Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 22:20
  • Data zakończenia: 10 grudnia 2025 22:57

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0
Ilustracja do pytania
A. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
B. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1
C. przerwanie uzwojenia Ul - U2
D. przerwanie uzwojenia V1 - V2
Odpowiedź dotycząca odkręcenia się i dotknięcia obudowy przez przewód spod zacisku W1 jest poprawna, ponieważ wyniki pomiarów rezystancji wykazują, że rezystancja izolacji między tym zaciskiem a obudową (PE) wynosi 0 MΩ. Oznacza to, że istnieje bezpośrednie połączenie między przewodem W1 a obudową, co prowadzi do zwarcia oraz ryzyka wystąpienia uszkodzenia sprzętu. W przypadku silników trójfazowych, ważne jest zachowanie odpowiednich wartości rezystancji izolacji, aby zapewnić prawidłowe działanie oraz bezpieczeństwo. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji przed uruchomieniem urządzenia, co pozwoli na wczesne wykrycie potencjalnych problemów. Ponadto, stosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może pomóc w zminimalizowaniu ryzyka uszkodzenia obwodów oraz zapewnieniu bezpieczeństwa użytkowników. Warto również zaznaczyć, że w przypadku wykrycia niskiej rezystancji izolacji, należy jak najszybciej zidentyfikować i usunąć źródło problemu, aby uniknąć poważniejszych awarii.

Pytanie 7

Na podstawie przedstawionych w tabeli wyników pomiarów, dotyczących silnika prądu stałego, określ które z wymienionych uszkodzeń wystąpiło w tym silniku.

