Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 20:44
  • Data zakończenia: 19 grudnia 2025 21:36

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 2

Jakim przewodem powinno się przeprowadzić instalację oświetlenia natynkowego na uchwytach w piwnicy budynku wielorodzinnego?

A. LgY
B. YDYt
C. DYd
D. YDY
Odpowiedź YDY jest prawidłowa, ponieważ przewód YDY to przewód jednożyłowy, który jest odpowiedni do instalacji oświetleniowych w obiektach budowlanych, w tym w piwnicach. Charakteryzuje się on trwałą izolacją z PVC, co zapewnia odporność na wilgoć oraz różnorodne chemikalia, które mogą występować w piwnicach. Przewód YDY jest elastyczny, co ułatwia jego montaż na uchwytach, a także jest zgodny z obowiązującymi normami, co czyni go odpowiednim do tego typu zastosowań. W praktyce, podczas montażu instalacji oświetleniowej w piwnicy, ważne jest, aby przewody były dobrze zabezpieczone przed uszkodzeniami mechanicznymi i wilgocią, co przewód YDY spełnia. Ponadto, ze względu na swoje właściwości, przewód YDY jest szeroko stosowany w różnych instalacjach elektrycznych, takich jak zasilanie oświetlenia w pomieszczeniach mieszkalnych oraz użytkowych. Zgodnie z normą PN-EN 60502-1, przewody te mogą być stosowane w instalacjach w pomieszczeniach narażonych na działanie wody, co podkreśla ich przydatność w kontekście instalacji w piwnicach.

Pytanie 3

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Weryfikacja połączeń stykowych
B. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Ocena czystości filtrów powietrza chłodzącego
D. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 4

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. regulacja mocy grzejnej
B. wyprowadzenie punktu neutralnego elementów grzejnych
C. wymuszony obieg powietrza
D. osłona elementów grzejnych
Wymuszony obieg powietrza, regulacja mocy grzejnej oraz wyprowadzenie punktu neutralnego elementów grzejnych to koncepcje, które choć mogą być istotne w kontekście efektywności energetycznej i funkcjonowania grzejnika, nie zapewniają same w sobie wystarczających środków bezpieczeństwa. Wymuszony obieg powietrza poprawia wydajność ogrzewania, ale nie eliminuje ryzyka poparzeń, które stanowi poważne zagrożenie w przypadku braku odpowiednich osłon. Regulacja mocy grzejnej jest ważna dla dostosowania temperatury do potrzeb użytkownika, jednak sama w sobie nie chroni przed niebezpieczeństwem kontaktu z gorącymi elementami. Ponadto, wyprowadzenie punktu neutralnego elementów grzejnych odnosi się bardziej do poprawy działania urządzenia oraz zabezpieczenia przed przeciążeniem, a nie bezpośrednio do bezpieczeństwa użytkowników. W praktyce, wiele osób błędnie zakłada, że poprawne funkcjonowanie grzejnika automatycznie oznacza jego bezpieczeństwo, co prowadzi do zignorowania kluczowych zasad związanych z ochroną przed poparzeniami. Bezpieczna eksploatacja grzejnika trójfazowego wymaga zatem zastosowania osłon, które nie tylko chronią użytkowników, ale również spełniają wymogi norm bezpieczeństwa, co jest podstawą każdej instalacji elektrycznej.

Pytanie 5

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Żył aluminiowych
B. Pancerza stalowego
C. Powłoki polietylenowej
D. Zewnętrznego oplotu włóknistego
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 6

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
B. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
C. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
D. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 7

Silnik, o parametrach znamionowych zamieszczonych w ramce, wbudowany jest na stałe do nawijarki. Jak często należy przeprowadzać przegląd techniczny tego silnika?

PSBg 100L-6
Un = 400 VPn = 1,8 kWIn = 4,5 A
nn = 925 obr/minS1cosφ = 0,80
A. Nie rzadziej niż raz na trzy lata.
B. W terminach planowanych postojów technologicznych nawijalni.
C. W terminach przewidzianych dla przeglądu nawijarki.
D. Nie rzadziej niż raz na rok.
Odpowiedzi, które sugerują przeprowadzanie przeglądów co trzy lata lub co rok, a także w terminach planowanych postojów technologicznych, są nieadekwatne do rzeczywistych wymogów dotyczących konserwacji maszyn. Przede wszystkim, przegląd silnika wbudowanego w nawijarkę nie powinien być rozpatrywany w oderwaniu od przeglądów całej maszyny. Może to prowadzić do sytuacji, w której silnik jest zaniedbywany, a jego ewentualne uszkodzenia nie są wykrywane na czas, co zwiększa ryzyko awarii oraz potencjalne zagrożenie dla bezpieczeństwa operatorów. W przypadku przeglądów wykonywanych co trzy lata, ryzyko, że drobne usterki przekształcą się w poważne awarie, znacząco wzrasta. Ponadto, przeglądy planowane na okresy postojów technologicznych mogą nie być wystarczające, jeśli nie są zgodne z harmonogramem przeglądów nawijarki. Należy pamiętać, że każdy element maszyny, w tym silniki, wpływa na ogólną efektywność i niezawodność całego systemu. Z tego względu, ignorowanie standardowych procedur przeglądowych, które obejmują wszystkie składniki maszyny, może prowadzić do wzrostu kosztów operacyjnych oraz obniżenia jakości produkcji. Dlatego kluczowe jest, aby wszelkie prace konserwacyjne były dostosowane do harmonogramów przeglądów całej instalacji, co jest standardem w przemyśle.

