Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 21:02
  • Data zakończenia: 19 grudnia 2025 21:17

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Synchroniczny
C. Asynchroniczny klatkowy
D. Szeregowy prądu stałego
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 2

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
B. Podczas zmiany tradycyjnych żarówek na energooszczędne
C. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
D. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
Instalacja elektryczna w pomieszczeniu biurowym musi być poddawana naprawie, gdy jej parametry nie mieszczą się w granicach określonych w instrukcji eksploatacji. Oznacza to, że wartości takie jak napięcie, natężenie czy rezystancja muszą odpowiadać standardom określonym przez producenta lub normy branżowe, takie jak PN-IEC 60364, które regulują kwestie bezpieczeństwa i funkcjonalności instalacji elektrycznych. Przykładem może być sytuacja, gdy pomiary przeprowadzone w biurze wskazują na zbyt niskie napięcie, co może prowadzić do niewłaściwego działania urządzeń biurowych. W takim przypadku konieczne jest zidentyfikowanie źródła problemu, co może obejmować wymianę uszkodzonych przewodów, integrację dodatkowych obwodów czy zastosowanie stabilizatorów napięcia. Ignorowanie takich sytuacji może skutkować nie tylko uszkodzeniem sprzętu, ale również stwarzać poważne zagrożenie dla bezpieczeństwa osób przebywających w danym pomieszczeniu.

Pytanie 3

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
B. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
C. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
D. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 4

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 2, N - 3, PE - 4
B. L - 1, N - 3, PE - 4
C. L - 1, N - 4, PE - 3
D. L - 3, N - 4, PE - 1
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 5

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. aM 20 A
C. gG 20 A
D. gG 16 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 6

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 1000 V
B. 500 V
C. 250 V
D. 120 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 7

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. W pomieszczeniach z łatwopalnymi oparami.
B. W pomieszczeniu zagrożonym wybuchem.
C. Na dnie basenu o głębokości 4 m.
D. Na zewnątrz, do oświetlenia placu budowy.
Oprawa oświetleniowa z oznaczeniem IP65 jest odpowiednia do instalacji na zewnątrz, w tym na placu budowy, ze względu na jej odporność na kurz oraz strumienie wody. Oznaczenie IP65 wskazuje, że urządzenie jest całkowicie chronione przed dostępem kurzu (klasa 6) oraz że wytrzymuje strumienie wody z dowolnego kierunku (klasa 5). Takie właściwości są kluczowe w warunkach budowlanych, gdzie sprzęt narażony jest na trudne warunki atmosferyczne i konieczność zapewnienia odpowiedniego oświetlenia dla bezpieczeństwa pracowników i jakości wykonywanych robót. W praktyce oprawy oświetleniowe IP65 są często stosowane w przestrzeniach zewnętrznych, takich jak place budowy, parkingi, czy obiekty sportowe. Dobrą praktyką jest również zapewnienie, aby instalacja odbywała się zgodnie z przepisami lokalnymi i normami, takimi jak PN-EN 60598 dotycząca oświetlenia. Warto również zwrócić uwagę na odpowiednie akcesoria montażowe oraz dodatkowe zabezpieczenia, aby zapewnić długotrwałe i bezpieczne użytkowanie oświetlenia w trudnych warunkach.

Pytanie 8

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Wzbudnik indukcyjny.
B. Elektromagnes.
C. Dławik magnetyczny.
D. Transformator.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 9

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. D.
B. C.
C. B.
D. A.
Wybór zestawu B jako odpowiedzi prawidłowej jest uzasadniony, ponieważ do montażu instalacji natynkowej w rurach PCV niezbędne są odpowiednie narzędzia do cięcia, łączenia i mocowania rur. Zestaw B zawiera piłkę do cięcia, która jest kluczowa do precyzyjnego przycinania rur PCV do wymaganej długości. Przykładowo, podczas instalacji rur konieczne jest dostosowanie ich długości do wymagań konkretnego projektu, a użycie odpowiedniej piły zapewnia czyste i równomierne krawędzie, co jest istotne dla prawidłowego montażu. Dodatkowo, zestaw ten zawiera wkrętak, który jest niezbędny do mocowania uchwytów lub innych elementów instalacji oraz obcinaczki, które są pomocne w precyzyjnym łączeniu elementów rur. W praktyce, stosując zestaw B, można zrealizować projekt zgodnie z najlepszymi praktykami w branży, które podkreślają znaczenie użycia odpowiednich narzędzi dla uzyskania trwałej i bezpiecznej instalacji. Warto również pamiętać o standardach dotyczących montażu instalacji elektrycznych, które wymagają odpowiednich narzędzi i technik, aby zapewnić bezpieczeństwo i efektywność działania systemu.

