Jakiego urządzenia dotyczy przedstawiony opis przeglądu? Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem: 1. oceny stanu ochrony przed porażeniem prądem, 2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego, 3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala, 4. pomiaru czasu wyłączenia, 5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.
A. Wyłącznika nadprądowego
B. Wyłącznika różnicowoprądowego
C. Elektronicznego przekaźnika czasowego
D. Ochronnika przepięć
Wybór innego urządzenia, takiego jak wyłącznik nadprądowy, elektroniczny przekaźnik czasowy lub ochronnik przepięć, pokazuje nieporozumienie w zakresie funkcji i zastosowania tych urządzeń. Wyłącznik nadprądowy, choć również istotny w instalacjach elektrycznych, ma na celu ochronę przed przeciążeniem i zwarciem, a nie przed porażeniem prądem. Nie prowadzi się pomiarów prądu zadziałania w kontekście wyłączników nadprądowych, co czyni tę odpowiedź niepoprawną. Elektroniczny przekaźnik czasowy, który jest używany do kontrolowania czasów działania obwodów elektrycznych, nie ma zastosowania w kontekście ochrony przeciwporażeniowej. Z kolei ochronniki przepięć zabezpieczają urządzenia przed nagłymi wzrostami napięcia, ale również nie są odpowiednie w kontekście ochrony ludzi przed porażeniem prądem. Właściwe zrozumienie funkcji poszczególnych elementów instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa. Typowe błędy myślowe, takie jak mylenie funkcji ochronnych różnych urządzeń, mogą prowadzić do nieprawidłowej oceny ryzyka oraz niewłaściwych decyzji w zakresie zabezpieczeń elektrycznych. W praktyce, wiedza na temat odpowiednich zastosowań wyłączników różnicowoprądowych oraz ich regularne testowanie są niezbędne dla ochrony użytkowników instalacji elektrycznych.
Pytanie 2
Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?
A. I
B. 0
C. II
D. III
Klasy ochronności urządzeń elektrycznych mają kluczowe znaczenie dla zapewnienia bezpieczeństwa ich użytkowania. Odpowiedzi I, 0 oraz II nie są poprawne w kontekście oprawy zasilanej niskonapięciowym źródłem SELV. Klasa I odnosi się do urządzeń, które posiadają zacisk ochronny i wymagają podłączenia do uziemienia, co nie jest spełnione w przypadku oprawy bez zacisku ochronnego. Klasa 0 dotyczy urządzeń, które nie mają ochrony przeciwporażeniowej i są niebezpieczne w użytkowaniu, ponieważ nie oferują żadnego zabezpieczenia przed zwarciem. Z kolei klasa II odnosi się do urządzeń, które mają podwójną izolację i nie wymagają uziemienia. Odpowiedź na to pytanie wymaga zrozumienia różnic między tymi klasami oraz ich zastosowania w praktyce. Większość błędów w wyborze odpowiedzi wynika z nieznajomości zasad dotyczących bezpieczeństwa elektrycznego oraz z mylenia klasyfikacji opraw w kontekście ich konstrukcji i zastosowania. Ważne jest, aby zwracać uwagę na oznaczenia na urządzeniach oraz stosować się do norm i standardów, które regulują te kwestie. W kontekście opraw oświetleniowych klasa ochronności III to gwarancja, że użytkownik nie będzie narażony na niebezpieczeństwo, a projektanci oświetlenia mogą skutecznie wykorzystywać takie oprawy w różnych środowiskach.
Pytanie 3
Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?
A. C.
B. D.
C. B.
D. A.
Wybór innej odpowiedzi prowadzi do nieporozumień dotyczących funkcji różnych typów łączników. Schematy oznaczone literami B, C i D odnoszą się do łączników krzyżowych, schodowych oraz dzwonkowych, co jest niezgodne z symbolem graficznym przedstawionym w pytaniu. Łącznik krzyżowy jest używany do sterowania jednym źródłem światła z dwóch lub więcej miejsc, co wymaga zastosowania odpowiednich schematów montażowych, a nie pojedynczego łącznika. Z kolei łącznik schodowy, stosowany w układach umożliwiających włączanie i wyłączanie oświetlenia z dwóch miejsc, również nie jest reprezentowany przez ten symbol. Zrozumienie różnicy między tymi typami łączników jest kluczowe, aby uniknąć błędów w instalacjach elektrycznych. Należy pamiętać, że stosowanie niewłaściwego schematu może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy niewłaściwe działanie systemu oświetleniowego. Przy wyborze odpowiedniej odpowiedzi warto kierować się nie tylko wyglądem symboli, ale także ich funkcjami i zastosowaniem w praktyce, co jest zgodne z zasadami bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.
Pytanie 4
Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?
A. Wymiana oprawki.
B. Czyszczenie obudowy i styków.
C. Wykonanie pomiarów natężenia oświetlenia.
D. Wymiana złączki.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.
Pytanie 5
Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu
A. TN-C-S
B. IT
C. TT
D. TN-S
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.
Pytanie 6
W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?
A. W punkcie C
B. W punkcie A
C. W punkcie B
D. W punkcie D
Wybór punktów B, C albo D jakby nie do końca trafiony. To może sugerować, że nie do końca rozumiesz, jak działa charakterystyka prądowo-napięciowa diody. Te punkty są w strefie, gdzie zmiany napięcia nie powodują szybkiego wzrostu prądu, co jest kluczowe do określenia momentu przebicia. Punkt B zazwyczaj jest w okolicach nasycenia diody, a nie w miejscu, gdzie zachodzi przebicie lawinowe. Punkt C to z kolei obszar zaporowy, w którym zwiększenie napięcia nie wpływa na przewodnictwo. Punkt D najczęściej pokazuje, że napięcie przekracza dopuszczalne wartości, co może uszkodzić diodę. Często myli się te punkty z momentem, kiedy dioda zaczyna przewodzić. Dlatego ważne jest, żeby naprawdę przyjrzeć się tej charakterystyce prądowo-napięciowej i wiedzieć, jakie parametry są kluczowe do prawidłowego działania diod w układach.