Pytanie 8

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Nieodpowiednio dobrane szczotki
B. Przerwa w obwodzie twornika
C. Wystająca izolacja między działkami komutatora
D. Zabrudzony komutator
Przerwa w obwodzie twornika jest najpoważniejszym problemem, który może prowadzić do braku reakcji silnika na załączenie napięcia zasilania. W silniku szeregowym prądu stałego, twornik jest kluczowym elementem, który przekształca energię elektryczną w energię mechaniczną. Przerwa w obwodzie twornika oznacza, że prąd nie ma możliwości przepływu przez uzwojenie, co skutkuje brakiem momentu obrotowego i zatrzymaniem silnika. Taki stan może być spowodowany różnymi czynnikami, takimi jak uszkodzenie izolacji, korozja styków, czy mechaniczne uszkodzenia przewodów. W praktyce, aby zapobiegać takim problemom, zaleca się regularne przeglądy silników, zwłaszcza w zastosowaniach dorywczych, gdzie silnik może być narażony na dłuższe okresy bezczynności. W przypadku wykrycia przerwy, należy przeprowadzić diagnostykę, aby zidentyfikować miejsce usterki i podjąć odpowiednie kroki naprawcze, zgodne z branżowymi standardami serwisowymi, aby zapewnić długoterminowe i niezawodne działanie urządzenia. Dodatkowo, znajomość zasad działania silników prądu stałego oraz ich budowy, pozwala na szybsze rozwiązywanie problemów i podejmowanie skutecznych działań prewencyjnych.

Pytanie 9

W miejscu pracy, gdzie wykonywana jest naprawa urządzenia grzewczego, działają równocześnie elektrycy oraz hydraulicy. Jeśli instalacja elektryczna urządzenia została odłączona od zasilania za pomocą głównego odłącznika, który znajduje się w innym pomieszczeniu niż naprawiane urządzenie, to aby zabezpieczyć się przed niezamierzonym włączeniem napięcia, należy

A. pozostawić odłącznik w pozycji otwartej bez blokady, ale umieścić obok niego tabliczkę ostrzegawczą o zakazie włączania napięcia
B. użyć dwóch kłódek do zablokowania odłącznika w pozycji otwartej, każdą z nich zakładając osobno przez różne zespoły pracowników
C. zablokować odłącznik w pozycji otwartej kłódką założoną przez ekipę hydraulików
D. zablokować odłącznik w pozycji otwartej kłódką założoną przez zespół elektryków
Odpowiedź, w której zastosowano dwie kłódki do zablokowania odłącznika w stanie otwartym, jest prawidłowa, ponieważ w sytuacji, gdy w jednym miejscu pracują elektrycy i hydraulicy, konieczne jest zapewnienie maksymalnego bezpieczeństwa. Blokowanie odłącznika za pomocą kłódek, które są zakładane przez każdą z grup pracowników, jest zgodne z zasadami blokady i wyłączania (Lockout-Tagout - LOTO), które są kluczowe w zarządzaniu ryzykiem w miejscu pracy. Takie działanie gwarantuje, że żadna grupa nie może włączyć napięcia bez wiedzy drugiej grupy, a tym samym minimalizuje ryzyko porażenia prądem w trakcie naprawy. Przykładem zastosowania tej procedury jest sytuacja, w której hydraulik wykonuje prace przy rurach zasilających, podczas gdy elektryk zajmuje się instalacją elektryczną. Zastosowanie podwójnej blokady zapewnia, że obie grupy muszą współpracować, aby zdjąć blokadę, co zwiększa bezpieczeństwo i skuteczność. Tego typu praktyki są normą w branży, a ich stosowanie jest regulowane przez przepisy BHP oraz normy OSHA, co podkreśla ich znaczenie w codziennym funkcjonowaniu zakładów pracy.

