Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 09:56
  • Data zakończenia: 7 grudnia 2025 10:14

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. zwarcie w systemie elektrycznym
C. przeciążenie systemu elektrycznego
D. uszkodzenie urządzenia elektrycznego
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 2

Uszkodzenie poprawnie działającej instalacji elektrycznej budynku przedstawione na rysunku jest skutkiem

Ilustracja do pytania
A. zwarcia międzyfazowego w instalacji.
B. przeciążenia instalacji.
C. zwarcia doziemnego.
D. wpływu prądu piorunowego do instalacji.
Podczas analizy błędnych odpowiedzi na to pytanie, można zauważyć pewne nieporozumienia dotyczące przyczyn uszkodzeń instalacji elektrycznej. Przeciążenie instalacji, będące jedną z odpowiedzi, prowadzi do wzrostu temperatury przewodów, co w efekcie może powodować ich uszkodzenie. Jednakże, objawy przeciążenia najczęściej manifestują się w postaci stopniowego osłabienia wydajności energetycznej oraz braku natychmiastowych, dramatycznych uszkodzeń, jak to ma miejsce w przypadku wpływu prądu piorunowego. Kolejną nieprawidłową koncepcją jest zwarcie międzyfazowe, które powoduje zwarcie między przewodami fazowymi. Choć jest to poważny problem, nie prowadzi ono do uszkodzeń strukturalnych budynku, jak te widoczne na rysunku. Z kolei zwarcie doziemne, które występuje gdy przewód fazowy styka się z ziemią, również nie generuje skutków wizualnych, jakie możemy zobaczyć w tym przypadku. Często mylenie tych zjawisk wynika z braku zrozumienia właściwości elektrycznych oraz skutków różnych rodzajów uszkodzeń. Kluczowe jest, aby podejść do analizy uszkodzeń instalacji z uwagą na kontekst oraz charakterystykę wyładowań atmosferycznych, co może pomóc w uniknięciu błędnych wniosków w przyszłości.

Pytanie 3

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Rezystancję izolacji przewodów.
B. Impedancję pętli zwarcia.
C. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
D. Prąd różnicowy wyłącznika różnicowoprądowego.
Pomiar czasu wyłączenia wyłączników instalacyjnych nadprądowych dotyczy parametrów zabezpieczeń w instalacji elektrycznej, które są określane w kontekście ochrony przed przeciążeniem i zwarciem. Czas ten jest zazwyczaj mierzony przy pomocy specjalistycznych urządzeń, takich jak analizatory parametrów sieci czy testery wyłączników, a nie mierników izolacji. Przyrząd prezentowany na zdjęciu nie jest przystosowany do takich pomiarów, co jest częstym błędem myślowym wśród osób rozpoczynających pracę w branży elektrycznej. Z kolei impedancja pętli zwarcia to parametr, który również wymaga dedykowanych narzędzi, takich jak mierniki impedancji. Tego rodzaju pomiary są kluczowe w ocenie skuteczności działania zabezpieczeń, ale nie są związane z pomiarami wykonywanymi miernikiem izolacji. Również prąd różnicowy wyłącznika różnicowoprądowego jest mierzony przy użyciu odpowiednich testerów, a nie mierników izolacji, które nie są w stanie dostarczyć potrzebnych wyników. Przyzwyczajenie do mylenia tych typów pomiarów jest powszechne, ale przysparza problemów w diagnostyce i ocenie stanu instalacji elektrycznych. Zrozumienie różnic pomiędzy tymi parametrami i ich odpowiednimi metodami pomiaru jest fundamentalne dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznych.

Pytanie 4

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
B. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
C. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
D. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
Wymienione zależności, które sugerują różne podejścia do instalacji elektrycznych w pomieszczeniach mieszkalnych, mogą wydawać się rozsądne, jednak w rzeczywistości opierają się na błędnych założeniach. Na przykład, zasilanie gniazd wtykowych w kuchni z osobnego obwodu jest praktyką zalecaną ze względu na konieczność obsługi urządzeń o dużym poborze mocy, takich jak kuchenki czy zmywarki. Odbiorniki dużej mocy powinny być zasilane z wydzielonych obwodów, aby zapobiec przeciążeniom i zwiększyć bezpieczeństwo użytkowania. Oddzielenie obwodów oświetleniowych od gniazd wtykowych również ma swoje uzasadnienie, ponieważ pozwala na niezależne zarządzanie oświetleniem i zasilaniem urządzeń, co w praktyce ułatwia diagnostykę i naprawy awarii. Z perspektywy normatywnej, wszystkie te podejścia są zgodne z europejskimi standardami bezpieczeństwa instalacji elektrycznych, które mają na celu minimalizację ryzyka związanego z użytkowaniem energii elektrycznej. Błędne wnioski wynikają często z niepełnego zrozumienia zasad projektowania instalacji elektrycznych i mogą prowadzić do sytuacji niebezpiecznych, takich jak przeciążenia, które w skrajnych przypadkach mogą skutkować pożarami. Dlatego tak ważne jest, aby przestrzegać sprawdzonych zasad i standardów, aby zapewnić zarówno komfort, jak i bezpieczeństwo użytkowników instalacji elektrycznych.