Pytanie 7
Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi
A. 2,0 MΩ
B. 1,0 MΩ
C. 1,5 MΩ
D. 0,5 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.
Pytanie 8
Pomiar impedancji pętli zwarciowych wykonuje się w przypadku
A. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej w momencie, gdy sieć jest odłączona, prowadzi do znacznych zniekształceń wyników. W takim przypadku nie uwzględniamy rzeczywistej interakcji między elementami systemu, co skutkuje pomiarami, które nie odzwierciedlają rzeczywistych warunków pracy. Odpowiedzi, które zakładają odłączenie sieci i pomijają impedancję transformatorów, zapominają o fundamentalnej roli, jaką te urządzenia odgrywają w systemach zasilania. W przypadku zwarcia, transformatorzy przyczyniają się do zmiany impedancji, poprzez swoją własną impedancję zwarciową, co może znacząco wpłynąć na prąd zwarciowy i czas reakcji zabezpieczeń. Pomiar przeprowadzony w tej konfiguracji może prowadzić do zbyt niskich lub zbyt wysokich wartości impedancji, co w praktyce może skutkować nieadekwatnym dobraniem zabezpieczeń. Typowym błędem myślowym jest przekonanie, że pomiar w czasie odłączenia jest wystarczający i dostarcza pełnego obrazu zachowania systemu. Należy pamiętać, że odpowiednie wytyczne, takie jak normy IEC, zalecają przeprowadzanie tych pomiarów w warunkach operacyjnych, aby zapewnić rzetelność i bezpieczeństwo instalacji elektrycznych.
Pytanie 9
Który łącznik przedstawiono na rysunku?
A. Podwójny krzyżowy.
B. Podwójny schodowy.
C. Dwubiegunowy.
D. Świecznikowy.
Odpowiedź jest prawidłowa, ponieważ na zdjęciu przedstawiono łącznik elektryczny typu podwójnego schodowego. Tego rodzaju łącznik posiada dwa niezależne przyciski, z których każdy służy do sterowania oddzielnym obwodem oświetleniowym. Jest to niezwykle przydatne rozwiązanie w przypadku schodów, gdzie możliwe jest włączanie i wyłączanie oświetlenia zarówno z dołu, jak i z góry. Przykładowo, instalacja takiego łącznika w domu jednorodzinnym pozwala na komfortowe korzystanie z oświetlenia nawet po zmroku. Dodatkowo, zgodnie z normami i najlepszymi praktykami w dziedzinie instalacji elektrycznych, stosowanie łączników schodowych zwiększa bezpieczeństwo w ruchu oraz komfort użytkowników, minimalizując ryzyko poślizgnięć i upadków. Warto również zauważyć, że często łącznik podwójny schodowy jest wykorzystywany w systemach automatyki budowlanej, co pozwala na integrację z różnymi źródłami światła i systemami sterowania. Dzięki temu możliwe jest dostosowanie oświetlenia do indywidualnych potrzeb użytkowników.
Pytanie 10
Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?
A. Z zaciskiem X1 lampki kontrolnej H1
B. Z zaciskiem 2 listwy zaciskowej X1
C. Z zaciskiem 21 przycisku S1
D. Z zaciskiem 1 listwy zaciskowej X1
Wybór innych zacisków, takich jak zacisk 21 przycisku S1 lub zacisku 1 listwy zaciskowej X1, jest wynikiem nieporozumienia dotyczącego funkcji poszczególnych elementów w układzie. Zacisk 21 przycisku S1 jest z reguły odpowiedzialny za aktywację obwodu, a nie za bezpośrednie połączenie ze stycznikiem K2. Podobnie, zacisk 1 listwy zaciskowej X1 może pełnić inną rolę, na przykład zasilania, co sprawia, że jego wybór w tej sytuacji jest błędny. Warto zauważyć, że selekcja niewłaściwych połączeń często wynika z niepełnego zrozumienia schematu, co może prowadzić do konsekwencji w postaci niesprawności urządzenia. W przypadku lampki kontrolnej H1, która jest zazwyczaj używana do sygnalizacji stanu pracy układu, jej zacisk także nie ma bezpośredniego związku z zaciskiem 23 stycznika K2. Ignorowanie schematów montażowych i standardowych procesów może prowadzić do poważnych problemów nie tylko w funkcjonowaniu urządzeń, ale również w kontekście bezpieczeństwa elektrycznego. Dlatego kluczowe jest, aby każda osoba pracująca z instalacjami elektrycznymi miała solidne podstawy teoretyczne i praktyczne, co pozwoli uniknąć typowych błędów w analizie schematów i połączeń.
Pytanie 11
Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:
A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
C. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.
Pytanie 12
Który element elektroniczny oznacza się przedstawionym symbolem graficznym?
