniu U1 — U2, nie był najlepszy. Analiza wyników wykazuje, że mamy inne problemy. Rezystancja uzwojeń U1 — U2, V1 — V2 i W1 — W2 wynosi 32 Ω, co sugeruje, że nie mówimy o zwarciu międzyzwojowym. Takie zwarcie zazwyczaj pokazuje bardzo niskie wartości rezystancji. Z drugiej strony, przerwa w uzwojeniu prowadziłaby do nieskończoności rezystancji, co też nie ma miejsca w tym przypadku. Wydaje mi się, że można popełnić błąd myślowy zakładając, że każde odstępstwo w pomiarach musi oznaczać zwarcie lub przerwę, a w rzeczywistości diagnostyka jest bardziej skomplikowana. Ważne jest, żeby wiedzieć, że uszkodzenie izolacji nie zawsze daje zerowe wartości rezystancji między uzwojeniami – może być to mylące. Moim zdaniem, dobrze by było zwrócić uwagę na normy dotyczące pomiarów izolacji, które podkreślają, jak ważna jest interpretacja wyników w kontekście całego systemu. Właściwe podejście do diagnostyki silników elektrycznych to ocena wszystkich parametrów, a nie tylko wybierając te, które wydają się najważniejsze.

Pytanie 7

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C40
B. S303 C32
C. S303 C25
D. S303 C20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź S303 C32 jest poprawna, ponieważ przy wyborze wyłącznika nadprądowego dla trójfazowego silnika klatkowego o mocy znamionowej 11 kW, napięciu 400 V oraz współczynniku mocy cos φ = 0,73, istotne jest obliczenie prądu znamionowego silnika. Prąd ten można wyznaczyć z wzoru: I = P / (√3 * U * cos φ). Po podaniu wartości (P = 11 kW, U = 400 V, cos φ = 0,73), uzyskujemy prąd około 18,5 A. Wyłącznik C32 ma prąd znamionowy 32 A, co zapewnia odpowiedni margines ochrony w przypadku przeciążenia oraz pozwala na bezpieczną i niezawodną pracę silnika. Wybór wyłącznika z niższą wartością prądową, jak C25 czy C20, mógłby prowadzić do zbyt częstych wyłączeń w przypadku normalnych warunków pracy silnika. Praktyczne zastosowanie wyłącznika C32 w obwodach zasilających silniki trójfazowe jest zgodne z normami IEC 60947-2, które zalecają odpowiednie marginesy dla wyłączników chroniących silniki. Dodatkowo, zastosowanie tego wyłącznika zmniejsza ryzyko uszkodzenia silnika oraz zapewnia bezpieczeństwo całego systemu zasilania.

Pytanie 8

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-B16/3
B. CLS6-B16/3N
C. CLS6-C16/1N
D. CLS6-B16/4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź CLS6-B16/3 jest poprawna, ponieważ wyłącznik nadprądowy CLS6-B16/3 został zaprojektowany do ochrony obwodów zasilających urządzenia trójfazowe, w tym grzejniki elektryczne. W przypadku grzejnika o trzech grzałkach po 3 kW każdy, całkowita moc wynosi 9 kW. Przy zasilaniu z sieci 400/230 V i przy założeniu pracy w układzie trójfazowym, obliczamy prąd obwodu. Moc w watach podzielona przez napięcie w woltach daje prąd w amperach: 9000 W / 400 V = 22,5 A. Wyłącznik CLS6-B16/3, mający nominalny prąd 16 A, nie zapewnia wystarczającej ochrony, ponieważ w przypadku przeciążenia prąd przekroczy wartość znamionową. Jednakże, z uwagi na zastosowanie trójfazowego zasilania, rzeczywisty prąd w każdej fazie nie powinien przekraczać 16 A. W praktyce, stosując wyłącznik B, mamy zapewnioną szybką reakcję na przeciążenia, co jest zgodne z normami IEC 60947-2 oraz dobrymi praktykami instalacyjnymi, które zalecają dobór wyłączników w zależności od charakterystyki obciążenia. Użycie tego wyłącznika w instalacji z grzejnikami elektrycznymi zapewnia bezpieczne użytkowanie, z zachowaniem odpowiednich marginesów bezpieczeństwa dla przewodów zasilających.