Pytanie 5

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-C-S
B. TN-S
C. TN-C
D. IT
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 6

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. z bitem M8
B. TROX
C. płaski.
D. PH2
Wybór odpowiedzi innej niż wkrętak płaski wskazuje na nieporozumienie dotyczące rodzaju narzędzi stosowanych w instalacjach elektrycznych. Odpowiedzi takie jak TROX, PH2 czy z bitem M8 nie są odpowiednie w kontekście typowego wyłącznika instalacyjnego z zaciskiem śrubowym. Wkrętak TROX, pomimo że jest narzędziem stosowanym w niektórych zastosowaniach, nie jest przeznaczony do standardowych wyłączników instalacyjnych. Z kolei końcówka PH2, będąca rodzajem wkrętaka krzyżowego, jest używana głównie do śrub z gniazdem krzyżowym, które są rzadziej spotykane w wyłącznikach instalacyjnych. Odpowiedź dotycząca bitu M8 odnosi się do zastosowania wkrętaków z końcówkami o dużych rozmiarach, co jest całkowicie nieodpowiednie w kontekście standardowych zacisków dostępnych w wyłącznikach elektrycznych. Te błędne odpowiedzi wskazują na powszechne nieporozumienia w zakresie narzędzi potrzebnych do wykonywania prac elektrycznych, gdzie kluczowa jest znajomość specyfiki zamocowań w różnych urządzeniach. Używanie niewłaściwych narzędzi nie tylko może prowadzić do uszkodzeń, ale też stwarza zagrożenie dla bezpieczeństwa, co jest nie do zaakceptowania w profesjonalnych pracach elektroinstalacyjnych. Zrozumienie tych różnic jest kluczowe dla skutecznego i bezpiecznego podejścia do pracy z instalacjami elektrycznymi.

Pytanie 7

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
B. Maksymalny prąd zwarciowy
C. Najwyższy czas zadziałania
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 8

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Przerwa w przewodzie uziemiającym instalację.
B. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
C. Włączenie odbiornika drugiej klasy ochronności.
D. Zwarcie przewodu ochronnego z przewodem neutralnym.
Analizując pozostałe odpowiedzi, można zauważyć, że włączenie odbiornika drugiej klasy ochronności nie powinno wpływać na działanie wyłącznika nadprądowego. Odbiorniki te są zaprojektowane tak, aby nie wymagały uziemienia, co czyni je bezpiecznymi w użytkowaniu, o ile są prawidłowo zainstalowane. Przerwa w przewodzie uziemiającym również nie jest bezpośrednią przyczyną wyłączenia wyłącznika nadprądowego, aczkolwiek może prowadzić do niebezpiecznych sytuacji w przypadku awarii, gdyż brak odpowiedniego uziemienia stwarza ryzyko porażenia prądem. Zwarcie przewodu ochronnego z przewodem neutralnym, z drugiej strony, może być poważnym błędem, ale w kontekście wyłącznika nadprądowego nie prowadzi ono do jego samoczynnego wyłączenia, chyba że to zwarcie spowoduje przeciążenie lub zwarcie w instalacji. Typowym błędem myślowym jest zakładanie, że każdy problem z instalacją elektryczną prowadzi do automatycznego zadziałania wyłącznika nadprądowego, podczas gdy w rzeczywistości ten mechanizm jest zaprojektowany do ochrony przed określonymi rodzajami awarii, a nie każdą możliwą sytuacją. Wiedza o tym, jak działają zabezpieczenia oraz jakie są ich ograniczenia, jest kluczowa dla prawidłowego użytkowania instalacji elektrycznej.