Pytanie 10

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. L1 i L3
B. N i PE
C. N i L3
D. L1 i PE
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 11

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję uziomu.
B. Rezystancję izolacji.
C. Impedancję pętli zwarcia.
D. Reaktancję rozproszenia transformatora.
Poprawna odpowiedź to rezystancja uziomu, którą można zmierzyć przy pomocy miernika rezystancji uziemienia, jak przedstawiony na ilustracji. Tego typu przyrząd jest niezbędny do oceny efektywności systemów uziemienia, które są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz ochrony przed przepięciami. Zgodnie z normą PN-IEC 60364, rezystancja uziomu powinna być jak najniższa, aby zapewnić prawidłowe odprowadzanie prądów zwarciowych do ziemi. W praktyce, miernik umożliwia ocenę, czy wartości rezystancji mieszczą się w akceptowalnych granicach, co jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym. Regularne pomiary rezystancji uziomu są zalecane w ramach konserwacji instalacji elektrycznych, a także przed oddaniem do użytku nowo zainstalowanych systemów. Wiedza o tym, jak korzystać z miernika rezystancji uziemienia oraz interpretować wyniki, jest istotna dla każdego elektryka i inżyniera zajmującego się bezpieczeństwem elektrycznym.

Pytanie 12

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,0 V
B. 12,0 V
C. 12,4 V
D. 11,3 V
No więc, odpowiedź 12,0 V jest jak najbardziej trafna. Można to zobaczyć, analizując wykres, który pokazuje, jak napięcie akumulatora zmienia się w zależności od prądu i czasu rozładowywania. Jak obciążamy akumulator prądem 60 A przez 30 minut, to napięcie wynosi właśnie 12,0 V, co jest zgodne z tym, co powinno być zgodnie z normami. Wartość ta pokazuje, że akumulator działa tak, jak się tego spodziewaliśmy. Moim zdaniem, zrozumienie tej zależności jest mega ważne, zwłaszcza przy projektowaniu systemów zasilania dla różnych urządzeń. No i w odnawialnej energii, gdzie pojemność akumulatora ma ogromny wpływ na wydajność. Fajnie też wiedzieć, że w praktyce, jak np. w systemach fotowoltaicznych czy zasilaniu awaryjnym, znajomość charakterystyki rozładowania akumulatorów pomaga w ich optymalnym wykorzystaniu oraz w wydłużeniu żywotności przez unikanie nadmiernego rozładowania.

Pytanie 13

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 20-30 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 1-20 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 14

Do jakiej kategorii zaliczają się kable współosiowe?

A. Grzewczych
B. Kabelkowych
C. Telekomunikacyjnych
D. Oponowych
Wybór niewłaściwych grup przewodów elektrycznych, takich jak grzewcze, kabelkowe czy oponowe, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tych technologii. Przewody grzewcze są projektowane do zastosowań związanych z ogrzewaniem, gdzie ich główną rolą jest generowanie ciepła, na przykład w systemach ogrzewania podłogowego lub w instalacjach do rozmrażania. Przewody kabelkowe, z kolei, są używane w różnych zastosowaniach, ale nie w kontekście przesyłania sygnałów telekomunikacyjnych. Przewody oponowe, które są stosowane głównie w komunikacji i transporcie, również nie mają zastosowania w telekomunikacji. W kontekście przewodów współosiowych, ich charakterystyka elektromagnetyczna oraz struktura sprawiają, że są one odpowiednie do przesyłania sygnałów w systemach telekomunikacyjnych. Przykładowo, ich użycie w sieciach szerokopasmowych umożliwia efektywną transmisję danych z dużą prędkością, co jest kluczowe w dzisiejszym świecie cyfrowym. Ignorowanie tych specyfikacji prowadzi do błędnych wniosków na temat możliwości zastosowania różnych typów przewodów w telekomunikacji, co może skutkować nieefektywnymi instalacjami oraz problemami z jakością sygnału.