Pytanie 9

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L3
B. Przewód N
C. Przewód L2
D. Przewód L1
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 10

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
C. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
D. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 11

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,5 IΔN do 1,2 IΔN
B. Od 0,3 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,3 IΔN do 0,8 IΔN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 12

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. III
B. 0
C. II
D. I
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 13

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
B. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 14

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
B. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
C. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
D. przerwę w uzwojeniu U1 - U2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 15

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Świadectwo kwalifikacyjne w zakresie E + pomiary
B. Wyłącznie świadectwo kwalifikacyjne w zakresie D
C. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
D. Jedynie świadectwo kwalifikacyjne w zakresie E

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Osoba wykonująca pomiary odbiorcze instalacji elektrycznej w budynku mieszkalnym powinna posiadać świadectwo kwalifikacyjne w zakresie E, które uprawnia do eksploatacji urządzeń, instalacji i sieci elektrycznych. Dodatkowo, ważnym elementem jest posiadanie wiedzy oraz umiejętności praktycznych w zakresie przeprowadzania pomiarów. Wiedza ta obejmuje znajomość metod pomiarowych, zasad ich wykonywania oraz interpretacji wyników. Pomiary odbiorcze są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej. Na przykład, pomiar rezystancji izolacji pozwala na ocenę stanu zabezpieczeń przed porażeniem elektrycznym, co jest szczególnie istotne w domowych instalacjach. Standardy branżowe, takie jak PN-EN 60204-1, podkreślają znaczenie takich pomiarów dla zapewnienia zgodności z normami bezpieczeństwa. Z tego powodu posiadanie świadectwa kwalifikacyjnego w zakresie E wraz z umiejętnością wykonywania pomiarów jest niezbędne do efektywnego i bezpiecznego wykonywania prac w tej dziedzinie.

Pytanie 16

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Zawilgocenie izolacji przewodów AFL do odbiorców
B. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
C. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
D. Zwarcie doziemne jednej fazy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 17

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się czterokrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zmniejszy się dwukrotnie
Wybierając odpowiedzi, które sugerują, że zmiana długości spiral grzejnych skutkuje znacznym zmniejszeniem ilości wydzielanego ciepła, można popaść w pułapkę błędnych założeń dotyczących zasad działania grzejników elektrycznych. Odpowiedzi takie jak "Zmniejszy się czterokrotnie" lub "Zmniejszy się dwukrotnie" opierają się na mylnym założeniu, że skrócenie elementu grzewczego automatycznie prowadzi do proporcjonalnego spadku wydajności cieplnej, co jest sprzeczne z prawem Ohma oraz zasadą zachowania energii. Kluczowym aspektem jest zrozumienie, że moc wydobywana z grzejnika elektrycznego nie tylko zależy od długości spirali, ale również od napięcia i oporu. Przy stałym napięciu zasilania, zmniejszenie oporu (wynikające ze skrócenia spirali) prowadzi do wzrostu prądu, a tym samym do wzrostu mocy.Odpowiedzi sugerujące, że moc spadnie, mogą wynikać z nieporozumień dotyczących tego, jak opór i prąd elektryczny współdziałają w obwodach. W rzeczywistości, przy krótszej spirali, opór maleje, a prąd rośnie, co skutkuje wyższą mocą. W praktyce, projektując urządzenia grzewcze, należy brać pod uwagę te fundamentalne zasady, aby uniknąć nieefektywności oraz potencjalnych uszkodzeń sprzętu. Zatem wszelkie wnioski opierające się na intuicji a nie na solidnych podstawach teoretycznych mogą prowadzić do nieprawidłowych wyników i decyzji w inżynierii grzewczej.