Pytanie 10

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Odłącznik instalacyjny.
B. Łącznik silnikowy bez zabezpieczeń termicznych.
C. Rozłącznik izolacyjny z widoczną przerwą.
D. Wyłącznik małej mocy.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 11

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Termistor
B. Bezpiecznik
C. Wyłącznik silnikowy
D. Przekaźnik nadprądowy
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 12

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Zarządzanie pracą w grupie
B. Ogrodzenie obszaru pracy
C. Uziemienie odłączonej linii
D. Używanie sprzętu izolacyjnego
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 13

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Poluzowanie tabliczki zaciskowej
B. Nagle zwiększone napięcie zasilające
C. Pęknięcie pierścieni zwierających pręty wirnika
D. Nagle zmniejszone napięcie zasilające
Gwałtowny wzrost napięcia zasilającego, choć może wpływać na działanie silnika, nie jest bezpośrednią przyczyną ocierania wirnika o stojan. Wysokie napięcia mogą prowadzić do przegrzewania się uzwojeń, co w skrajnych przypadkach może uszkodzić izolację, ale sama geometria wirnika i jego stabilność nie są bezpośrednio zagrożone. W podobny sposób gwałtowne zmniejszenie napięcia zasilającego może powodować spadek momentu obrotowego, co w pewnych warunkach prowadzi do niestabilności pracy silnika, ale również nie jest przyczyną tarcia wirnika o stojan. W przypadku poluzowania tabliczki zaciskowej, choć może to prowadzić do problemów z połączeniami elektrycznymi, również nie jest to przyczyna ocierania wirnika, lecz raczej związane z problemami z zasilaniem. Prawidłowe połączenia elektryczne i mechaniczne są kluczowe, dlatego każdy silnik powinien być regularnie kontrolowany pod kątem stabilności tych elementów. Warto pamiętać, że zrozumienie przyczyn technicznych takich problemów jest kluczowe w celu minimalizacji ryzyka awarii i zapewnienia długotrwałej i efektywnej pracy urządzeń.

Pytanie 14

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 3 lata
B. 4 lata
C. 2 lata
D. 1 rok
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 15

Maksymalny prąd nastawczy przekaźnika termobimetalowego, który chroni silnik pompy wodnej, przy prądzie znamionowym In = 10 A, nie powinien być wyższy niż

A. 11,00 A
B. 9,50 A
C. 10,50 A
D. 10,10 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ prąd nastawczy zabezpieczenia termobimetalowego powinien być ustawiony z pewnym marginesem nad prądem znamionowym silnika, aby uniknąć niepożądanych wyłączeń. W praktyce, przekaźniki termobimetalowe stosowane do ochrony silników pompowych muszą być dostosowane tak, aby ich czułość była odpowiednia do warunków pracy, bez przekraczania dopuszczalnych wartości prądu. W przypadku silnika o prądzie znamionowym I<sub>n</sub> = 10 A, ustawienie prądu nastawczego na 11,00 A zapewnia wystarczający zapas, aby uwzględnić chwilowe przeciążenia, które mogą wystąpić podczas rozruchu silnika lub w wyniku zmiennych warunków eksploatacyjnych. Dobrą praktyką jest również kierowanie się normami, takimi jak IEC 60947-4-1, która określa zasady doboru urządzeń zabezpieczających dla silników. W ten sposób można zapewnić niezawodność i bezpieczeństwo systemu, minimalizując ryzyko fałszywych alarmów oraz niepotrzebnych przestojów w pracy urządzeń.

Pytanie 16

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. cewka stycznika jest uszkodzona
B. cewka stycznika działa prawidłowo
C. przewód fazowy jest odłączony
D. przewód neutralny jest odłączony
Pomiar rezystancji cewki stycznika wynoszący 0 Ω jednoznacznie wskazuje na zwarcie w tej cewce, co sugeruje jej uszkodzenie. W praktyce, cewka stycznika jest elementem wykonawczym, który za pomocą pola elektromagnetycznego kontroluje włączanie i wyłączanie obwodów elektrycznych. W przypadku, gdy wartość rezystancji cewki wynosi zero, oznacza to, że nie ma oporu dla przepływu prądu, co jest typowym objawem uszkodzenia. Stosując się do normy IEC 60204-1, która reguluje wymogi dotyczące bezpieczeństwa maszyn, należy regularnie kontrolować stan elementów sterujących, aby zapewnić ich prawidłowe funkcjonowanie i unikać sytuacji, które mogą prowadzić do awarii całego systemu. Przykładowo, w zastosowaniach przemysłowych, gdzie styczniki sterują silnikami, uszkodzenie cewki może prowadzić do poważnych problemów operacyjnych, jak zatrzymanie produkcji. Dlatego ważne jest, aby po zidentyfikowaniu takiej usterki, niezwłocznie przeprowadzić wymianę cewki na nową, aby przywrócić pełną funkcjonalność układu.