A. Termistor.
B. Tranzystor polowy.
C. Tyrystor.
D. Tranzystor bipolarny.
Na przedstawionym symbolu graficznym widać element trójkońcówkowy, w którym pionowa linia symbolizuje bazę, a dwie skośne elektrody to kolektor i emiter, przy czym jedna z nich ma wyraźnie zaznaczoną strzałkę. To jest kluczowa cecha tranzystora bipolarnego. Wiele osób myli ten symbol z tyrystorem, bo tyrystor też jest elementem sterowanym i często kojarzy się z „trzema wyprowadzeniami”. Jednak tyrystor w symbolice wygląda raczej jak dioda z dodatkową elektrodą bramki dorysowaną z boku, nie ma układu przypominającego literę „Y” i nie ma takiej strzałki na jednej z gałęzi jak tranzystor bipolarny. Różnica nie jest tylko kosmetyczna: tyrystor pracuje w trybie załącz/wyłącz i po zadziałaniu przewodzi aż do zaniku prądu, natomiast tranzystor bipolarny może liniowo wzmacniać sygnał i pracować w różnych punktach pracy. Częstym błędem jest także branie tego symbolu za tranzystor polowy. Tranzystor polowy (MOSFET lub JFET) ma bramkę oddzieloną od kanału przerwą, a kanał jest rysowany jako pozioma linia, do której dołączone są dren i źródło. Strzałka występuje czasem przy źródle, ale geometria całego symbolu jest inna – bardziej pozioma, z wyraźnie oddzieloną bramką. Tu mamy pionową bazę i dwa skośne odgałęzienia, czyli typowe BJT. Zdarza się też skojarzenie z termistorem, bo ktoś widzi „jakieś strzałki” i zakłada, że to element zależny od temperatury. Termistor w normowych oznaczeniach jest odmianą rezystora: zygzak lub prostokąt z dopiskiem NTC/PTC lub z dodatkową przekreśloną linią, bez żadnych strzałek przy wyprowadzeniach. Podstawowy błąd myślowy przy takich pytaniach polega na zwracaniu uwagi na pojedynczy detal (np. samą strzałkę), zamiast na całą geometrię symbolu i liczbę elektrod oraz ich układ. Dobre praktyki przy czytaniu schematów to właśnie patrzenie na ogólny kształt, porównywanie z normowymi symbolami i kojarzenie: trzy wyprowadzenia, pionowa baza, ukośne kolektor i emiter, strzałka na emiterze – to tranzystor bipolarny.
Pytanie 13
Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?
A. Przekaźnik bistabilny.
B. Regulator oświetlenia.
C. Regulator temperatury.
D. Przekaźnik priorytetowy.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.
Pytanie 14
Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?
A. Czas wyłączenia wyłącznika nadprądowego.
B. Rezystancję izolacji.
C. Impedancję pętli zwarcia.
D. Rezystancję uziemienia.
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.
Pytanie 15
Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?
A. Do prądnic tachometrycznych
B. Do wzmacniaczy maszynowych
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do transformatorów
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.
Pytanie 16
Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu
A. 1000 V
B. 250 V
C. 500 V
D. 2500 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.
Pytanie 17
Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?
A. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
B. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
C. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
D. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
W tym zadaniu łatwo się pomylić, bo na pierwszy rzut oka wszystkie oznaczenia wyglądają podobnie, a diabeł siedzi w szczegółach. Kluczowe są tu trzy rzeczy: rodzaj przewodu (materiał, izolacja), liczba żył i ich przeznaczenie oraz przekrój znamionowy dobrany do obwodu gniazd w instalacji wtynkowej w sieci TN-S. Wiele osób odruchowo sięga po przewód dwużyłowy, na przykład 2 × 2,5 mm² albo 2 × 1,5 mm², bo kojarzy, że „jednofazowe gniazdo to faza i neutralny”. I tu pojawia się typowy błąd: w układzie TN-S przewód ochronny PE musi być osobną żyłą, a gniazda wtyczkowe ogólnego przeznaczenia wymagają podłączenia przewodu ochronnego. Dlatego przewód dwużyłowy w ogóle odpada – brakuje trzeciej żyły ochronnej, co jest niezgodne z zasadami ochrony przeciwporażeniowej i warunkami technicznymi. Innym częstym potknięciem jest sięganie po przekrój 1,5 mm² do gniazd. Ten przekrój używa się raczej do obwodów oświetleniowych, gdzie prądy są mniejsze. Dla obwodów gniazd przy zabezpieczeniu 16 A i typowych długościach obwodów przyjmuje się 2,5 mm², aby zapewnić odpowiednią obciążalność prądową, ograniczyć spadek napięcia i zyskać rozsądny zapas bezpieczeństwa eksploatacyjnego. Kolejna sprawa to rodzaj powłoki i przeznaczenie przewodu. W instalacji wtynkowej stosuje się przewody przystosowane do układania pod tynkiem, najczęściej typu YDYt. Przewody płaskie lub o innym przeznaczeniu, jak na przykład YLY stosowane raczej jako przewody elastyczne, nie są typowym wyborem do stałej instalacji w ścianie. Dochodzi jeszcze oznaczenie „żo”, które informuje, że jedna z żył jest żółto-zielona, czyli przeznaczona jako PE. Brak tego oznaczenia w przewodzie wielożyłowym sygnalizuje, że w środku nie ma żyły ochronnej w standardowym kolorze, co znowu kłóci się z wymaganiami dla sieci TN-S. Podsumowując, błędne odpowiedzi wynikają zwykle z pomylenia obwodów gniazd z obwodami oświetleniowymi, nieuwzględnienia osobnej żyły PE albo zignorowania faktu, że przewód ma być typowo instalacyjny pod tynk, a nie jakikolwiek przewód o zbliżonym przekroju.
Pytanie 18
Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?