Pytanie 18

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Zwarcie między fazami L1-L2
B. Brak ciągłości przewodu PE
C. Uszkodzenie przewodu N
D. Przebicie izolacji między L1-N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 19

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 2,5 mm²
B. 1,5 mm²
C. 4 mm²
D. 1 mm²

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 20

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Tłumicę.
B. Hydronetkę.
C. Gaśnicę proszkową.
D. Gaśnicę cieczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 21

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 2,3 Ω
B. 7,7 Ω
C. 8,0 Ω
D. 4,6 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 22

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
B. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
C. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
D. Zmierzyć ciągłość przewodów ochronnych PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór opcji sprawdzenia stanu połączeń przewodów w puszkach i aparatach jest kluczowy przy identyfikacji problemów z impedancją pętli zwarcia w instalacji elektrycznej. Wysoka wartość impedancji pętli zwarcia może wskazywać na luźne lub uszkodzone połączenia, które są krytyczne dla zapewnienia bezpieczeństwa i prawidłowego działania instalacji. W przypadku obwodów gniazd jednofazowych, zidentyfikowanie i naprawa luźnych połączeń jest priorytetem, ponieważ takie usterki mogą prowadzić do niebezpiecznych skutków, jak np. nieprawidłowe działanie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Dobre praktyki przewidują regularne sprawdzanie stanu połączeń oraz ich poprawności zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce, zweryfikowanie stanu połączeń powinno obejmować nie tylko wizualną inspekcję, ale także testy pomocnicze, które mogą potwierdzić ich integralność i ciągłość.

Pytanie 23

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 12
B. 6
C. 4
D. 10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 24

Określ rodzaj i miejsce usterki zestyku pomocniczego stycznika, jeżeli w przedstawionym układzie podczas pracy silnika zasilanego przez stycznik K1 naciśnięcie przycisku sterującego PZ2 powoduje zadziałanie bezpieczników obwodu głównego.

Ilustracja do pytania
A. Przerwa w zestyku rozwiernym ST1
B. Przerwa w zestyku rozwiernym ST2
C. Zwarcie zestyku rozwiernego ST1
D. Zwarcie zestyku rozwiernego ST2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie zestyku rozwiernego ST1 jest poprawną odpowiedzią, ponieważ naciśnięcie przycisku PZ2 powinno normalnie powodować rozłączenie stycznika K1, co skutkowałoby zasileniem silnika. W przypadku, gdy zadziałają bezpieczniki obwodu głównego, wskazuje to na nieprawidłowy stan obwodu, czyli zwarcie. Zestyki styczników są zaprojektowane z myślą o bezpieczeństwie i efektywności, a ich właściwe działanie jest kluczowe w systemach automatyki. W przypadku zwarcia, prąd przepływa bezpośrednio przez zestyki zamiast być przerywany, co prowadzi do przeciążenia i w rezultacie zadziałania zabezpieczeń. W praktyce, takie sytuacje mogą prowadzić do poważnych uszkodzeń urządzeń, dlatego ważne jest regularne sprawdzanie stanu zestyku oraz konserwacja układów sterowania. Zastosowanie standardów bezpieczeństwa, takich jak IEC 60204-1, podkreśla znaczenie prawidłowego funkcjonowania układów sterujących, aby minimalizować ryzyko awarii i zapewnić bezpieczne warunki pracy.