Pytanie 15

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. kuchni i pokoju 2
B. łazience i pokoju 2
C. pokoju 1 i pokoju 2
D. łazience i pokoju 1
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 16

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. jednodrutowe
B. płaskie
C. sektorowe
D. wielodrutowe
Przewód oznaczony jako SMYp to typowy przewód elektryczny, który ma w sobie wielodrutowe żyły zrobione z miedzi. Dzięki tym wielodrutowym żyłom, przewód jest elastyczny, co jest naprawdę ważne, zwłaszcza tam, gdzie przewody muszą się ruszać lub zakręcać. Fajnie, że te żyły poprawiają odporność na przeciążenia i przewodnictwo elektryczne, bo to ma duże znaczenie, gdy zasilamy różne urządzenia. W praktyce, przewody tego typu bardzo często spotyka się w instalacjach zarówno w domach, jak i w przemyśle. Ich właściwości są zgodne z normami, takimi jak PN-EN 60228, które mówią, jak klasyfikować żyły w przewodach. Co istotne, przewody SMYp są też odporne na wilgoć i wysokie temperatury, co sprawia, że można je stosować w trudnych warunkach. Zauważ, że te żyły mają większą powierzchnię przekroju, co zmniejsza straty energii podczas przesyłu prądu. To jest naprawdę ważne w dzisiejszym świecie, gdzie efektywność energetyczna ma znaczenie.

Pytanie 17

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,49
B. 0,39
C. 0,69
D. 0,84
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 18

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 19

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 6,9 kW
B. 3,9 kW
C. 5,9 kW
D. 9,6 kW
Odpowiedź 6,9 kW jest prawidłowa, ponieważ maksymalna moc, jaką można zainstalować w obwodzie chronionym przez wyłącznik nadprądowy typu S-303 CLS6-C10/3, jest określona przez jego prąd znamionowy. W przypadku tego wyłącznika, prąd znamionowy wynosi 10 A. W systemach trójfazowych, całkowita moc jest obliczana ze wzoru P = √3 × U × I, gdzie U to napięcie międzyfazowe (400 V), a I to prąd wyłącznika (10 A). Obliczając, otrzymujemy P = √3 × 400 V × 10 A ≈ 6,93 kW, co zaokrąglamy do 6,9 kW. W praktyce oznacza to, że zainstalowanie klimatyzatora o tej mocy będzie zgodne z przepisami i zapewni bezpieczeństwo instalacji elektroenergetycznej, a także będzie zgodne z normami PN-IEC 60364. Ważne jest, aby przy doborze urządzeń zawsze uwzględniać parametry wyłączników oraz ich charakterystykę, aby uniknąć przeciążenia instalacji.

Pytanie 20

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór innej odpowiedzi, która nie wskazuje na szczypce do ściągania izolacji, może wynikać z nieporozumienia dotyczącego procesu lutowania i przygotowania przewodów. Kluczowym etapem w naprawie przewodów jest usunięcie izolacji, co jest niezbędne do zapewnienia dobrego kontaktu elektrycznego. Bez odpowiedniego narzędzia do ściągania izolacji nie będzie możliwe prawidłowe przygotowanie przewodów, co może prowadzić do nietrwałych połączeń. Ważne jest zrozumienie, że lutownica sama w sobie nie wystarcza do naprawy uszkodzonego przewodu. Wiele osób może mylnie zakładać, że lutowanie można przeprowadzić na przewodach z izolacją, co jest błędnym podejściem. Tego typu myślenie może prowadzić do uszkodzenia przewodów oraz nieefektywnych połączeń, które mogą stwarzać zagrożenie w przyszłości. Prawidłowa wiedza na temat narzędzi i technik stosowanych w elektryce jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności pracy. Warto pamiętać, że każdy profesjonalista powinien być świadomy znaczenia odpowiednich narzędzi w kontekście lutowania, ponieważ niewłaściwe przygotowanie może prowadzić do problemów z przewodnictwem elektrycznym oraz zwiększać ryzyko awarii.