Pytanie 17

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
C. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Stwierdzenia dotyczące wykonania uzwojenia pierwotnego z drutu o większej średnicy i większej liczbie zwojów, a także o mniejszej średnicy i mniejszej liczbie zwojów, są związane z niewłaściwym zrozumieniem zasad transformacji napięcia w transformatorze. Uzwojenie pierwotne, które przyjmuje napięcie 230 V, wymaga odpowiedniego doboru liczby zwojów w porównaniu do uzwojenia wtórnego, które działa na napięciu 14,6 V. W każdym przypadku, gdy napięcie na uzwojeniu wtórnym jest znacznie niższe niż na pierwotnym, liczba zwojów uzwojenia wtórnego musi być znacznie mniejsza w odniesieniu do uzwojenia pierwotnego. Taki dobór przekłada się na to, że uzwojenie pierwotne musi mieć więcej zwojów, co jest sprzeczne z koncepcją grubszej średnicy drutu, ponieważ większa średnica skutkowałaby zmniejszeniem liczby zwojów na danej długości. Często błędy te wynikają z mylenia pojęć dotyczących impedancji i rezystancji, co prowadzi do nieprawidłowych wniosków na temat wymagań dotyczących wymiany uzwojeń. Ponadto, nieprawidłowe podejście do średnicy drutu może skutkować niewłaściwym przewodnictwem i zwiększoną stratą ciepła, co jest nieefektywne i niezgodne z dobrymi praktykami w projektowaniu transformatorów. Właściwe zrozumienie tych zasad jest kluczowe dla zapewnienia efektywności energetycznej i trwałości urządzeń elektronicznych.

Pytanie 18

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 6 A
B. 16 A
C. 25 A
D. 10 A
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 19

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Tensometr
B. Piezorezystor
C. Halotron
D. Pozystor
Tensometr to przetwornik, który jest idealnym narzędziem do pomiaru momentu obrotowego, szczególnie w kontekście wałów napędowych silników elektrycznych. Działa na zasadzie pomiaru deformacji, które są wynikiem przyłożonego momentu obrotowego. Kiedy wał napędowy zostaje poddany obciążeniu, jego deformacja jest proporcjonalna do przyłożonego momentu, co pozwala na dokładne obliczenie tego momentu przy użyciu tensometrów. Przykłady zastosowania tensometrów obejmują przemysł motoryzacyjny, gdzie są wykorzystywane do testowania komponentów silników, a także w maszynach przemysłowych do monitorowania stanu technicznego wałów oraz detekcji przeciążeń. W branży stosuje się także standardy, takie jak ISO 376, które regulują metody kalibracji i pomiaru tensometrycznego, zapewniając wysoką precyzję i niezawodność wyników. Zastosowanie tensometrów w praktyce nie tylko poprawia jakość pomiarów, ale również zwiększa bezpieczeństwo operacyjne, dzięki możliwości wczesnego wykrywania problemów w systemach napędowych.

Pytanie 20

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. wzrost prędkości obrotowej silnika
B. spadek prędkości obrotowej silnika
C. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
D. unieruchomienie silnika
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 21

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. YDY 4x2,5 mm2
B. YLY 3x2,5 mm2
C. OP 4x2,5 mm2
D. SM 3x2,5 mm2
Odpowiedź OP 4x2,5 mm2 jest prawidłowa, ponieważ ten typ przewodu jest odpowiedni do zasilania silników trójfazowych, zwłaszcza w aplikacjach, gdzie przewód ma być elastyczny i odporny na różne warunki pracy. Przewód OP (Ochronny Przewód) charakteryzuje się podwyższoną odpornością na działanie czynników zewnętrznych, co czyni go idealnym do zastosowań w odbiornikach ruchomych, gdzie przewód może być narażony na zginanie i tarcie. Zastosowanie przewodu o przekroju 4x2,5 mm2 oznacza, że mamy do czynienia z czterema żyłami, co jest typowe dla instalacji trójfazowych, gdzie potrzebne są trzy żyły fazowe i jedna żyła ochronna. Wybór odpowiedniego przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności działania silnika, a także minimalizowania ryzyka awarii. Przewody OP są zgodne z normami PN-EN 60228 oraz PN-EN 50525, co potwierdza ich wysoką jakość i odpowiednie parametry elektryczne w zastosowaniach przemysłowych.

Pytanie 22

Która z poniższych czynnościnie jest częścią prób odbiorczych w instalacjach elektrycznych?