Pytanie 9

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. OMYp 3×1,5 mm2
B. YDYt 3×1,5 mm2
C. YDY 3×1,5 mm2
D. LGu 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 10

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór odpowiedzi D jest prawidłowy, ponieważ scyzoryk wielofunkcyjny nie powinien być stosowany przy montażu lub demontażu elementów instalacji elektrycznych. Narzędzia tego typu, mimo że są wszechstronne, nie zapewniają odpowiedniego poziomu bezpieczeństwa wymagającego pracy z elektrycznością. Główne ryzyko związane z używaniem scyzoryka polega na możliwości uszkodzenia izolacji przewodów, co może prowadzić do poważnych zwarć, a nawet pożarów. W praktyce, do pracy z instalacjami elektrycznymi zaleca się korzystać z narzędzi izolowanych, takich jak szczypce izolowane czy kombinerki, które są zaprojektowane z myślą o ochronie przed porażeniem prądem. Dodatkowo, w wielu krajach obowiązują normy branżowe, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w pracach z instalacjami elektrycznymi, promując tym samym najwyższe standardy bezpieczeństwa. Używanie właściwych narzędzi to nie tylko kwestia efektywności pracy, ale przede wszystkim bezpieczeństwa operatora i osób znajdujących się w pobliżu.

Pytanie 11

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. C.
B. A.
C. D.
D. B.
Wybór odpowiedzi, która nie uwzględnia parametrów prądu znamionowego i prądu różnicowego, prowadzi do niewłaściwych wniosków dotyczących wymiany wyłącznika różnicowoprądowego. Wyłączniki różnicowoprądowe są projektowane w sposób, który musi zapewniać bezpieczeństwo instalacji elektrycznej, co oznacza, że nie można stosować urządzeń o nieodpowiednich parametrach. Na przykład, jeśli wybierzemy wyłącznik o prądzie różnicowym 300 mA, zignorujemy ryzyko porażenia prądem, ponieważ standardowe parametry dla instalacji domowych wymagają prądu różnicowego 30 mA, aby skutecznie zareagować na niewielkie upływy prądu. Wybór wyłącznika z inną liczbą biegunów, jak na przykład 4P, również nie jest odpowiedni dla trójfazowej instalacji z jednym przewodem neutralnym, co może skutkować złą funkcjonalnością i potencjalnym zagrożeniem. Wiele osób popełnia błąd, zakładając, że każda zamiana wyłącznika na inny model, bez uwzględnienia szczegółowych parametrów technicznych, jest wystarczająca. Kluczowe jest, aby przy takich decyzjach kierować się nie tylko dostępnością danego wyłącznika, ale przede wszystkim jego parametrami, które powinny być zgodne z wymaganiami instalacji oraz aktualnymi normami, jak PN-EN 61008-1. Właściwy dobór wyłączników jest nie tylko kwestią zgodności z normami, ale przede wszystkim zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznej.

Pytanie 12

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
B. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
C. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Analiza pozostałych odpowiedzi ujawnia pewne nieporozumienia dotyczące klasyfikacji i zastosowania różnych typów kabli. W odpowiedzi, która wskazuje na kabel sygnalizacyjny z żyłami jednodrutowymi, istotnym błędem jest założenie, że kabel kontrolny nie może mieć wielodrutowych żył. W praktyce, żyły wielodrutowe są często stosowane w kablach kontrolnych, ponieważ oferują większą elastyczność i odporność na uszkodzenia. W kontekście napięcia, klasyfikacja na 0,6/1 kV jest typowa dla kabli elektroenergetycznych, a nie kontrolnych, które są z reguły projektowane z myślą o niższych napięciach, takich jak 300/500 V. Odpowiedź mówiąca o kablu sygnalizacyjnym z żyłami wielodrutowymi o wiązkach parowych także nie bierze pod uwagę ekranowania, które jest kluczowe dla kabli kontrolnych. Ekranowanie zapobiega zakłóceniom i zapewnia integralność sygnału, co jest niezbędne w aplikacjach, gdzie precyzyjne przesyłanie danych jest kluczowe. Niezrozumienie różnicy między zastosowaniem kabli sygnalizacyjnych a kontrolnych prowadzi do błędnych wniosków, co może skutkować niewłaściwym doborem materiałów w projektach instalacyjnych, obniżając ich efektywność i bezpieczeństwo.