Pytanie 25

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. przerwa w obwodzie wirnika
B. przerwa w obwodzie stojana
C. zwarcie międzyzwojowe w obwodzie wirnika
D. zwarcie międzyzwojowe w obwodzie stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 26

W głównych rozdzielnicach instalacji w budynkach mieszkalnych powinny być montowane urządzenia do ochrony przed przepięciami klasy

A. B+C
B. A
C. D
D. C+D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B+C jest prawidłowa, ponieważ w rozdzielnicach głównych instalacji budynków mieszkalnych wymagane jest zastosowanie urządzeń ochrony przepięciowej klasy II oraz III. Klasa II to urządzenia o podwyższonej odporności na przepięcia, które są stosowane w miejscach narażonych na wyładowania atmosferyczne i inne zjawiska powodujące nagłe skoki napięcia. Przykładem są warystory oraz urządzenia typu SPD (Surge Protective Device), które skutecznie ograniczają przepięcia do poziomu bezpiecznego dla urządzeń elektrycznych. Klasa III natomiast dotyczy urządzeń, które chronią obwody końcowe, stosowane w każdym pomieszczeniu budynku. Zastosowanie obu klas urządzeń ochrony przepięciowej w rozdzielnicach głównych zapewnia kompleksową ochronę instalacji i podłączonych do niej urządzeń, co jest zgodne z normami PN-EN 61643-11 oraz PN-EN 62305, które wyznaczają wymagania dotyczące ochrony przed przepięciami. Stosowanie odpowiednich klas ochrony redukuje ryzyko uszkodzeń spowodowanych przepięciami oraz zwiększa bezpieczeństwo użytkowników budynku.

Pytanie 27

Na podstawie informacji przedstawionych na zamieszczonym na rysunku ekranie urządzenia pomiarowego ocen stan techniczny wyłącznika różnicowoprądowego 40 A/0,03 A.

Ilustracja do pytania
A. Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania.
B. Aparat jest sprawny, właściwa wartość prądu zadziałania.
C. Aparat jest uszkodzony, zbyt duża wartość rezystancji przewodu ochronnego RE.
D. Aparat jest sprawny, miernik ustawiono w nieodpowiedni dla badanego RCD tryb.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania" jest całkiem na miejscu. Problem z wyłącznikiem różnicowoprądowym, czyli RCD, może być poważny. Mamy tu na ekranie miernika 9,0 mA, co wyraźnie jest poniżej wymaganych 30 mA. Zgodnie z normami IEC 61008, te urządzenia powinny działać przy prądzie różnicowym, który nie przekracza określonej wartości. Kiedy widzimy taką niską wartość, to może sugerować, że coś w środku wyłącznika nie działa tak, jak powinno. I tu pojawia się duże ryzyko, bo jeśli RCD nie działa, to może nas nie ochronić przed porażeniem prądem w krytycznych momentach. W praktyce, testowanie działania RCD jest bardzo ważne, zwłaszcza tam, gdzie jest wilgoć albo mamy do czynienia z instalacjami elektrycznymi. Regularne sprawdzanie RCD według wskazówek producenta i standardów to klucz do bezpieczeństwa użytkowników.

Pytanie 28

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O zwarciu w uzwojeniach wirnika
B. O uszkodzeniu przełącznika kierunku prądu w wirniku
C. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
D. O przerwie w uzwojeniu stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o uszkodzeniu przełącznika kierunku prądu w wirniku jest prawidłowa, ponieważ brak obrotów w lewo w ręcznej wiertarce elektrycznej najczęściej oznacza, że mechanizm odpowiedzialny za zmianę kierunku obrotów nie działa poprawnie. Przełącznik kierunku prądu jest kluczowym elementem, który umożliwia zmianę kierunku obrotów silnika, co jest niezbędne do wykonywania prac w różnych warunkach. Przykładem zastosowania tej wiedzy jest potrzeba zmiany kierunku obrotów wiertarki podczas pracy z różnymi materiałami, gdzie w prawo i w lewo może być wymagane do usunięcia wiórów z otworu. Regularne sprawdzanie i konserwacja przełączników kierunkowych, zgodnie z zaleceniami producenta, może zapobiec awariom i zwiększyć żywotność narzędzia. W przypadku awarii przełącznika, najczęściej zauważalne są problemy z samym mechanizmem przełączania oraz opóźnienia w reakcjach przy zmianie kierunków. W praktyce, jeśli wiertarka działa w jednym kierunku, należy najpierw zdiagnozować przełącznik przed podejmowaniem innych działań naprawczych.