A. Pomiar mocy, którą pobiera obwód odbiorczy
B. Weryfikacja kolejności faz
C. Weryfikacja ochrony uzupełniającej
D. Pomiar rezystancji ścian i podłóg
Chociaż pomiar rezystancji podłóg i ścian, sprawdzenie ochrony uzupełniającej oraz kontrola kolejności faz są istotnymi czynnościami w zakresie prób odbiorczych, należy zrozumieć, dlaczego pomiar mocy pobieranej przez obwód odbiorczy nie jest zgodny z tym zakresem. Mierzenie mocy pobieranej przez obwód odbiorczy dotyczy efektywności energetycznej i obciążenia, a nie bezpieczeństwa czy poprawności technicznej instalacji. W kontekście prób odbiorczych, kluczowym celem jest zapewnienie, że instalacja działa zgodnie z normami bezpieczeństwa, co obejmuje weryfikację takich parametrów jak rezystancja izolacji, która jest istotna dla zapobiegania porażeniom elektrycznym. Pomiar mocy jest bardziej związany z eksploatacją i zarządzaniem energią niż z odbiorem instalacji, co może prowadzić do mylnych wniosków. Istotne jest, aby podczas analizy funkcjonowania instalacji elektrycznych nie mylić procesów odbiorczych z monitorowaniem zużycia energii. Niekiedy, zwłaszcza w kontekście modernizacji czy rozbudowy instalacji, mogą występować niedopowiedzenia dotyczące tego, co stanowi właściwy zakres prób odbiorczych. Kluczowe jest zrozumienie, że odbiór koncentruje się na zapewnieniu bezpieczeństwa i zgodności z obowiązującymi normami, a nie na analizie efektywności energetycznej, co może prowadzić do błędnych interpretacji.

Pytanie 23

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Waromierz
B. Anemometr
C. Megaomomierz
D. Pirometr
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 24

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Odłączenie przewodu ochronnego od zacisku PE
B. Kilku procentowy wzrost napięcia zasilania
C. Podwojony moment obciążenia
D. Brak napięcia w jednej z faz
Zanik napięcia w jednej z faz silnika indukcyjnego trójfazowego prowadzi do nierównomiernego przepływu prądu w uzwojeniach, co skutkuje spadkiem momentu obrotowego oraz zwiększeniem prędkości ślizgu. Silnik, zamiast stabilnie pracować, zaczyna generować wibracje i dźwięki, co objawia się charakterystycznym "buczeniem". W przypadku pracy z obciążeniem wynoszącym połowę mocy znamionowej, silnik może być w stanie tolerować pewne zakłócenia, ale zanik napięcia w jednej fazie jest krytycznym problemem. Przykładowo, w przemyśle, awarie zasilania w jednej fazie mogą prowadzić do uszkodzeń silników oraz innych komponentów systemu, dlatego ważne jest stosowanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe oraz monitoring jakości zasilania. Aby poprawić niezawodność systemów elektrycznych, stosuje się również układy równoważące obciążenia międzyfazowe. Stosując te zasady, można znacząco zwiększyć bezpieczeństwo i efektywność pracy silników.

Pytanie 25

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć dławiki indukcyjne równolegle do silników
B. Podłączyć kondensatory równolegle do silników
C. Podłączyć kondensatory szeregowo do silników
D. Podłączyć dławiki indukcyjne szeregowo do silników
Włączenie kondensatorów równolegle do silników indukcyjnych jest skuteczną metodą kompensacji mocy biernej, ponieważ kondensatory te generują moc bierną pojemnościową, co pomaga zrównoważyć moc bierną indukcyjną pobieraną przez silniki. Silniki indukcyjne, zwłaszcza te pracujące w zakładach przemysłowych, mają tendencję do pobierania znacznych ilości mocy biernej, co może prowadzić do obciążenia sieci zasilającej oraz zwiększenia kosztów energii elektrycznej. Zastosowanie kondensatorów w konfiguracji równoległej pozwala na efektywne zredukowanie współczynnika mocy, co jest zgodne z normami branżowymi takimi jak IEC 61000-3-2 dotyczące jakości energii elektrycznej. Ponadto, kondensatory mogą być stosowane w systemach automatycznego sterowania, co umożliwia dynamiczną kompensację mocy biernej, zapewniając oszczędności operacyjne i zwiększając niezawodność systemu. Przykłady zastosowań obejmują przemysłowe instalacje zasilające, gdzie pojemnościowe kompensatory są zintegrowane z systemami zarządzania energią, co prowadzi do optymalizacji efektywności energetycznej.

Pytanie 26

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B16
B. B25
C. B20
D. B10
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 27

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. przerwie w uzwojeniu VI - V2
B. zwarciu międzyzwojowym w uzwojeniu Ul - U2
C. zwarciu międzyzwojowym w uzwójeniu V1 - V2
D. przerwie w uzwojeniu Wl - W2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 28

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
B. Wyniki testów technicznych urządzenia są zadowalające
C. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
D. Urządzenie spełnia kryteria efektywnego zużycia energii
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 29