A. B.
B. D.
C. C.
D. A.
Odpowiedź B jest poprawna, ponieważ szczypce do zdejmowania izolacji, które zobrazowane są w tym rysunku, są kluczowym narzędziem w procesie formowania oczek na przewodach instalacyjnych. Ich główną funkcją jest precyzyjne usunięcie izolacji z końców przewodów bez uszkodzenia rdzenia, co jest niezbędne do uzyskania solidnych połączeń elektrycznych. W praktyce, zastosowanie takich szczypiec minimalizuje ryzyko zwarcia oraz poprawia jakość połączeń, co jest istotne w kontekście bezpieczeństwa instalacji. Przykładowo, w trakcie prac instalacyjnych, stosowanie szczypiec ułatwia nie tylko przygotowanie przewodów do połączenia, ale także pozwala na szybkie i efektywne wykonanie napraw, co jest zgodne z zasadami dobrej praktyki elektrycznej. Warto również zaznaczyć, że zgodnie z normami branżowymi, właściwe formowanie oczek na przewodach znacząco wpływa na trwałość oraz niezawodność instalacji elektrycznych.
Pytanie 19
Które zaciski listwy zaciskowej transformatora trójfazowego obniżającego napięcie należy połączyć, aby uzyskać połączenie uzwojenia górnego napięcia w gwiazdę, a uzwojenia dolnego napięcia w trójkąt?
A. 2-4, 3-5, 1-6 oraz 7-8-9
B. 4-5-6 oraz 7-8-9
C. 4-5-6 oraz 8-10, 9-11, 7-12
D. 2-4, 3-5, 1-6 oraz 8-10, 9-11, 7-12
W tym zadaniu łatwo „pogubić się” w numerach, jeśli patrzy się tylko na listwę, a nie na zasadę łączenia gwiazda–trójkąt. Kluczowe jest rozumienie, co fizycznie oznacza gwiazda i co oznacza trójkąt dla uzwojeń transformatora. W gwieździe trzy końce uzwojeń muszą być złączone w jeden wspólny punkt neutralny, a trzy początki są wyprowadzone jako L1, L2, L3. W trójkącie natomiast każde uzwojenie jest wpięte pomiędzy dwie fazy, a koniec jednego uzwojenia łączy się z początkiem następnego, tak aby powstał zamknięty pierścień. Propozycje, w których łączone są zaciski 4-5-6 oraz 7-8-9, sugerują, że ktoś próbował „na czuja” zrobić dwa punkty gwiazdowe – po jednym dla każdej strony transformatora. To jest błąd koncepcyjny, bo po stronie dolnego napięcia nie ma być gwiazda, tylko zamknięty trójkąt. Zwarte 7-8-9 tworzy co prawda wspólny punkt, ale nie powiąże uzwojeń w układ Δ, więc nie spełni wymaganej konfiguracji Y/Δ. Z kolei odpowiedzi, gdzie pojawiają się mostki 2-4, 3-5, 1-6, próbują zbudować po stronie GN trójkąt, czyli połączyć początek jednego uzwojenia z końcem następnego. To typowy błąd: pomylenie tego, która strona ma być w gwiazdę, a która w trójkąt. W połączeniu Y/Δ dla transformatora obniżającego napięcie zwykle to właśnie strona wyższego napięcia jest w gwiazdę, żeby mieć dostęp do punktu neutralnego i lepszą izolację względem ziemi, a strona niższego napięcia pracuje w trójkącie. Jeśli więc po stronie GN zamiast zwarcia 4-5-6 buduje się układ 2-4, 3-5, 1-6, to w praktyce uzwojenia pierwotne nie będą miały wspólnego punktu neutralnego, tylko zostaną zamknięte w trójkąt, co zmienia całkowicie charakterystykę pracy transformatora. Z mojego doświadczenia najczęstsze potknięcie przy takich zadaniach to patrzenie na same numerki, bez śledzenia, który zacisk jest początkiem, a który końcem uzwojenia. Dobra praktyka jest taka, żeby zawsze najpierw „w głowie” albo na kartce narysować sobie topologię: trzy uzwojenia, ich początki i końce, a dopiero potem przekładać to na numery listwy zaciskowej. Wtedy od razu widać, że tylko układ 4-5-6 jako wspólny punkt oraz 8-10, 9-11, 7-12 jako pętlą trójkąta spełnia wymaganie: GN w gwiazdę, DN w trójkąt.
Pytanie 20
Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?
A. Zbyt mała powierzchnia styku szczotek z komutatorem
B. Zbyt małe wzbudzenie silnika
C. Zbyt duży nacisk szczotek na komutator
D. Zbyt duże wzbudzenie silnika
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.
Pytanie 21
Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego
A. mająca uprawnienia SEP, co 6 miesięcy
B. posiadająca uprawnienia SEP, co rok
C. przeszkolona, co rok
D. przeszkolona, co 6 miesięcy
Wybór odpowiedzi, że osoba posiadająca uprawnienia SEP powinna sprawdzać urządzenia raz na rok, może prowadzić do nieporozumień w zakresie odpowiedzialności za bezpieczeństwo elektryczne. Uprawnienia SEP (Stowarzyszenia Elektryków Polskich) są ważne, ale samo posiadanie takich uprawnień nie zastępuje potrzeby regularnego przeszkolenia i aktualizacji wiedzy na temat najnowszych standardów oraz zasad działania urządzeń elektrycznych. Osoby z uprawnieniami SEP, które nie są regularnie przeszkolone, mogą nie być w pełni świadome aktualnych procedur bezpieczeństwa, co może prowadzić do niepoprawnych wniosków dotyczących stanu urządzeń. Z kolei odpowiedzi sugerujące, że przeszkolona osoba powinna sprawdzać urządzenia raz na rok, przeczą zaleceniom praktycznym dotyczącym częstotliwości testowania, które powinno być przeprowadzane znacznie częściej, aby zapewnić ciągłe bezpieczeństwo. Częste kontrole są kluczowe, ponieważ urządzenia różnicowoprądowe mogą ulegać degradacji, co w dłuższym czasie może prowadzić do ich niesprawności. Ponadto, co sześć miesięcy wykonywane kontrole są zgodne z kodeksami bezpieczeństwa, które zalecają, aby personel był regularnie przeszkalany w zakresie obsługi oraz identyfikacji potencjalnych zagrożeń związanych z wykorzystaniem energii elektrycznej. Ignorowanie tych zaleceń może prowadzić do poważnych wypadków oraz narażenia użytkowników na niebezpieczeństwo.