Pytanie 29

W jakim przypadku w instalacji elektrycznej niskiego napięcia powinno się wykonać pomiary kontrolne (sprawdzenie ciągłości przewodów, pomiary rezystancji izolacji, weryfikacja samoczynnego wyłączania napięcia)?

A. Po naprawie zabezpieczeń
B. Po modernizacji instalacji
C. Po przeciążeniu urządzenia
D. Po zadziałaniu zabezpieczeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź "Po modernizacji instalacji" jest zgodna z przyjętymi standardami i dobrymi praktykami w zakresie bezpieczeństwa instalacji elektrycznych. Modernizacja instalacji, w tym zmiany w układzie, dodanie nowych obwodów lub urządzeń oraz wymiana komponentów, może wprowadzić nowe ryzyko. Dlatego po każdej modernizacji konieczne jest przeprowadzenie pomiarów kontrolnych, aby upewnić się, że instalacja spełnia wymogi norm i jest bezpieczna w użytkowaniu. Pomiary te obejmują sprawdzenie ciągłości przewodów, co jest niezbędne do zapewnienia, że nie ma przerw w obwodach, oraz pomiary rezystancji izolacji, które pomagają ocenić stan izolacji przewodów. Dodatkowo, sprawdzenie samoczynnego wyłączania napięcia jest kluczowe dla ochrony przed porażeniem elektrycznym. Przykładem zastosowania tej wiedzy jest sytuacja, w której po zainstalowaniu nowych gniazdek lub oświetlenia, technik elektryk przeprowadza te kontrole, aby zagwarantować, że wszelkie zmiany nie wpłynęły negatywnie na bezpieczeństwo instalacji.

Pytanie 30

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Zmniejszyć średnicę przewodów kabla WLZ
B. Zwiększyć średnicę przewodów kabla WLZ
C. Zwiększyć średnicę przewodów w instalacji wewnętrznej
D. Pozostawić instalację zasilającą bez zmian

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak spojrzysz na te wartości, to suma spadków napięć w układzie TN-S, która wynosi 9 V przy napięciu znamionowym 230 V, jest w porządku. To mniej niż 5% dla obwodów oświetleniowych i jakieś 3% dla siłowych, więc nie ma potrzeby, by wprowadzać zmiany w instalacji. Chociaż warto czasem rzucić okiem na te spadki, bo bezpieczeństwo urządzeń to ważna sprawa. Jeśli spadki zaczynają być większe, to warto pomyśleć o zwiększeniu przekroju przewodów, ale w tej sytuacji nie ma takiej potrzeby. Wiesz, jak się montuje silniki elektryczne, to tam kluczowe jest, by kable były dobrze dobrane, żeby nie tracić energii. Normy PN-IEC 60364 to dobry punkt wyjścia do sprawdzenia, czy wszystko jest zrobione jak należy.

Pytanie 31

Jaką czynność można wykonać przy lokalizacji uszkodzeń w trakcie funkcjonowania instalacji oraz urządzeń elektrycznych w obszarach narażonych na wybuch?

A. Dokręcanie luźnych śrub w osłonach urządzeń
B. Demontaż obudów urządzeń
C. Wymiana źródeł oświetlenia
D. Pomiar temperatury zewnętrznych powierzchni obudów silników