Pytanie 13

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie ochronnym
B. Uszkodzenie izolacji przewodu ochronnego
C. Przerwa w przewodzie neutralnym
D. Zwarcie doziemne przewodu neutralnego
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 14

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. hotelowego.
B. dwubiegunowego.
C. schodowego.
D. jednobiegunowego.
Wybór odpowiedzi dotyczącej łącznika hotelowego jest nieprawidłowy ze względu na błędną interpretację schematu. Łącznik hotelowy służy do sterowania oświetleniem w sposób dostosowany do potrzeb gości, jednak jego charakterystyka różni się od łącznika schodowego. Odpowiedzi dotyczące łączników jednobiegunowych i dwubiegunowych również są błędne, ponieważ te typy łączników nie posiadają funkcji umożliwiającej sterowanie oświetleniem z wielu punktów. Łącznik jednobiegunowy jest przeznaczony do włączania lub wyłączania obwodu z jednego miejsca, co wyklucza możliwość sterowania z więcej niż jednego punktu. Z kolei łącznik dwubiegunowy, mimo że może kontrolować dwa różne obwody, nie jest zaprojektowany do wspólnej obsługi jednego źródła światła z różnych lokalizacji. Typowym błędem jest mylenie funkcji i zastosowań różnych typów łączników. Prawidłowe podejście do analizy schematów łączników elektrycznych wymaga znajomości ich funkcji oraz kontekstu, w jakim są stosowane. Ważne jest, aby przy wyborze odpowiedniego rozwiązania brać pod uwagę specyfikę instalacji oraz potrzeby użytkowników. Zgodnie z praktykami inżynieryjnymi, właściwe rozróżnienie typów łączników oraz ich zastosowań jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 15

Na podstawie przedstawionego schematu ideowego instalacji oświetlenia klatki schodowej sterowanej za pomocą przekaźnika bistabilnego określ zakres oględzin instalacji.

Ilustracja do pytania
A. Usunięcie uszkodzeń w instalacji przez osobę uprawnioną.
B. Wykonanie pomiarów rezystancji izolacji przewodów.
C. Naprawa łączników i mycie kloszy lamp.
D. Sprawdzenie umocowania i stanu łączników oraz kloszy lamp.
Wybór odpowiedzi dotyczącej usunięcia uszkodzeń w instalacji przez osobę uprawnioną czy wykonania pomiarów rezystancji izolacji przewodów jest mylny, ponieważ te działania nie mieszczą się w zakresie oględzin, które powinny być jedynie wizualne i manualne. Usuwanie uszkodzeń oraz wykonywanie pomiarów są bardziej zaawansowanymi procedurami technicznymi, które powinny być przeprowadzane po stwierdzeniu poważnych problemów podczas wstępnej oceny stanu instalacji. Oględziny mają na celu wstępną ocenę bezpieczeństwa, a nie naprawę czy diagnostykę. Odpowiedź dotycząca naprawy łączników i mycia kloszy lamp również jest nie trafna, ponieważ naprawy nie powinny być częścią oględzin, które mają raczej na celu identyfikację ewentualnych usterek. Typowym błędem myślowym jest mylenie oględzin z działaniami naprawczymi, co może prowadzić do fałszywego poczucia bezpieczeństwa lub nieprawidłowych wniosków. Należy pamiętać, że zgodnie z zasadami branżowymi, pierwszym krokiem powinno być zawsze zidentyfikowanie stanu instalacji, a nie przystępowanie do działań naprawczych bez wcześniejszej oceny. W kontekście standardów, takich jak PN-IEC 60364, właściwe procedury oględzin są kluczowe dla utrzymania bezpieczeństwa w instalacjach elektrycznych.

Pytanie 16

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Obniżają rezystancję obwodu twornika
B. Generują napięcie remanentu
C. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
D. Usuwają niekorzystne efekty wynikające z działania twornika
Wybór odpowiedzi dotyczącej zmniejszenia rezystancji obwodu twornika pokazuje, że temat uzwojeń pomocniczych jest chyba jeszcze nie do końca jasny. Taka rezystancja nie jest bezpośrednio związana z tymi uzwojeniami, bo ich zadanie polega głównie na likwidowaniu problematycznych zjawisk, a nie na redukcji oporu. Mówienie o rezystancji w kontekście pracy silnika może powodować mylne wrażenie, że obniżenie oporu to klucz do lepszej wydajności. Na dodatek, pojawia się też mylny pomysł, że uzwojenia pomocnicze mogą zapobiegać rozbieganiu się silnika w momencie, gdy obciążenie spada. Tak naprawdę ich rolą jest stabilizacja pracy silnika, co oznacza, że eliminują negatywne zjawiska, które mogą wystąpić przy zmiennym obciążeniu. Na koniec, odpowiedź, że uzwojenia pomocnicze wytwarzają napięcie remanentu, to też nie jest trafna informacja, bo to napięcie pochodzi z magnesów trwałych lub uzwojeń głównych, a nie pomocniczych. Ogólnie rzecz biorąc, ważne jest, żeby rozumieć te różnice, bo są kluczowe przy projektowaniu i użytkowaniu silników prądu stałego w przemyśle.

Pytanie 17

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Izolację miejsca pracy
B. Separację urządzeń
C. Podwójną lub wzmocnioną izolację
D. Ochronne obniżenie napięcia
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 18

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór innej odpowiedzi prowadzi do nieporozumień dotyczących funkcji różnych typów łączników. Schematy oznaczone literami B, C i D odnoszą się do łączników krzyżowych, schodowych oraz dzwonkowych, co jest niezgodne z symbolem graficznym przedstawionym w pytaniu. Łącznik krzyżowy jest używany do sterowania jednym źródłem światła z dwóch lub więcej miejsc, co wymaga zastosowania odpowiednich schematów montażowych, a nie pojedynczego łącznika. Z kolei łącznik schodowy, stosowany w układach umożliwiających włączanie i wyłączanie oświetlenia z dwóch miejsc, również nie jest reprezentowany przez ten symbol. Zrozumienie różnicy między tymi typami łączników jest kluczowe, aby uniknąć błędów w instalacjach elektrycznych. Należy pamiętać, że stosowanie niewłaściwego schematu może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy niewłaściwe działanie systemu oświetleniowego. Przy wyborze odpowiedniej odpowiedzi warto kierować się nie tylko wyglądem symboli, ale także ich funkcjami i zastosowaniem w praktyce, co jest zgodne z zasadami bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 19

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 20

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Jeden klawisz i cztery zaciski
B. Jeden klawisz i trzy zaciski
C. Dwa klawisze i trzy zaciski
D. Dwa klawisze i cztery zaciski
Wybór odpowiedzi z dwiema klawiszami jest błędny, ponieważ klasyczny pojedynczy łącznik schodowy z definicji nie może posiadać więcej niż jednego klawisza. Dwa klawisze są charakterystyczne dla łączników podwójnych, które umożliwiają kontrolę dwóch niezależnych obwodów oświetleniowych z jednego miejsca. Takie zamieszanie często wynika z niezrozumienia różnic między różnymi typami łączników. W przypadku łączników schodowych, ich podstawowa rola polega na umożliwieniu włączania i wyłączania światła z dwóch różnych miejsc, co jest realizowane przez połączenie dwóch łączników schodowych w układzie krzyżowym. Jeśli chodzi o zaciski, odpowiedzi sugerujące cztery zaciski lub niepoprawną liczbę trzech zacisków są mylące. Często błędne zrozumienie liczby zacisków wynika z pomylenia łączników schodowych z innymi typami łączników, takimi jak łączniki krzyżowe, które rzeczywiście mogą mieć więcej zacisków. Kluczem do zrozumienia funkcji łączników jest znajomość ich budowy oraz zasad działania w kontekście całego obwodu elektrycznego, co pozwala na ich właściwe wykorzystanie w praktyce.

Pytanie 21

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Wymiana uszkodzonych źródeł światła
C. Zmiana rodzaju zastosowanych przewodów
D. Instalacja dodatkowego gniazda elektrycznego
Nie każda rzecz związana z instalacją elektryczną to prace konserwacyjne. Na przykład zmiana przewodów, mimo że ważna, to zazwyczaj jest modernizacja albo rozbudowa, a nie tylko konserwacja. Powinno się dobierać przewody według norm, jak PN-IEC 60364, które mówią o bezpieczeństwie i wydajności. A modernizacja rozdzielnicy to już w ogóle wykracza poza standardowe konserwacje, bo może oznaczać dodawanie nowych obwodów czy zmienianie konfiguracji. Takie rzeczy potrzebują zezwoleń i lepiej, żeby zajmował się tym kto ma odpowiednie kwalifikacje. Instalacja dodatkowego gniazda również wymaga przemyślenia, czasem projektu i zgód, a to już nie jest tylko prosta konserwacja. To wszystko pokazuje, że konserwacja w instalacjach elektrycznych powinna się skupić głównie na przywracaniu funkcji i bezpieczeństwa, a nie na jakichś modyfikacjach czy rozbudowach.