Pytanie 22
Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?
A. Serwis styków oraz połączeń śrubowych
B. Obsługa przełącznika zaczepów
C. Weryfikacja poziomu oleju w olejowskazie konserwatora
D. Czyszczenie izolatorów
Podczas oceny konserwacji transformatorów wiele osób może błędnie zinterpretować działania, które powinny być podejmowane w trakcie oględzin. Konserwacja przełącznika zaczepów jest z pewnością istotnym aspektem obsługi transformatora, jednak nie jest to czynność bezpośrednio związana z bieżącym nadzorowaniem jego pracy. Przełączniki zaczepów są kluczowe dla regulacji napięcia, ale ich konserwację przeprowadza się w innych cyklach czasowych, a nie w trakcie standardowych oględzin. Również czyszczenie izolatorów jest istotne, jednak skupia się na usuwaniu osadów oraz zanieczyszczeń, które mogą wpływać na właściwości izolacyjne. Ta czynność również nie jest bezpośrednio związana z monitorowaniem poziomu oleju. Konserwacja styków i połączeń śrubowych jest ważna, aby zapewnić stabilne połączenia elektryczne, ale nie jest to czynność, która powinna być przeprowadzana w czasie standardowych oględzin operacyjnych. Mylne podejście do tych czynności wynika często z braku zrozumienia ich priorytetów w kontekście bieżącej eksploatacji transformatora. Ostatecznie, kluczowym aspektem w pracy z transformatorami jest zapewnienie ich bezpieczeństwa i stabilności działania, co jest realizowane poprzez systematyczne monitorowanie i konserwację, gdzie sprawdzanie poziomu oleju stanowi fundament tej procedury.
Pytanie 23
Podczas ponownej próby załączenia urządzenia przedstawionego na rysunku po około 40 s następuje jego samoczynne wyłączenie. Określ najbardziej prawdopodobną przyczynę zadziałania urządzenia.
A. Zwarcie przewodów L i PE.
B. Zwarcie przewodów L i N.
C. Upływ prądu do uziemienia.
D. Przeciążenie w obwodzie.
Niepoprawne odpowiedzi często wynikają z niepełnego zrozumienia zasady działania wyłączników różnicowoprądowych oraz ich funkcji w systemach elektrycznych. Na przykład, zwarcie przewodów L i N nie prowadziłoby do samoczynnego wyłączenia urządzenia po pewnym czasie, ale raczej do natychmiastowego zadziałania zabezpieczenia. Zwarcie to powoduje bezpośredni przepływ prądu, co skutkuje dużym wzrostem prądu, ale nie jest zgodne z zachowaniem, które obserwujemy w przypadku przeciążenia. Upływ prądu do uziemienia także nie jest przyczyną opóźnionego wyłączenia, jako że wyłączniki różnicowoprądowe działają w oparciu o różnicę prądów między przewodami roboczymi, a nie na zasadzie wykrywania przeciążeń. Natomiast zwarcie przewodów L i PE wskazuje na błędne połączenie, które również nie prowadzi do zjawiska opóźnionego wyłączenia. Typowe błędy myślowe w takich przypadkach to mylenie sygnatury zjawisk elektrycznych oraz braku zrozumienia, w jaki sposób wyłączniki zabezpieczają instalacje. Zgodnie z normami bezpieczeństwa, wiedza o charakterystyce działania zabezpieczeń nadprądowych jest niezbędna do prawidłowego projektowania i eksploatacji systemów elektrycznych.
Odpowiedzi "na izolatorach", "w rurach winidurowych karbowanych" oraz "w listwach elektroinstalacyjnych" nie są odpowiednie w kontekście instalacji elektrycznych natynkowych. Izolatory, stosowane głównie w instalacjach napowietrznych, są zaprojektowane w celu podtrzymywania przewodów w powietrzu, co nie ma zastosowania do instalacji natynkowych. Z kolei rury winidurowe karbowane są używane do ochrony przewodów w instalacjach podtynkowych, a ich zastosowanie w instalacjach natynkowych jest niepraktyczne i niezgodne z normami. Takie rury mogą być stosowane w warunkach, które wymagają dodatkowej ochrony, ale w natynkowych instalacjach elektrycznych przewody powinny być widoczne i dostępne. Listwy elektroinstalacyjne z kolei służą do estetycznego ukrywania przewodów na ścianach i nie są przeznaczone do montażu puszek rozgałęźnych. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często dotyczą braku zrozumienia zasadności zastosowania odpowiednich elementów w kontekście specyfiki instalacji elektrycznych. Ważne jest, aby przy projektowaniu instalacji elektrycznych kierować się normami oraz dobrymi praktykami branżowymi, co zapewni bezpieczeństwo i funkcjonalność systemu.
Pytanie 25
Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?
A. SRN
B. SPZ
C. SZR
D. SCO
Wybór innych układów, takich jak SRN (System Rozdziału Napięcia), SPZ (System Powiadamiania Zasilania) czy SCO (System Command Output), jest niewłaściwy, ponieważ nie spełniają one wymagań dotyczących automatycznego przełączania źródeł zasilania. SRN koncentruje się na rozdzielaniu napięcia pomiędzy różne obwody i nie jest przeznaczony do monitorowania źródeł zasilania. Nie zapewnia automatyzacji ani rezerwowego zasilania, co jest kluczowe w kontekście zapewnienia ciągłości działania. Z kolei SPZ jest systemem, który głównie informuje o stanie zasilania, ale nie podejmuje działań w celu przełączenia źródła zasilania. Ostatni z wymienionych, SCO, jest systemem komunikacyjnym, który nie ma zastosowania w kontekście zarządzania zasilaniem. Użytkownicy mogą mylić te układy z SZR, sądząc, że ich funkcje obejmują automatyczne zarządzanie zasilaniem. W praktyce, nieprawidłowe zrozumienie funkcji tych systemów może prowadzić do ryzykownych sytuacji w obiektach wymagających stabilnego zasilania. Kluczowe jest, aby przy wyborze odpowiedniego układu kierować się jego specyfiką i przeznaczeniem, a także stosować się do dobrych praktyk oraz standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo w instalacjach elektrycznych.
Pytanie 26
Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?
A. IPX2
B. IPX5
C. IPX4
D. IPX3
Wybierając stopień ochrony IPX4, IPX3, lub IPX2, można łatwo wprowadzić się w błąd co do faktycznej odporności urządzenia na działanie wody. IPX4 oznacza, że urządzenie jest odporne na zachlapania wodą z dowolnego kierunku, co jest niewystarczające dla sytuacji, w której woda może być skierowana na urządzenie w postaci strumienia. IPX3 z kolei zapewnia ochronę przed wodą padającą pod kątem do 60 stopni od pionu, co nie gwarantuje bezpieczeństwa, gdy woda jest kierowana bezpośrednio na urządzenie. Z kolei IPX2 oferuje ochronę tylko przed wodą padającą pod kątem do 15 stopni, co jest niewłaściwe dla urządzeń, które mogą być narażone na intensywny deszcz czy inne formy strug wodnych. Typowe błędy w myśleniu prowadzą do wyboru niewłaściwego stopnia ochrony na podstawie niewłaściwych założeń dotyczących warunków eksploatacji. Właściwe zrozumienie norm IP jest kluczowe, aby uniknąć uszkodzeń sprzętu, co może prowadzić do dużych kosztów napraw oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego zawsze należy dokładnie analizować wymagania środowiskowe przed wyborem sprzętu, a klasyfikacje IP powinny być stosowane jako punkt odniesienia dla projektowania i doboru urządzeń odpornych na działanie wody.
Pytanie 27
Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?
A. D.
B. B.
C. C.
D. A.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.
Pytanie 28
W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?
A. Zastosowanie podwójnej warstwy izolacji
B. Połączenie obudowy z przewodem ochronnym sieci
C. Użycie napięcia zasilania o zmniejszonej wartości
D. Zasilanie z transformatora izolacyjnego
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.
Pytanie 29
Na rysunku przedstawiono schemat
A. programowalnego przełącznika czasowego.
B. wyłącznika różnicowoprądowego.
C. wyłącznika schodowego.
D. łącznika zmierzchowego.
Wybór odpowiedzi innej niż wyłącznik różnicowoprądowy wskazuje na nieporozumienia dotyczące funkcji i budowy różnych urządzeń elektrycznych. Programowalny przełącznik czasowy to urządzenie, które pozwala na automatyczne włączanie i wyłączanie obwodów elektrycznych w określonym czasie, co jest zupełnie inną funkcjonalnością niż zabezpieczanie przed porażeniem prądem. Łącznik zmierzchowy z kolei działa na zasadzie aktywacji oświetlenia w zależności od natężenia światła, co również nie ma nic wspólnego z ochroną przed upływem prądu. Wyłącznik schodowy, stosowany w instalacjach oświetleniowych, umożliwia sterowanie jednym źródłem światła z dwóch miejsc, jednak nie pełni funkcji zabezpieczających. Kluczowym błędem jest nieznajomość zasad działania wyłączników różnicowoprądowych, które są zaprojektowane specjalnie do wykrywania niebezpiecznych różnic prądów. Niezrozumienie tego zagadnienia może prowadzić do nieodpowiedniego doboru urządzeń w instalacjach elektrycznych, co z kolei może zwiększać ryzyko wypadków oraz zagrożeń dla zdrowia i życia. Wiedza na temat funkcji każdego z tych urządzeń jest kluczowa dla zapewnienia bezpieczeństwa w infrastrukturze elektrycznej.
Pytanie 30
W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?
A. Podczas zmiany tradycyjnych żarówek na energooszczędne
B. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
C. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
D. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
Prowadzenie prac konserwacyjnych, takich jak malowanie ścian, nie wymaga naprawy instalacji elektrycznej, chyba że podczas tych prac ujawnią się konkretne problemy, takie jak uszkodzenia przewodów. Wymiana żarówek na energooszczędne jest działaniem rutynowym, które nie powinno wpływać na bezpieczeństwo instalacji. Choć energooszczędne źródła światła mogą wymagać innych parametrów zasilania, to sama ich wymiana nie jest podstawą do uznania instalacji za wadliwą. Natomiast sytuacja, gdy zmierzone natężenie oświetlenia w miejscu pracy jest niższe od wymaganego, wskazuje na konieczność kontroli oświetlenia, a niekoniecznie naprawy samej instalacji. Może to być wynikiem wyboru niewłaściwego źródła światła lub jego lokalizacji, co nie zawsze oznacza, że instalacja elektryczna wymaga ingerencji. Typowym błędem w myśleniu jest nieodróżnianie problemów związanych z oświetleniem od konieczności naprawy samej instalacji elektrycznej, co może prowadzić do niepotrzebnych działań i kosztów. Zrozumienie funkcjonowania instalacji elektrycznych oraz umiejętność oceny ich stanu na podstawie konkretnych pomiarów jest kluczowe dla skutecznego zarządzania bezpieczeństwem i wydajnością w miejscu pracy.
Pytanie 31
Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.
A. 2,5 mm2
B. 4 mm2
C. 10 mm2
D. 6 mm2
Wybór przekroju przewodu jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych, a niewłaściwe podejście do tego tematu może prowadzić do poważnych konsekwencji. Wiele osób może pomylić przekroje żył, myśląc, że im mniejszy przekrój, tym mniejsze straty energii lub łatwiejsza instalacja. Takie podejście jest błędne, ponieważ niewłaściwie wybrany przekrój przewodu może skutkować przegrzewaniem, co z kolei może prowadzić do uszkodzenia przewodów, a nawet pożaru. Na przykład, wybór 10 mm² dla obciążenia 36 A może wydawać się nadmiernym zabezpieczeniem, jednak warto uwzględnić, że nie jest to zgodne z zasadami doboru, które nakazują stosować najbliższą większą wartość w odniesieniu do aktualnego obciążenia. Zastosowanie 4 mm² byłoby niewystarczające, ponieważ nie pokrywałoby minimalnych wymagań dla obciążenia 36 A. Z kolei 2,5 mm² jest zdecydowanie zbyt małym przekrojem, co stwarzałoby ryzyko przegrzewania i uszkodzenia instalacji. Dlatego zasadniczym błędem jest ignorowanie tabel obciążalności, które są niezbędne do bezpiecznego i efektywnego projektowania instalacji elektrycznych. W przemyśle elektrycznym przestrzeganie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej. Zrozumienie tych zasad jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi i chce uniknąć potencjalnie niebezpiecznych sytuacji.
Pytanie 32
Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?
A. Ochronne obniżenie napięcia
B. Izolacja odbiornika
C. Izolowanie miejsca pracy
D. Podwójna lub wzmocniona izolacja
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.
Pytanie 33
Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?
A. Wyważanie
B. Pomiar rezystancji izolacji
C. Weryfikacja braku zwarć międzyzwojowych
D. Sprawdzenie kondycji wycinków komutatora
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.
Pytanie 34
Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?
A. Umieszczenie części dostępnych poza zasięgiem ręki
B. Separacja elektryczna
C. Uziemienie ochronne
D. Samoczynne wyłączanie zasilania
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.
Pytanie 35
Co oznacza symbol literowy YKY?
A. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
B. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
C. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
D. kabel z żyłami miedzianymi w izolacji z PVC
Wybór odpowiedzi dotyczącej kabla o żyłach aluminiowych lub przewodów telekomunikacyjnych jest błędny, ponieważ te typy kabli różnią się w fundamentalny sposób od standardów oznaczonych symbolem YKY. Kable z żyłami aluminiowymi, choć mogą być lżejsze i tańsze niż ich miedziane odpowiedniki, mają znacznie gorszą przewodność elektryczną, co prowadzi do strat energii oraz potencjalnych problemów z niezawodnością w dłuższej perspektywie. Dodatkowo, przewody telekomunikacyjne, które również pojawiają się w alternatywnych odpowiedziach, są przeznaczone do zupełnie innych zastosowań, takich jak przesyłanie danych, co czyni je nieodpowiednimi w kontekście instalacji elektrycznych. Wybór przewodu oponowego warsztatowego również nie jest trafny, gdyż dotyczy on innego rodzaju zastosowań, głównie w warsztatach, gdzie wymagane są wysokie właściwości mechaniczne. W rezultacie, mylenie zastosowań i typów kabli oraz przewodów może prowadzić do nieefektywności i zagrożeń w instalacjach elektrycznych. Kluczowe jest zrozumienie specyfikacji technicznych oraz ich odpowiedniego doboru do konkretnych potrzeb, aby zapewnić bezpieczeństwo i efektywność energetyczną.
Pytanie 36
Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.
A. Podtynkową hermetyczną.
B. Przeciwogniową.
C. Natynkową hermetyczną.
D. Do montażu gniazd i wyłączników.
Wybór innych opcji jest związany z pewnymi nieporozumieniami dotyczącymi klasyfikacji puszek instalacyjnych oraz ich zastosowania. Przede wszystkim, puszki przeciwogniowe są projektowane z myślą o ochronie przed ogniem i nie spełniają wymogów hermetyczności, które są kluczowe w kontekście opisanego produktu. Puszki natynkowe hermetyczne, które są prawidłową odpowiedzią, różnią się od typowych puszek podtynkowych, które są instalowane w ścianach i nie są dostosowane do pracy w warunkach narażających na działanie wody i ciał stałych. Wybierając opcję "Do montażu gniazd i wyłączników", można zrozumieć, że nie wszystkie puszki spełniają tę funkcję, a w kontekście danego opisu, nie jest to wystarczająco precyzyjne. Typowe błędy myślowe, które prowadzą do takich wyborów, to brak zrozumienia różnic w konstrukcji i przeznaczeniu różnych typów puszek. Kluczowe jest, aby pamiętać, że dobór odpowiedniego elementu instalacyjnego powinien uwzględniać nie tylko jego funkcję, ale także warunki środowiskowe, w jakich będzie pracować. Używanie puszek, które nie spełniają standardów IP może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia urządzeń elektrycznych, co w rezultacie stanowi zagrożenie dla bezpieczeństwa użytkowników.