Rezystancja uzwojeń pomiędzy zaciskami:Rezystancja izolacji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Przebicie izolacji uzwojenia twornika do obudowy.
B. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
C. Nadpalenie izolacji między uzwojeniem bocznikowym, a obudową.
D. Przerwa w uzwojeniu twornika.
Analizując pozostałe odpowiedzi, możemy zauważyć, że przynajmniej każda z nich odnosi się do różnych typów uszkodzeń, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie wyjaśnia problemu tak dokładnie jak zwarcie międzyzwojowe w uzwojeniu bocznikowym. Uszkodzenie polegające na nadpaleniu izolacji między uzwojeniem bocznikowym a obudową mogłoby sugerować wystąpienie nadmiernych temperatur, jednak przy wysokiej rezystancji między zaciskami E1-E2, które zostały podane w tabeli, można stwierdzić, że nie występuje bezpośrednie przebicie do obudowy. Przebicie izolacji uzwojenia twornika do obudowy jest problematycznym zagadnieniem, ale również nie pasuje do przedstawionych wartości rezystancji, które wskazują na stabilność izolacji. Z kolei przerwa w uzwojeniu twornika mogłaby prowadzić do braku prądu w silniku, co również nie znajduje odzwierciedlenia w zmierzonych wartościach. Typowe błędy myślowe, które prowadzą do błędnych odpowiedzi, to np. analizowanie jedynie pojedynczych aspektów uszkodzenia, bez uwzględnienia całościowego obrazu pomiarów. W kontekście diagnostyki silników prądu stałego, kluczowe jest przyjrzenie się nie tylko wartościom rezystancji, ale także ich wzajemnym relacjom, aby uzyskać pełny obraz stanu maszyny i jej ewentualnych uszkodzeń.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 25 V
B. 60 V
C. 12 V
D. 30 V
Wybór niewłaściwej wartości maksymalnego napięcia skutecznego do zasilania lamp w strefie 0 łazienki może wydawać się trudny do zrozumienia, ale wynika z fundamentalnych zasad bezpieczeństwa elektrycznego. Odpowiedzi takie jak 60 V, 25 V czy 30 V są niezgodne z obowiązującymi normami, które mają na celu ochronę użytkowników przed niebezpieczeństwem porażenia prądem w obszarach o wysokiej wilgotności. W normach, takich jak PN-IEC 60364, jasno określono, że strefa 0 zdefiniowana jest jako miejsce, gdzie narażenie na wodę jest najwyższe, a zatem wymaga zastosowania napięć bezpiecznych. Napięcie 60 V, choć bezpieczniejsze niż wyższe wartości, wciąż niesie ze sobą ryzyko w kontakcie z wodą. Podobnie, napięcia 25 V i 30 V, mimo że niższe, również nie spełniają wymagań bezpieczeństwa w warunkach strefy 0. Często przyczyną wyboru wyższych napięć jest brak wiedzy na temat zasadności stosowania niskonapięciowych źródeł zasilania w obszarach zagrożonych. Użytkownicy mogą mylnie sądzić, że im wyższe napięcie, tym lepsza efektywność i jasność oświetlenia, co jest błędnym podejściem, ponieważ nowoczesne technologie LED oferują wysoką wydajność przy niskim napięciu. W kontekście praktycznym, stosowanie napięć skutecznych przekraczających 12 V w strefie 0 nie tylko zwiększa ryzyko, ale także może prowadzić do niezgodności z przepisami i potencjalnych konsekwencji prawnych, które mogą wpłynąć na bezpieczeństwo użytkowników oraz odpowiedzialność wykonawców i projektantów instalacji elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 16A
B. 20A
C. 10A
D. 6A
Prawidłowa odpowiedź to 16A, co wynika z obliczeń związanych z mocą grzejnika oraz standardów dotyczących doboru wyłączników instalacyjnych nadprądowych. Grzejnik o mocy 2,4 kW zasilany jest napięciem 230 V, co pozwala obliczyć natężenie prądu za pomocą wzoru: I = P / U. Podstawiając dane, otrzymujemy I = 2400 W / 230 V, co daje około 10,43 A. Zgodnie z zasadami doboru wyłączników, powinno się wybierać wartość prądu znamionowego, która jest co najmniej 1,25-krotnie większa od obliczonej wartości prądu roboczego, aby uwzględnić różne zmiany obciążenia oraz zjawiska, takie jak prądy rozruchowe, które mogą występować w przypadku grzejników. Dlatego wartość 10,43 A powinna być pomnożona przez 1,25, co daje około 13 A. Najbliższą standardową wartością, która spełnia ten wymóg, jest 16A. Użycie wyłącznika o charakterystyce B, która jest zalecana dla urządzeń o charakterze rezystancyjnym, jest zgodne z dobrymi praktykami w instalacjach elektrycznych, zapewniając właściwą ochronę przed przeciążeniem i zwarciem. Warto zauważyć, że stosowanie wyłączników o zbyt małym prądzie znamionowym może prowadzić do ich częstego wyłączania, co będzie nie tylko uciążliwe, ale i niebezpieczne w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 14

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. spisu terminów oraz zakresów testów i pomiarów kontrolnych
B. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
C. charakterystyki technicznej instalacji
D. opisu doboru urządzeń zabezpieczających
Twoja odpowiedź jest całkiem trafna. Wiesz, że instrukcje dotyczące eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowoprądowymi nie muszą zawierać szczegółowych informacji o doborze urządzeń. Z mojego doświadczenia, dobór tych urządzeń najczęściej robi się na etapie projektowania, według norm, jak chociażby PN-IEC 60364-1. W instrukcji powinno być raczej opisane, jak działają już wybrane urządzenia, ich typy i zasady użytkowania. Na przykład, lista terminów i zakresów prób oraz pomiarów kontrolnych jest kluczowa, żeby wszystko działało bezpiecznie i sprawnie. No i oczywiście, zasady bezpieczeństwa przy pracach eksploatacyjnych to podstawa, bo przecież chcemy zminimalizować ryzyko wypadków. Dobrze, żeby dokumentacja była jasna i zgodna z aktualnymi przepisami – to przecież wpływa na bezpieczeństwo i efektywność pracy. Instrukcja to powinna być pomoc, która zapewnia, że instalacja będzie działać prawidłowo, a nie miejsce na podstawowe zasady doboru zabezpieczeń.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 00
B. IP 22
C. IP 44
D. IP 66
Wybór IP 22 jest kiepskim pomysłem. Oznacza to, że osprzęt ma tylko częściową ochronę przed ciałami stałymi większymi niż 12,5 mm i w ogóle nie broni przed wodą. To za mało na łazienki czy kuchnie, gdzie wilgoć jest na porządku dziennym. Tam ważne, by sprzęt był chroniony przed wodą i zanieczyszczeniami, dlatego IP 44 to minimum, które powinno się wybrać. A IP 00? To już totalna porażka, bo w elektryce oznacza brak ochrony, co stwarza zagrożenie zarówno dla sprzętu, jak i ludzi. Z kolei IP 66, mimo że teoretycznie świetnie chroni przed wodą i pyłem, to w domowych warunkach może być zbyteczne i nieopłacalne. Ważne jest, by dobierać stopnie ochrony do konkretnego miejsca i warunków użytkowania. Wiedza na ten temat umożliwia podejmowanie lepszych decyzji co do osprzętu, co jest kluczowe dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 18

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Zwiększenie rezystancji pętli zwarcia
B. Osłabienie wytrzymałości mechanicznej przewodów
C. Zwiększenie obciążalności prądowej instalacji
D. Obniżenie napięcia roboczego
Wybór niepoprawnych odpowiedzi, takich jak zmniejszenie wytrzymałości mechanicznej przewodów, zwiększenie rezystancji pętli zwarcia czy zmniejszenie napięcia roboczego, jest wynikiem nieporozumień dotyczących właściwości przewodów elektrycznych. Zmniejszenie wytrzymałości mechanicznej przewodów nie ma miejsca przy wymianie na przewody DY, gdyż te przewody są zaprojektowane z myślą o zwiększonej odporności na uszkodzenia mechaniczne. W rzeczywistości, przewody DY często oferują lepszą ochronę przed uszkodzeniami dzięki zastosowaniu odpowiednich materiałów izolacyjnych, co jest kluczowe w instalacjach podtynkowych. Zwiększenie rezystancji pętli zwarcia to kolejny mit, ponieważ zmiana przewodów na DY, które mają lepsze parametry elektryczne, w rzeczywistości może przyczynić się do zmniejszenia rezystancji pętli zwarcia, a nie jej zwiększenia. Zmniejszenie napięcia roboczego również nie jest efektem wymiany na przewody DY, jako że napięcie robocze w instalacji zależy od źródła zasilania oraz obciążenia, a nie od rodzaju zastosowanego przewodu. Właściwe zrozumienie tych kwestii jest kluczowe dla projektowania i modernizacji instalacji elektrycznych, dlatego tak ważne jest stosowanie sprawdzonych rozwiązań oraz przestrzeganie norm i dobrych praktyk branżowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby naprawić uszkodzenie przerwanego przewodu pomiędzy sąsiednimi puszkami łączeniowymi w instalacji elektrycznej podtynkowej, która znajduje się w rurce, konieczne jest

A. wykuć bruzdę i wymienić rurkę instalacyjną z przewodami na przewód podtynkowy
B. pozostawić uszkodzony przewód, a puszki połączyć przewodem natynkowym
C. odkręcić w puszkach uszkodzony przewód, zlutować, zaizolować i połączyć
D. odkręcić w puszkach uszkodzony przewód, wymienić go na nowy i połączyć
Odpowiedź polegająca na odkręceniu przerwanego przewodu w puszkach i zastąpieniu go nowym jest prawidłowa, ponieważ zapewnia trwałe i bezpieczne rozwiązanie problemu uszkodzonej instalacji elektrycznej. Zgodnie z zasadami dobrej praktyki, usunięcie uszkodzonego przewodu i zastąpienie go nowym jest kluczowe dla zapewnienia ciągłości obwodu oraz minimalizacji ryzyka wystąpienia zwarcia czy pożaru. W przypadku przerwania przewodu, jego naprawa poprzez zlutowanie może być nietrwała i narażać na ryzyko, zwłaszcza w instalacjach podtynkowych, gdzie dostęp do uszkodzeń jest ograniczony. Wymiana przewodu jest standardem w branży i pozwala na zachowanie pełnej funkcjonalności instalacji. Dodatkowo, przy wykonywaniu takiej naprawy należy stosować odpowiednie materiały, które przeznaczone są do instalacji elektrycznych, a także przestrzegać norm PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. Przykładowo, przy wyborze nowego przewodu warto kierować się jego parametrami elektrycznymi oraz odpowiednią izolacją, co zwiększy efektywność i bezpieczeństwo całej instalacji.

Pytanie 23

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Trzeba wstrzymać pracę i wymienić łącznik zasilający
B. Wstrzymać pracę i wymienić szczotki
C. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
D. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-S
B. IT
C. TT
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Właściciel budynku jednorodzinnego zauważył, że w pralce nastąpiło przebicie do obudowy. Instalacja została wykonana w układzie TN-S, a jako środek ochrony przed porażeniem elektrycznym przy awarii zastosowano samoczynne wyłączenie zasilania. W celu naprawienia usterki instalacji konieczne jest

A. wymienić wkładkę ochronnika przeciwprzepięciowego
B. zapewnić ciągłość przewodów neutralnych
C. wymienić wyłącznik nadprądowy
D. zapewnić ciągłość przewodów ochronnych
Zapewnienie ciągłości przewodów ochronnych w instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń elektrycznych. W układzie TN-S, który charakteryzuje się oddzielnym przewodem neutralnym i ochronnym, ciągłość przewodów ochronnych (PE) jest niezbędna, aby zapewnić skuteczną ochronę przeciwporażeniową. W przypadku stwierdzenia przebicia do obudowy pralki, brak ciągłości przewodu ochronnego może prowadzić do niebezpiecznej sytuacji, w której obudowa urządzenia może mieć potencjał elektryczny, co naraża użytkowników na ryzyko porażenia prądem. Przykładem może być sytuacja, w której podczas użytkowania pralki dotknięcie obudowy może spowodować przepływ prądu przez ciało człowieka w kierunku uziemienia. Aby temu zapobiec, należy nie tylko zapewnić prawidłowe podłączenie przewodu ochronnego, ale również regularnie sprawdzać jego ciągłość oraz integralność. Zgodnie z normami PN-EN 60364 oraz zaleceniami polskiej normy dotyczącej instalacji elektrycznych, wykonywanie regularnych pomiarów i inspekcji instalacji jest niezbędnym wymogiem dla bezpieczeństwa użytkowników. Dbałość o ciągłość przewodów ochronnych jest elementem dobrych praktyk inżynieryjnych oraz kluczowym aspektem ochrony przed porażeniem elektrycznym.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Nawrót wirnika silnika
B. Całkowite zniszczenie wirnika silnika
C. Wzrost prędkości obrotowej wirnika silnika
D. Spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H03V2V2H2-F 2X2,5
C. H07RR-F 5G2,5
D. H07VV-U 5G2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 34

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 2 500 V
B. 1 000 V
C. 500 V
D. 250 V
Napięcia 1 000 V, 500 V i 250 V są nieodpowiednie do pomiarów rezystancji izolacji kabli ułożonych w ziemi, ponieważ są zbyt niskie, aby zapewnić dokładne i wiarygodne wyniki. Użycie napięcia 1 000 V może być stosowane w niektórych aplikacjach, jednak w przypadku kabli ułożonych w ziemi, nie dostarcza ono wystarczającej energii do identyfikacji potencjalnych uszkodzeń izolacji, które mogą być przyczyną awarii w przyszłości. Podobnie, napięcie 500 V jest zdecydowanie poniżej standardów przemysłowych dla takich zastosowań, co skutkuje brakiem możliwości wykrycia słabych punktów w izolacji. Z kolei wartość 250 V jest znacznie zbyt niska, aby jakiekolwiek pomiary miały sens w kontekście oceny stanu izolacji w trudnych warunkach gruntowych. Zastosowanie niewłaściwego napięcia podczas pomiarów może prowadzić do fałszywych wyników, co w konsekwencji prowadzi do błędnych decyzji w zakresie konserwacji i eksploatacji kabli. Kluczowe jest, aby w takich sytuacjach polegać na uznanych standardach i dobrach praktykach branżowych, które jasno wskazują, że napięcie 2 500 V powinno być stosowane w celu zapewnienia odpowiedniej dokładności pomiarów i bezpieczeństwa całej instalacji.

Pytanie 35

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. 0
B. II
C. I
D. III
Wybór klas I, II czy III wydaje się sensowny, ale tu trzeba zwrócić uwagę na bezpieczeństwo. Klasa I jest spoko, bo ma uziemienie, ale w wilgotnych miejscach może nie być wystarczająca. Klasa II, z dodatkową izolacją, też nie zawsze się sprawdzi, bo wciąż można mieć problem z porażeniem w miejscach, gdzie jest kontakt z wodą. Klasa III może wydawać się bezpieczniejsza, ale to dotyczy raczej specyficznych warunków. Używanie opraw klasy 0, które nie mają izolacji, jest po prostu niezgodne z normami, bo to nie tylko zagraża życiu, ale też nie spełnia wymagań norm PN-IEC 61140 i PN-EN 60598. Dlatego warto wiedzieć, że odpowiednia klasa ochronności jest kluczowa dla bezpieczeństwa w elektryce, a zły wybór może prowadzić do poważnych konsekwencji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Zarządzanie pracą w grupie
B. Uziemienie odłączonej linii
C. Ogrodzenie obszaru pracy
D. Używanie sprzętu izolacyjnego
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 38

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YDYżo 5x2,5 mm2
B. YStY 5xl mm2
C. YSLY 3x2,5 mm2
D. YADY 3x4 mm2
Odpowiedź YDYżo 5x2,5 mm2 jest poprawna, ponieważ przewód ten spełnia wymagania dotyczące instalacji siłowych w układzie sieciowym TN-S, który jest jednym z systemów zasilania o uziemieniu neutralnym. Przewody YDYżo charakteryzują się dobrą odpornością na działanie wysokich temperatur oraz chemikaliów, co czyni je odpowiednimi do użytku w tynku. W przypadku instalacji siłowych, przewody te muszą być odpowiednio dobrane do obciążenia, co w tym przypadku jest realizowane przez przekrój 2,5 mm2, wystarczający do zasilania urządzeń elektrycznych o średnich wymaganiach mocy. Dobrą praktyką jest stosowanie przewodów wielożyłowych w instalacjach, co pozwala na lepsze zarządzanie przewodami i ułatwia ich montaż. Przewody YDYżo są również zgodne z normą PN-EN 60228, która określa wymagania dla przewodów miedzianych, co dodatkowo podkreśla ich odpowiedniość do zastosowań w instalacjach elektrycznych.

Pytanie 39

Jakiego typu obudowę ma urządzenie elektryczne oznaczone na tabliczce znamionowej symbolem IP001?

A. Otwartą
B. Wodoszczelną
C. Głębinową
D. Zamkniętą
Obudowa oznaczona symbolem IP001 wskazuje, że urządzenie ma otwartą konstrukcję, co oznacza, że nie jest przystosowane do ochrony przed wnikaniem wody ani ciał stałych. W standardzie IP (Ingress Protection) pierwsza cyfra, w tym przypadku '0', oznacza brak ochrony przed ciałami stałymi, zaś druga cyfra, '1', oznacza ograniczoną ochronę przed wodą. W praktyce oznacza to, że urządzenie jest przeznaczone do zastosowania w suchych pomieszczeniach, gdzie nie ma ryzyka kontaktu z wodą. Tego typu obudowy są często stosowane w urządzeniach elektronicznych, które nie wymagają specjalnej ochrony, takich jak niektóre modele komputerów, sprzętu biurowego lub urządzeń domowych. Zrozumienie klasyfikacji IP jest kluczowe dla odpowiedniego doboru urządzeń do zastosowań w różnych warunkach otoczenia oraz dla zapewnienia ich długotrwałego i bezpiecznego działania.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.