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar temperatury powierzchni obudów silników jest czynnością, która może być wykonywana w czasie pracy instalacji i urządzeń elektrycznych w strefach zagrożonych wybuchem, ponieważ nie narusza to integralności obudowy ani nie wprowadza potencjalnych źródeł zapłonu. W praktyce pomiar ten jest kluczowy dla oceny stanu operacyjnego silników i identyfikacji potencjalnych problemów, takich jak przegrzewanie, które mogłoby prowadzić do awarii. W strefach zagrożonych wybuchem, przestrzeganie przepisów takich jak ATEX (Dyrektywa 2014/34/UE) oraz IECEx jest niezbędne, by zminimalizować ryzyko wybuchu. Wskazanie anomalii w temperaturze może pozwolić na szybką interwencję, zanim dojdzie do poważniejszych usterek, co jest zgodne z najlepszymi praktykami w zakresie utrzymania bezpieczeństwa i efektywności operacyjnej. Przykładowo, termografia bezdotykowa może być używana do monitorowania temperatury w czasie rzeczywistym, co zwiększa bezpieczeństwo w strefach zagrożonych.

Pytanie 32

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. intensywności pola magnetycznego
B. oporu rdzenia stojana
C. okresu jego działania
D. oporu uzwojeń stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uzwojeń stojana silnika indukcyjnego jest kluczowym elementem badań eksploatacyjnych, ponieważ pozwala na ocenę stanu uzwojeń, co jest istotne dla efektywności oraz niezawodności pracy silnika. Wysoka rezystancja może wskazywać na uszkodzenia, takie jak przegrzanie czy korozja. Regularne pomiary rezystancji uzwojeń pomagają w identyfikacji potencjalnych problemów zanim doprowadzą one do poważniejszych awarii, co w konsekwencji przyczynia się do obniżenia kosztów eksploatacji oraz zwiększenia czasu pracy silników. Przykładowo, w przemyśle motoryzacyjnym i w aplikacjach przemysłowych, gdzie silniki są kluczowym elementem pracy, monitorowanie parametrów jak rezystancja uzwojeń pozwala na optymalizację procesów produkcyjnych. Dobre praktyki w zakresie diagnostyki silników przewidują systematyczne wykonywanie tego typu pomiarów, co jest zgodne z normami ISO 9001, które podkreślają znaczenie jakości i monitorowania procesów.

Pytanie 33

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
C. pierwszy i drugi działają nieprawidłowo.
D. pierwszy i drugi działają prawidłowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 34

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 35

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 0,63
B. MMS-32S – 4A
C. MMS-32S – 1,6A
D. PKZM01 – 1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 36

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie zmniejszy się
B. Dwukrotnie wzrośnie
C. Czterokrotnie wzrośnie
D. Czterokrotnie zmniejszy się

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 37

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Moc wydobywana w piecu wzrośnie 1,5 raza.
B. Moc wydobywana w piecu zmaleje 1,5 raza.
C. Spadek napięcia na przewodach zasilających wzrośnie.
D. Spadek napięcia na przewodach zasilających zmniejszy się.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 38

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Cztery osoby
C. Dwie osoby
D. Trzy osoby

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 39

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 500 lx
B. 400 lx
C. 300 lx
D. 200 lx

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymagana minimalna wartość natężenia oświetlenia powierzchni blatów ławek szkolnych w sali lekcyjnej wynosi 300 lx. Jest to standardowa wartość określona w normach oświetleniowych, takich jak PN-EN 12464-1, które regulują kwestie oświetlenia miejsc pracy, w tym również szkół. W praktyce oznacza to, że odpowiednie natężenie oświetlenia zapewnia komfort i efektywność nauki uczniów, co jest kluczowe dla ich skupienia oraz zdolności do przyswajania wiedzy. Oświetlenie na poziomie 300 lx pozwala na wygodne czytanie, pisanie i wykonywanie innych zadań wymagających precyzyjnego wzroku. Wartości poniżej tej normy mogą prowadzić do zmęczenia oczu i obniżenia wydajności uczniów. Przykładem zastosowania tej wartości jest projektowanie wnętrz w nowych szkołach, gdzie architekci uwzględniają odpowiednie źródła światła, aby zapewnić optymalne warunki do nauki.

Pytanie 40

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
C. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.