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. powinien mieć żyłę PE.
B. musi mieć wtyczkę ze stykiem ochronnym.
C. musi mieć żyły ekranowane.
D. nie musi mieć żyły PE.
Odpowiedzi, które sugerują, że przewód zasilający musi mieć żyły ekranowane lub musi mieć żyłę PE, są nieprawidłowe, ponieważ w przypadku urządzeń klasy ochronności II nie ma takiej potrzeby. Koncepcje związane z koniecznością posiadania przewodu z żyłą PE wynikają z błędnego zrozumienia klasyfikacji sprzętu elektrycznego. Często mylnie zakłada się, że każde urządzenie elektryczne musi być uziemione dla zachowania bezpieczeństwa, jednak urządzenia klasy II są projektowane w sposób, który eliminuje ryzyko porażenia prądem elektrycznym bez potrzeby stosowania przewodu ochronnego. Pomocne może być przywołanie normy IEC 61140, która określa zasady ochrony przed porażeniem prądem elektrycznym. Zastosowanie żyły PE ma znaczenie głównie w urządzeniach klasy I, które nie są izolowane podwójnie i mogą stanowić ryzyko w przypadku awarii izolacji. Dlatego, stwierdzając, że przewód musi mieć żyłę PE, ignorujemy podstawowe zasady dotyczące klasyfikacji urządzeń i ich ochronności, co może prowadzić do nieprawidłowych praktyk w zakresie instalacji elektrycznych.

Pytanie 30

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Fazomierza
B. Waromierza
C. Watomierza
D. Częstościomierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 31

Jakie oznaczenia powinien mieć wyłącznik różnicowoprądowy zaprojektowany do ochrony przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtyczkowych uniwersalnych w instalacji jednofazowej 230 V/50 Hz?

A. P 344 C-20-30-AC
B. P 304 25-30-AC
C. P 312 B-16-30-AC
D. P 302 25-30-AC
Wyłącznik różnicowoprądowy P 312 B-16-30-AC jest odpowiednim wyborem do zabezpieczania obwodów gniazd wtyczkowych w instalacji jednofazowej 230 V/50 Hz. Oznaczenie to wskazuje na jego zdolność do detekcji prądów upływowych i jednoczesne zabezpieczenie przed przeciążeniami oraz zwarciami. W szczególności litera 'B' oznacza, że urządzenie jest przystosowane do obciążeń indukcyjnych, co czyni je idealnym w wielu zastosowaniach domowych oraz biurowych, gdzie używane są urządzenia elektryczne z silnikami. Warto również zwrócić uwagę na wartość prądu różnicowego, która wynosi 30 mA, co jest zgodne z normami bezpieczeństwa, zgodnie z dyrektywą 2014/35/UE. Użycie tego wyłącznika przyczynia się do zwiększenia bezpieczeństwa użytkowników, minimalizując ryzyko porażenia prądem, co powinno być priorytetem w każdym projekcie elektrycznym. Zastosowanie wyłączników różnicowoprądowych w takim obwodzie jest nie tylko najlepszą praktyką, ale także wymogiem wielu norm budowlanych i elektrycznych, co czyni je kluczowymi elementami nowoczesnych instalacji.

Pytanie 32

Zwiększenie liczby kabli umieszczonych w jednej rurze instalacyjnej spowoduje

A. zwiększenie dozwolonej wartości spadku napięcia na kablach
B. wydłużenie czasu osiągania granicznej temperatury izolacji kabli
C. zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego kabla
D. zmniejszenie dopuszczalnego obciążenia prądem długotrwałym jednego kabla
Zwiększenie liczby przewodów ułożonych w jednej rurze instalacyjnej prowadzi do zmniejszenia dopuszczalnego obciążenia prądem długotrwałym pojedynczego przewodu. Jest to związane z zasadą, że im więcej przewodów umieszczonych w tej samej przestrzeni, tym większa emisja ciepła z tych przewodów, ponieważ nie mają one wystarczającej przestrzeni na odprowadzenie ciepła. Zgodnie z normami, takimi jak PN-IEC 60364, dopuszczalne obciążenie prądowe przewodów uzależnione jest od ich zdolności do odprowadzania ciepła, co jest kluczowe dla zachowania bezpieczeństwa instalacji. Na przykład, w przypadku układania kilku przewodów w jednej rurze, każdy z nich może nie być w stanie wytrzymać standardowych wartości obciążenia, co prowadzi do przegrzewania i potencjalnych uszkodzeń izolacji. Dlatego w praktyce, dla instalacji elektrycznych, często stosuje się ograniczenia dotyczące liczby przewodów w jednej rurze oraz jej średnicy, aby zapewnić odpowiednią wentylację i chłodzenie.