Pytanie 37
Której piły należy użyć do przycięcia korytka instalacyjnego?
A. A.
B. C.
C. B.
D. D.
Okej, to piła oznaczona jako C to taka specyficzna piła do metalu. Ma cienkie ostrze i drobne zęby, więc idealnie nadaje się do precyzyjnego cięcia korytek instalacyjnych, zwłaszcza tych metalowych. Widziałem, że często używa się takich korytek w elektryce lub hydraulice, gdzie ważne jest, żeby wszystko ładnie wyglądało i było poukładane. Jak użyjesz tej piły, to cięcia będą równe, co naprawdę ma znaczenie, bo to pozwala uniknąć deformacji materiału. W budownictwie mówi się, że trzeba używać odpowiednich narzędzi do rodzaju materiału, bo to zmniejsza ryzyko, że coś się uszkodzi. Przykładowo, można precyzyjnie przyciąć korytka do odpowiedniej długości, żeby dopasować je do różnych instalacji, co jest super ważne.
Pytanie 38
Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?
Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.
Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Oprawki źródła światła.
B. Puszki łączeniowej.
C. Gniazda wtykowego.
D. Wtyczki kabla zasilającego.
Wybierając puszkę łączeniową, oprawkę źródła światła lub wtyczkę kabla zasilającego, można się trochę pogubić w tym, do czego one właściwie służą. Puszki łączeniowe są w porządku, bo łączą przewody i chronią je przed uszkodzeniami, ale nie mają nic wspólnego z ochroną przed prądem, co dotyczy gniazd wtykowych. Z kolei oprawki źródła światła tylko mocują żarówki, a nie chronią dzieci czy innych nieautoryzowanych osób. Wtyczki kabli zasilających, mimo że ważne do podłączenia urządzeń, nie mają żadnych mechanizmów zabezpieczających, które chroniłyby przed kontaktem z prądem. Dlatego, jeśli wskazujesz na te rzeczy jako odpowiedzi, to znaczy, że coś ci umknęło — gniazda wtykowe są kluczowe, gdy chodzi o bezpieczeństwo elektryczne w miejscach, gdzie bywają dzieci. Dobrze jest zapoznać się z normami dotyczącymi gniazd, które mówią dokładnie, jakie są wymagania związane z ich bezpieczeństwem i zastosowaniem w różnych miejscach.
Pytanie 39
W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?
A. TT
B. TN-S
C. TN-C
D. IT
Układy TN-C, TN-S oraz TT różnią się od systemu IT pod względem połączenia punktu neutralnego z ziemią oraz sposobu uziemienia. W systemie TN-C punkt neutralny jest połączony z ziemią, co oznacza, że w przypadku uszkodzenia izolacji, prąd może przepływać do ziemi, co stwarza ryzyko porażenia prądem elektrycznym. System ten, mimo że dobrze sprawdza się w standardowych zastosowaniach, nie jest zalecany w obiektach o wysokim ryzyku, ponieważ awaria może prowadzić do poważnych konsekwencji. Z kolei w układzie TN-S występuje oddzielne uziemienie dla przewodu ochronnego i neutralnego, co poprawia bezpieczeństwo, ale nadal zakłada połączenie z ziemią. W przypadku systemu TT, gdzie również punkt neutralny jest uziemiony, występuje możliwość wystąpienia prądów upływowych, które mogą prowadzić do porażenia. Typowe błędy w rozumieniu tych układów to mylenie izolacji z bezpieczeństwem. W rzeczywistości, systemy TN i TT, mimo że stosowane są szeroko, nie oferują tego samego poziomu ochrony jak system IT, zwłaszcza w sytuacjach awaryjnych. Dlatego, chcąc zapewnić najwyższy poziom bezpieczeństwa, warto rozważyć zastosowanie układu IT w obiektach o krytycznym znaczeniu."
Pytanie 40
Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?
A. Kątownik, ołówek traserski, sznurek traserski
B. Ołówek traserski, przymiar kreskowy, rysik
C. Kątownik, młotek, punktak
D. Ołówek traserski, poziomnica, przymiar taśmowy
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły
Polityka plików cookies
Czym są pliki cookies?
Cookies to małe pliki tekstowe, które są zapisywane na urządzeniu użytkownika podczas przeglądania stron internetowych. Służą one do zapamiętywania preferencji, śledzenia zachowań użytkowników oraz poprawy funkcjonalności serwisu.
Jakie cookies wykorzystujemy?
Niezbędne cookies - konieczne do prawidłowego działania strony
Funkcjonalne cookies - umożliwiające zapamiętanie wybranych ustawień (np. wybrany motyw)
Analityczne cookies - pozwalające zbierać informacje o sposobie korzystania ze strony
Jak długo przechowujemy cookies?
Pliki cookies wykorzystywane w naszym serwisie mogą być sesyjne (usuwane po zamknięciu przeglądarki) lub stałe (pozostają na urządzeniu przez określony czas).
Jak zarządzać cookies?
Możesz zarządzać ustawieniami plików cookies w swojej przeglądarce internetowej. Większość przeglądarek domyślnie dopuszcza przechowywanie plików cookies, ale możliwe jest również całkowite zablokowanie tych plików lub usunięcie wybranych z nich.