Pytanie 22

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 500 mA
B. 200 mA
C. 150 mA
D. 100 mA
Udzielenie odpowiedzi innej niż 200 mA może prowadzić do nieprawidłowej oceny stanu ciągłości przewodów ochronnych. Wartości takie jak 100 mA, 150 mA czy 500 mA nie są wystarczające lub nieadekwatne do przeprowadzenia rzetelnych pomiarów w kontekście ochrony przeciwporażeniowej. Wybór niższej wartości prądu, jak 100 mA, może skutkować sytuacją, w której nie zostaną wykryte niewielkie przerwy w ciągłości przewodu, co z kolei stwarza poważne zagrożenie dla bezpieczeństwa użytkowników. Z kolei wartość 150 mA, mimo że może wydawać się bardziej sensowna, wciąż nie spełnia wymagań dotyczących dokładności pomiarów, co może prowadzić do fałszywych odczytów. Zwiększenie prądu do 500 mA, choć teoretycznie może wydawać się korzystne, może w rzeczywistości prowadzić do uszkodzenia delikatnych elementów instalacji, a także może doprowadzić do niebezpiecznych sytuacji, takich jak przegrzanie przewodów. Kluczowe jest zrozumienie, że odpowiednie wartości prądu pomiarowego mają na celu nie tylko wykrycie ewentualnych usterek, ale także zapewnienie, że instalacja działa w sposób bezpieczny i niezawodny. Właściwe rozumienie norm oraz ich stosowanie jest niezbędne w praktyce inżynierskiej.

Pytanie 23

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Wkrętaka imbusowego.
B. Szczypiec uniwersalnych.
C. Wkrętaka płaskiego.
D. Szczypiec typu Segera.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 24

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Neutralnego.
B. Uziemiającego.
C. Ochronnego.
D. Fazowego.
Wybór przewodu ochronnego, fazowego lub uziemiającego wskazuje na nieporozumienie dotyczące oznaczeń oraz funkcji przewodów w instalacjach elektrycznych. Przewód ochronny, nazywany również przewodem PE (Protective Earth), ma za zadanie zapewnienie ochrony przed porażeniem prądem elektrycznym. Jego symbol różni się od symbolu przewodu neutralnego, co skutkuje błędnym rozpoznaniem na ilustracji. W przypadku przewodu fazowego, który jest oznaczany symbolem L, jego zadaniem jest dostarczanie prądu do odbiorników, a nie pełnienie roli neutralnej, co jest kluczowe dla poprawnego funkcjonowania instalacji. Przewód uziemiający również pełni funkcję ochronną, jednak jego zastosowanie jest ściśle związane z ochroną przed przepięciami oraz odprowadzeniem nadmiaru energii do ziemi. Oznaczenie przewodu neutralnego jest niezbędne do zrozumienia, że pełni on rolę powrotu prądu, a nie dostarczania go, co jest istotne w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Typowe błędy to mylenie funkcji poszczególnych przewodów oraz brak znajomości ich oznaczeń w normach branżowych, co może prowadzić do niewłaściwego podłączenia i potencjalnych zagrożeń w użytkowaniu instalacji.

Pytanie 25

W jaki sposób zwarcie międzyzwojowe w uzwojeniu D1 – D2 wpłynie na pracę silnika, którego schemat przedstawiono na ilustracji?

Ilustracja do pytania
A. Zwiększy się wartość prędkości obrotowej wirnika.
B. Zmniejszy się wartość prędkości obrotowej wirnika.
C. Zwiększy się wartość strumienia magnetycznego wzbudzenia.
D. Zmniejszy się wartość prądu pobieranego przez silnik.
Wybór odpowiedzi dotyczących zmniejszenia wartości prądu pobieranego przez silnik lub zwiększenia wartości strumienia magnetycznego wzbudzenia jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników elektrycznych. W przypadku zwarcia międzyzwojowego, rezystancja uzwojenia D1 – D2 maleje, co nie tylko prowadzi do wzrostu prądu, ale także do zmniejszenia strumienia magnetycznego Φ. Wzrost wartości prądu jest spowodowany zmniejszeniem rezystancji, co z kolei może skutkować zwiększeniem prędkości obrotowej wirnika, a nie jej zmniejszeniem. Ponadto, nieprawidłowe jest myślenie, że wzrost strumienia magnetycznego wzbudzenia poprawi wydajność silnika w przypadku zwarcia. W rzeczywistości, zwarcie prowadzi do destabilizacji pracy silnika, a nie do jego poprawy. Wiele osób myli zjawisko zwarcia z poprawną regulacją parametrów silnika, co prowadzi do błędnych wniosków, że zmniejszenie prędkości obrotowej jest korzystne. W praktyce, zbyt niski strumień magnetyczny prowadzi do wzrostu prędkości, co może skutkować uszkodzeniami mechanicznymi i przegrzewaniem się silnika. Zrozumienie tych zależności jest kluczowe dla prawidłowego projektowania i eksploatacji silników elektrycznych.

Pytanie 26

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX4
B. IPX2
C. IPX5
D. IPX3
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 27

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. kompensacyjną.
B. spadku napięcia.
C. bezpośredniego pomiaru.
D. zastosowania dodatkowego źródła.
Metoda kompensacyjna pomiaru impedancji pętli zwarciowej jest techniką, która znacząco zwiększa precyzję i rzetelność pomiarów w instalacjach elektrycznych. W przeciwieństwie do innych metod, takich jak pomiar spadku napięcia, która może być podatna na zakłócenia i błędy związane z opornością przewodów, metoda kompensacyjna wykorzystuje dodatkowe źródło napięcia do zredukowania wpływu oporności pętli. Kluczowym aspektem tej metody jest użycie transformatora, który umożliwia uzyskanie stabilnego sygnału pomiarowego. W praktyce, metoda ta jest wykorzystywana w instalacjach monitorujących zabezpieczenia przed zwarciami, co jest zgodne z normami takimi jak PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych. Rekomendacje branżowe sugerują, że pomiary przy użyciu metody kompensacyjnej powinny być cyklicznie przeprowadzane w celu zapewnienia ciągłej niezawodności systemów elektrycznych i minimalizowania ryzyka awarii.

Pytanie 28

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. DY 2,5 mm2
B. YLY 7×2,5 mm2
C. YDY 5×2,5 mm2
D. LY 2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 29

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. przeważnie pośredniego.
B. bezpośredniego.
C. przeważnie bezpośredniego.
D. pośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 30

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 26 A
B. 20 A
C. 16 A
D. 6 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 31

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Separacja elektryczna
B. Uziemienie ochronne
C. Samoczynne wyłączanie zasilania
D. Umieszczenie części dostępnych poza zasięgiem ręki
Uziemienie ochronne jest istotnym elementem systemów ochrony przed porażeniem, jednak polega na stworzeniu niskooporowego połączenia z ziemią, a nie na pomiarze rezystancji pętli zwarcia. Jego głównym celem jest zapewnienie, że w przypadku awarii prądu, nadmiar energii zostanie bezpiecznie odprowadzony do ziemi. Choć ważne, nie jest to metoda, która sama w sobie gwarantuje szybkie odłączenie zasilania. Separacja elektryczna to inny środek, który ma na celu unikanie niebezpiecznych kontaktów między różnymi obwodami, ale również nie jest bezpośrednio związana z pomiarem rezystancji pętli zwarcia. Działa na zasadzie fizycznego oddzielenia części instalacji, co minimalizuje ryzyko porażenia, ale nie zmienia parametrów elektrycznych samej instalacji. Umieszczenie części dostępnych poza zasięgiem ręki, mimo że może zmniejszyć ryzyko kontaktu z niebezpiecznymi elementami, nie jest odpowiednim rozwiązaniem, gdyż nie eliminuje ryzyka porażenia w sytuacjach awaryjnych. W każdej z tych koncepcji brakuje kluczowego odniesienia do mechanizmu działania samoczynnego wyłączania zasilania, który jest bezpośrednio związany z pomiarem rezystancji pętli zwarcia. To pomiar ten dostarcza informacji, które są kluczowe dla oceny, czy instalacja elektryczna jest w stanie bezpiecznie odciąć zasilanie w sytuacji awaryjnej, co czyni go fundamentalnym dla zapewnienia bezpieczeństwa elektrycznego.

Pytanie 32

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,37 mA
B. ±0,02 mA
C. ±0,35 mA
D. ±2,35 mA
W analizie błędów pomiarowych kluczowe jest zrozumienie, jak oblicza się wartość błędu na podstawie specyfikacji urządzenia. Błędne odpowiedzi wynikają często z nieprawidłowego zastosowania wzorów lub zrozumienia zasad dotyczących dokładności. Na przykład, niektóre osoby mogą pomylić 1% z wartością całkowitą pomiaru, co prowadzi do oszacowania błędu jako ±0,35 mA. Jednakże w takim przypadku nie uwzględnia się dodatkowego błędu stałego, który w tym przypadku wynosi 0,02 mA. Z kolei wybranie wartości ±2,35 mA jest zupełnie nieadekwatne, ponieważ w praktyce nie ma podstaw do przyjęcia tak dużego błędu w odniesieniu do wskazania 35 mA, co wskazuje na fundamentalne nieporozumienie w zakresie norm dotyczących dokładności pomiarów. Umożliwia to zrozumienie, że błędy systematyczne i przypadkowe muszą być brane pod uwagę w kontekście całkowitych wartości określonych przez producentów. Dlatego w pomiarach elektrycznych rekomenduje się korzystanie z dokładnych procedur obliczeniowych, które uwzględniają zarówno błędy procentowe, jak i stałe, co pozwala na uzyskanie rzetelnych wyników pomiarów. Ponadto, brak wiedzy na temat tego, jak poprawnie interpretować specyfikacje techniczne urządzeń pomiarowych, może prowadzić do poważnych błędów w ocenie wyników pomiarów, co w praktyce przekłada się na nieefektywność lub błędne decyzje w kontekście zastosowań inżynieryjnych.

Pytanie 33

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, młotek, obcinaczki
B. Wiertarka z zestawem wierteł, młotek, piła
C. Wiertarka z zestawem wierteł, szczypce płaskie, piła
D. Osadzak gazowy, wkrętak, obcinaczki
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 34

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy podnapięciowy
B. Dwubiegunowy przepięciowy
C. Dwubiegunowy instalacyjny nadprądowy
D. Dwubiegunowy różnicowoprądowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 35

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Odbiorczych
B. Przesyłowych
C. Wytwórczych
D. Pomocniczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 36

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 10 mA
B. IΔ = 20 mA
C. IΔ = 30 mA
D. IΔ = 40 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 37

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji odgromowej budynku.
B. instalacji elektrycznej.
C. linii kablowej zasilającej budynek.
D. linii napowietrznej niskiego napięcia.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 38

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Sodową.
B. Ledową.
C. Żarową.
D. Rtęciową.
Odpowiedź "Ledową" jest poprawna, ponieważ na zdjęciu widoczna jest lampa LED, która charakteryzuje się wieloma małymi diodami emitującymi światło. W przeciwieństwie do lamp żarowych, które mają jedno większe źródło światła, lampy LED oferują szereg zalet. Przykładowo, ich wydajność energetyczna jest znacznie wyższa, co prowadzi do oszczędności energii i dłuższej żywotności. W praktycznym zastosowaniu oznacza to, że lampy LED mogą być wykorzystywane w różnych kontekstach, jak oświetlenie wnętrz, iluminacje zewnętrzne, a także w instalacjach przemysłowych. Zgodnie z normami branżowymi, lampy LED nie emitują promieniowania UV, co czyni je bezpiecznymi w zastosowaniach, gdzie istotna jest ochrona przed szkodliwym wpływem światła. Warto również dodać, że technologia LED jest zgodna z trendami zrównoważonego rozwoju, co czyni je preferowanym wyborem w nowoczesnych budynkach.

Pytanie 39

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. IT
B. TN-C
C. TN-S
D. TT
Układy TN-C, TN-S oraz TT różnią się od systemu IT pod względem połączenia punktu neutralnego z ziemią oraz sposobu uziemienia. W systemie TN-C punkt neutralny jest połączony z ziemią, co oznacza, że w przypadku uszkodzenia izolacji, prąd może przepływać do ziemi, co stwarza ryzyko porażenia prądem elektrycznym. System ten, mimo że dobrze sprawdza się w standardowych zastosowaniach, nie jest zalecany w obiektach o wysokim ryzyku, ponieważ awaria może prowadzić do poważnych konsekwencji. Z kolei w układzie TN-S występuje oddzielne uziemienie dla przewodu ochronnego i neutralnego, co poprawia bezpieczeństwo, ale nadal zakłada połączenie z ziemią. W przypadku systemu TT, gdzie również punkt neutralny jest uziemiony, występuje możliwość wystąpienia prądów upływowych, które mogą prowadzić do porażenia. Typowe błędy w rozumieniu tych układów to mylenie izolacji z bezpieczeństwem. W rzeczywistości, systemy TN i TT, mimo że stosowane są szeroko, nie oferują tego samego poziomu ochrony jak system IT, zwłaszcza w sytuacjach awaryjnych. Dlatego, chcąc zapewnić najwyższy poziom bezpieczeństwa, warto rozważyć zastosowanie układu IT w obiektach o krytycznym znaczeniu."

Pytanie 40

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
B. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
C. oznaczyć miejsce pracy
D. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.