Pytanie 33

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Przekaźnik termiczny
B. Wyłącznik różnicowoprądowy
C. Odłącznik
D. Bezpiecznik
Bezpiecznik to kluczowe urządzenie w instalacjach elektrycznych, które chroni obwody przed skutkami zwarć oraz przepięć. Jego główną funkcją jest przerwanie obwodu w momencie, gdy natężenie prądu przekroczy ustaloną wartość, co zapobiega uszkodzeniu urządzeń oraz minimalizuje ryzyko pożaru. W praktyce, bezpieczniki są szeroko stosowane w domowych i przemysłowych instalacjach elektrycznych oraz są zgodne z normami, takimi jak PN-EN 60947-2. Standardowe zastosowanie bezpiecznika polega na jego instalacji w rozdzielniach elektrycznych, gdzie zapewnia on ochronę dla poszczególnych obwodów. Warto również zwrócić uwagę na różne typy bezpieczników, w tym bezpieczniki topikowe i automatyczne, które mają różne zastosowania w zależności od charakterystyki obciążenia. Dobre praktyki obejmują regularne kontrole i wymianę bezpieczników, aby zagwarantować ich skuteczność oraz niezawodność działania w sytuacjach awaryjnych.

Pytanie 34

Jakie rozwiązania powinny być wdrożone, aby zapewnić ochronę przed porażeniem elektrycznym w przypadku uszkodzenia pracowników obsługujących maszynę roboczą, która jest napędzana silnikiem trójfazowym o napięciu 230/400 V, podłączonym do sieci TN-S i zabezpieczonym wyłącznikiem różnicowoprądowym?

A. Wykorzystać zasilanie w systemie PELV
B. Wprowadzić zasilanie w systemie SELV
C. Podłączyć obudowę silnika do przewodu PE
D. Podłączyć obudowę silnika do przewodu N
Prawidłowe połączenie korpusu silnika z przewodem PE (ochronnym) jest kluczowe dla zapewnienia efektywnej ochrony przeciwporażeniowej w układach zasilania trójfazowego. W systemie TN-S, przewód PE jest oddzielony od przewodu neutralnego (N), co zwiększa bezpieczeństwo użytkowania. Połączenie to zabezpiecza przed niebezpiecznymi napięciami, które mogą wystąpić wskutek uszkodzenia izolacji lub innych awarii. Przykładowo, jeśli izolacja przewodu fazowego ulegnie uszkodzeniu, prąd może przepływać do korpusu maszyny. Dzięki połączeniu z przewodem PE, prąd zostanie skierowany do ziemi, co pozwoli na szybkie zadziałanie wyłącznika różnicowoprądowego, minimalizując ryzyko porażenia prądem. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61140, które podkreślają znaczenie zastosowania ochrony przed dotykiem bezpośrednim oraz pośrednim, a także wskazują na konieczność odpowiedniego uziemienia elementów metalowych. W praktyce, stosowanie przewodów o odpowiednim przekroju oraz regularne kontrole instalacji są kluczowe dla utrzymania bezpieczeństwa w środowisku pracy.

Pytanie 35

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Autotransformator
B. Falownik
C. Softstart
D. Rozrusznik
Falownik to urządzenie elektroniczne, które pozwala na płynną regulację obrotów silników indukcyjnych poprzez modulację częstotliwości i napięcia zasilającego. Dzięki zastosowaniu falowników, można precyzyjnie dostosować prędkość obrotową silnika do aktualnych potrzeb aplikacji, co jest szczególnie istotne w procesach przemysłowych, gdzie zmiana prędkości ma kluczowe znaczenie dla efektywności działania. Na przykład, w systemach transportowych, takich jak przenośniki taśmowe, regulacja prędkości pozwala na optymalizację przepływu materiałów. Falowniki są zgodne z normami IEC 61800, które określają wymagania dotyczące regulacji napędów elektrycznych. Ponadto, zastosowanie falowników wpływa na zmniejszenie zużycia energii, co jest zgodne z aktualnymi trendami w kierunku zrównoważonego rozwoju i efektywności energetycznej. Dzięki swojej wszechstronności, falowniki są wykorzystywane w różnych gałęziach przemysłu, w tym w automatyce budynkowej, klimatyzacji i wentylacji, co czyni je niewątpliwie najlepszym wyborem do regulacji obrotów silników indukcyjnych.

Pytanie 36

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. lampy sodowe
B. lampy rtęciowe
C. świetlówki
D. żarówki
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 37

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Zwiększyć średnicę przewodów kabla WLZ
B. Zwiększyć średnicę przewodów w instalacji wewnętrznej
C. Zmniejszyć średnicę przewodów kabla WLZ
D. Pozostawić instalację zasilającą bez zmian
Jak spojrzysz na te wartości, to suma spadków napięć w układzie TN-S, która wynosi 9 V przy napięciu znamionowym 230 V, jest w porządku. To mniej niż 5% dla obwodów oświetleniowych i jakieś 3% dla siłowych, więc nie ma potrzeby, by wprowadzać zmiany w instalacji. Chociaż warto czasem rzucić okiem na te spadki, bo bezpieczeństwo urządzeń to ważna sprawa. Jeśli spadki zaczynają być większe, to warto pomyśleć o zwiększeniu przekroju przewodów, ale w tej sytuacji nie ma takiej potrzeby. Wiesz, jak się montuje silniki elektryczne, to tam kluczowe jest, by kable były dobrze dobrane, żeby nie tracić energii. Normy PN-IEC 60364 to dobry punkt wyjścia do sprawdzenia, czy wszystko jest zrobione jak należy.