Pytanie 21

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Halogenowe.
B. Diodowe.
C. Wolframowe.
D. Rtęciowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź diodowe jest poprawna, ponieważ na zdjęciu znajduje się żarówka LED, która jest jednym z najnowocześniejszych źródeł światła dostępnych na rynku. Żarówki LED, czyli diody elektroluminescencyjne, charakteryzują się wysoką efektywnością energetyczną, co oznacza, że emitują więcej światła przy mniejszym zużyciu energii w porównaniu do tradycyjnych żarówek wolframowych czy halogenowych. Dzięki temu są one doskonałym wyborem do oświetlenia domów, biur oraz przestrzeni publicznych. W praktyce, zastosowanie żarówek LED pozwala na znaczną redukcję kosztów energii oraz dłuższy czas użytkowania, sięgający nawet 25 000 godzin. Warto również zwrócić uwagę na standardy ekologiczne, które promują użycie źródeł światła o niskim wpływie na środowisko; żarówki LED nie emitują szkodliwych substancji, takich jak rtęć, co czyni je bardziej ekologicznym wyborem. Dodatkowo, LED-y są dostępne w szerokiej gamie kolorów i temperatur barwowych, co umożliwia ich zastosowanie w różnorodnych projektach oświetleniowych, dostosowanych do indywidualnych potrzeb użytkowników.

Pytanie 22

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 4.
B. Narzędzie 2.
C. Narzędzie 1.
D. Narzędzie 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 23

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 5 sekund
C. 1 sekundę
D. 0,2 sekundy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 24

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Przekaźnik czasowy.
C. Regulator temperatury.
D. Czujnik zaniku fazy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 25

Na którym rysunku przedstawiono przewód SMYp przeznaczony do podłączenia taśmy LED?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód oznaczony jako 'D' jest właściwym wyborem, ponieważ jest to przewód typu SMYp, który charakteryzuje się budową płaską oraz wielodrutową strukturą. Takie przewody są typowo wykorzystywane w instalacjach oświetleniowych, szczególnie w przypadku podłączania taśm LED. Dzięki swojej elastyczności, przewody SMYp doskonale nadają się do prowadzenia w trudno dostępnych miejscach oraz w przestrzeniach ograniczonych, co jest często spotykane w zastosowaniach LED. Dodatkowo, przewody te są zgodne z normami IEC oraz PN-EN, co zapewnia ich bezpieczeństwo oraz niezawodność w eksploatacji. Użycie przewodów tego typu pozwala na minimalizację strat energii oraz zapewnia wysoką wydajność świetlną. W praktyce, instalując taśmy LED, należy zwrócić szczególną uwagę na odpowiednią grubość przewodu oraz jego właściwości izolacyjne, aby uniknąć przegrzewania oraz uszkodzeń. Zastosowanie przewodu SMYp w tych przypadkach jest najlepszym rozwiązaniem, które zwiększa trwałość oraz efektywność całej instalacji oświetleniowej.

Pytanie 26

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. wyłożenie izolacją żłobkową
B. nałożenie lakieru elektroizolacyjnego
C. zabezpieczenie klinami ochronnymi
D. nałożenie oleju elektroizolacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 27

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Prądnicy synchronicznej.
B. Transformatora jednofazowego.
C. Dławika.
D. Silnika jednofazowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 28

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Natężenie oświetlenia.
C. Światłość.
D. Temperaturę barwową światła.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 29

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C10
B. B16
C. B10
D. C16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 30

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
C. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
D. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 31

Na podstawie przedstawionego schematu instalacji określ liczbę jednofazowych obwodów gniazd wtyczkowych.

Ilustracja do pytania
A. 5 obwodów.
B. 12 obwodów.
C. 14 obwodów.
D. 7 obwodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "5 obwodów" jest prawidłowa, ponieważ w systemach elektroinstalacyjnych każdy obwód gniazd wtyczkowych powinien być zabezpieczony odpowiednim wyłącznikiem nadprądowym, który w tym przypadku ma oznaczenie B16. Dokładna liczba jednofazowych obwodów gniazd wtyczkowych można ustalić poprzez zliczenie wyłączników przypisanych do tych obwodów. Na przedstawionym schemacie instalacji widoczne są 5 wyłączników B16, co oznacza, że mamy do czynienia z pięcioma niezależnymi obwodami zasilającymi gniazda. Warto zwrócić uwagę, że zgodnie z normą PN-IEC 60364-4-41, każdy obwód powinien być projektowany w taki sposób, aby zapewnić odpowiednią ochronę przed przeciążeniem i zwarciem. Odpowiednia liczba obwodów gniazd wtyczkowych jest kluczowa dla bezpieczeństwa i funkcjonalności instalacji elektrycznej, co może być istotne w praktycznych zastosowaniach domowych oraz przemysłowych.

Pytanie 32

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 10 mm2
B. 4 mm2
C. 2,5 mm2
D. 6 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 33

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Założyć gumowy wężyk na uszkodzoną izolację przewodu
C. Pomalować uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 34

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka dystansowa
B. Tuleja kołnierzowa
C. Podkładka sprężysta
D. Tuleja redukcyjna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 35

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie ochronnym
B. Zwarcie doziemne przewodu neutralnego
C. Uszkodzenie izolacji przewodu ochronnego
D. Przerwa w przewodzie neutralnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 36

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Z PVC lub gumowe
B. Metalowe lub gumowe
C. Tylko z PVC
D. Tylko metalowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 37

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do formowania oczek na końcach żył jednodrutowych.
B. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
C. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
D. Do montażu zacisków zakleszczających.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że szczypce są przeznaczone do formowania oczek na końcach żył jednodrutowych, jest prawidłowa, ponieważ szczypce okrągłe zostały zaprojektowane z myślą o precyzyjnym formowaniu takich elementów w obszarze elektryki i mechaniki. Oczka na końcach żył są kluczowe, ponieważ umożliwiają solidne połączenie przewodów z zaciskami, co jest istotne dla zapewnienia bezpieczeństwa oraz niezawodności instalacji. W praktyce, formowanie oczek to nie tylko kwestia estetyki, ale również funkcjonalności; dobrze uformowane oczka minimalizują ryzyko luźnych połączeń, które mogą prowadzić do przegrzewania się lub awarii. W inżynierii elektrycznej stosuje się różne standardy, takie jak IEC 60947-1, które regulują wymagania dotyczące połączeń elektrycznych. Warto również wspomnieć, że odpowiednie formowanie końców żył ma kluczowe znaczenie w kontekście odporności na wibracje i długotrwałą niezawodność połączeń.

Pytanie 38

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi D jest prawidłowy, ponieważ scyzoryk wielofunkcyjny nie powinien być stosowany przy montażu lub demontażu elementów instalacji elektrycznych. Narzędzia tego typu, mimo że są wszechstronne, nie zapewniają odpowiedniego poziomu bezpieczeństwa wymagającego pracy z elektrycznością. Główne ryzyko związane z używaniem scyzoryka polega na możliwości uszkodzenia izolacji przewodów, co może prowadzić do poważnych zwarć, a nawet pożarów. W praktyce, do pracy z instalacjami elektrycznymi zaleca się korzystać z narzędzi izolowanych, takich jak szczypce izolowane czy kombinerki, które są zaprojektowane z myślą o ochronie przed porażeniem prądem. Dodatkowo, w wielu krajach obowiązują normy branżowe, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w pracach z instalacjami elektrycznymi, promując tym samym najwyższe standardy bezpieczeństwa. Używanie właściwych narzędzi to nie tylko kwestia efektywności pracy, ale przede wszystkim bezpieczeństwa operatora i osób znajdujących się w pobliżu.

Pytanie 39

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. pomiaru parametrów oświetlenia.
B. sprawdzania ciągłości połączeń w instalacji.
C. bezdotykowego pomiaru rezystancji przewodów.
D. lokalizacji przewodów w instalacji elektrycznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 40

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
B. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
C. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
D. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.