Pytanie 38

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C32
B. S303 C25
C. S303 C20
D. S303 C40
Wybór niewłaściwego wyłącznika nadprądowego może prowadzić do poważnych konsekwencji, zarówno dla samego silnika, jak i dla całego układu zasilania. W przypadku wyłączników S303 C25 i S303 C20, ich prąd znamionowy jest zbyt niski w stosunku do obliczonego prądu silnika, który wynosi około 18,5 A. Użycie wyłącznika C25, który ma prąd znamionowy 25 A, może prowadzić do częstych wyłączeń podczas normalnej pracy silnika, co w dłuższej perspektywie może prowadzić do niepotrzebnego stresu mechanicznego oraz uszkodzenia silnika. Podobnie, wybór C20 jest jeszcze bardziej ryzykowny, ponieważ jego prąd znamionowy nie tylko nie zapewnia odpowiedniego marginesu bezpieczeństwa, ale także zwiększa ryzyko wyłączeń przy normalnych obciążeniach. Ponadto, wyłącznik C40, mimo że posiada większy prąd znamionowy niż potrzebny, również nie jest odpowiedni, ponieważ jego wartość może prowadzić do zbyt późnych reakcji w przypadku przeciążenia, co zwiększa ryzyko uszkodzeń. W praktyce, dobór wyłączników nadprądowych powinien zawsze brać pod uwagę zarówno prąd znamionowy urządzenia, jak i charakterystykę pracy obwodu, aby zapewnić nie tylko ochronę, ale również optymalną wydajność systemu. Zgodnie z normami IEC 60947-2, istotne jest, aby wyłącznik był dostosowany do rzeczywistych warunków pracy, co w tym przypadku oznacza konieczność wyboru wyłącznika, który ma odpowiednio wyższy prąd znamionowy niż obliczony prąd silnika.

Pytanie 39

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 10 A
B. 16 A
C. 25 A
D. 20 A
Wybór niewłaściwej wartości prądu znamionowego zabezpieczenia przedlicznikowego może wynikać z błędnych założeń dotyczących obliczeń oraz zrozumienia charakterystyki instalacji trójfazowej. Przykładowo, wybór 25 A może wydawać się uzasadniony w kontekście zabezpieczenia przed przeciążeniem, jednak przekracza on obliczoną wartość prądu znamionowego, co może prowadzić do nieodpowiedniej ochrony. Przy wyborze zabezpieczeń istotne jest, aby były one dostosowane do rzeczywistych warunków pracy. Zbyt wysoka wartość prądu zabezpieczenia zwiększa ryzyko uszkodzenia odbiorników, ponieważ nie będą one odpowiednio chronione przed przeciążeniami, a ich praca może stać się niestabilna. Z kolei wybór 16 A oraz 10 A jest niebezpieczny, ponieważ nie zapewniają one wystarczającej mocy dla zasilania odbiorników o mocy 13 kW. Zabezpieczenia te mogą działać w trybie wyzwolenia zbyt często, co prowadzi do niepożądanych przerw w zasilaniu i mogą skutkować uszkodzeniami urządzeń. Przy doborze wartości prądu zabezpieczenia, warto również wziąć pod uwagę normy branżowe, takie jak PN-IEC 60364, które zalecają dobór zabezpieczeń z odpowiednim marginesem, aby zapewnić bezpieczeństwo i stabilność pracy instalacji. Dlatego kluczowe jest zrozumienie zasadności doboru odpowiednich zabezpieczeń i ich wpływu na pracę całej instalacji elektrycznej.

Pytanie 40

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. YDY
B. UTP
C. LgY
D. YKY
Przewód typu YKY jest najlepszym wyborem do wykonania wewnętrznej linii zasilającej (WLZ) w instalacji trójfazowej. Jego konstrukcja, oparta na miedzi i izolacji PVC, zapewnia odporność na różne warunki atmosferyczne oraz mechaniczne uszkodzenia, co jest kluczowe w instalacjach zarówno wewnętrznych, jak i zewnętrznych. W praktyce, YKY jest często stosowany w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagana jest stabilna i bezpieczna dostawa energii elektrycznej. Użycie przewodu YKY pozwala na zachowanie wysokiej wydajności energetycznej oraz minimalizację strat energii. Dodatkowo, zgodność z normami PN-EN 60228 oraz PN-EN 50525 potwierdza jego zastosowanie w instalacjach trójfazowych. Wybór YKY zamiast YDY jest uzasadniony tym, że YDY, mimo że również wykonany z miedzi, ma mniejszą odporność na czynniki zewnętrzne, co może prowadzić do uszkodzeń w trudniejszych warunkach. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznej.