Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:34
  • Data zakończenia: 17 grudnia 2025 08:41

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A. Rysunek 2.
Ilustracja do odpowiedzi A
B. Rysunek 4.
Ilustracja do odpowiedzi B
C. Rysunek 1.
Ilustracja do odpowiedzi C
D. Rysunek 3.
Ilustracja do odpowiedzi D
Świetnie, wybrałeś poprawną odpowiedź! Rysunek 3 dokładnie przedstawia początek sekwencji współbieżnej w sieci SFC. W tym przypadku, po zakończeniu Kroku 1 uruchamiane są równocześnie dwa procesy: Krok 2 i Krok 3, co pokazuje podwójna linia pozioma. To jest kluczowe w projektowaniu systemów sterowania, gdzie równoległość procesów jest niezbędna dla efektywności i szybkości działania. W praktyce, takie rozwiązanie znajduje zastosowanie w systemach automatyki przemysłowej, gdzie różne zadania muszą być uruchamiane jednocześnie, na przykład w produkcji automatycznej. Warto zwrócić uwagę, że takie podejście jest zgodne ze standardami IEC 61131-3, które definiują struktury języka programowania dla PLC. Równoległe procesy mogą być zarządzane za pomocą odpowiednio zaprojektowanych bramek logicznych, które zapewniają synchronizację i bezkolizyjne działanie zadań. Moim zdaniem, jeżeli planujesz zajmować się projektowaniem systemów automatyki, zrozumienie i umiejętność implementacji takich sekwencji jest nieoceniona. Zawsze pamiętaj o optymalnym wykorzystaniu zasobów i zminimalizowaniu czasu przetwarzania, co jest kluczowe w dynamicznych środowiskach produkcyjnych.

Pytanie 2

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wiele osób myli symbol przekładni zębatej z symbolami innych rodzajów napędów, co jest całkiem zrozumiałe na początku nauki rysunku technicznego. Symbole z kołami połączonymi linią oznaczają przekładnie pasowe, w których napęd przenoszony jest przez pas, a nie przez zazębienie. To rozwiązanie pozwala na cichszą pracę i amortyzację drgań, ale ma mniejszą sprawność. Z kolei symbol z przerywaną linią wokół kół przedstawia przekładnię łańcuchową, w której moment obrotowy przenosi łańcuch z ogniwami współpracującymi z zębatkami. Inny symbol z ukośnymi liniami i strzałkami to element związany ze spawalnictwem, nie z mechaniką napędów. Wszystkie te błędne interpretacje wynikają z podobieństwa wizualnego – koła i linie często wyglądają podobnie, lecz zasada działania jest inna. W przekładni zębatej przeniesienie momentu odbywa się przez zazębienie kół, bez poślizgu i z dużą dokładnością. Dlatego poprawny symbol to ten, który pokazuje bezpośredni kontakt osi i zazębienie, a nie pas lub łańcuch.

Pytanie 3

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. cewki przekaźnika.
B. układów ochronnych.
C. styków zwiernych.
D. styków rozwiernych.
W przekaźnikach elektromagnetycznych symbole A1 i A2 to oznaczenia zacisków cewki przekaźnika, która jest kluczowym elementem tego urządzenia. Cewka jest odpowiedzialna za generowanie pola magnetycznego, które w efekcie przyciąga kotwicę przekaźnika, zmieniając jego stan. Jest to mechanizm podstawowy, lecz niezmiernie istotny w automatyce i elektronice. Dzięki cewce, przekaźniki mogą sterować sygnałami w obwodach elektrycznych, umożliwiając kontrolę nad różnymi urządzeniami. W praktyce, cewki są stosowane w układach zabezpieczeń, automatyce budynkowej czy w przemyśle, gdzie wymagana jest precyzyjna kontrola przepływu prądu elektrycznego. Standardy, takie jak IEC 61810, określają szczegółowe wymagania dotyczące konstrukcji i działania przekaźników, w tym oznaczeń zacisków, co ułatwia identyfikację i podłączanie urządzeń. Znajomość tych zasad jest kluczowa dla każdego, kto chce efektywnie i bezpiecznie korzystać z przekaźników w praktycznych zastosowaniach. Moim zdaniem, zrozumienie roli cewki w przekaźniku to fundament, który otwiera drzwi do świata bardziej zaawansowanej elektroniki.

Pytanie 4

Napięcie wyjściowe przetwornika ciśnienia, przy liniowej charakterystyce przetwarzania, przyjmuje wartość z przedziału 0 ÷ 10 V dla ciśnienia z przedziału 0 ÷ 600 kPa. Jaka będzie wartość napięcia wyjściowego dla wartości ciśnienia 450 kPa?

A. 3,0 V
B. 7,5 V
C. 10,0 V
D. 4,5 V
Przyjrzyjmy się najpierw, dlaczego odpowiedź 7,5 V jest poprawna. Mamy liniową charakterystykę przetwornika ciśnienia, co oznacza, że stosunek między ciśnieniem a napięciem jest stały. W tym przypadku wiemy, że dla 0 kPa napięcie wynosi 0 V, a dla 600 kPa jest to 10 V. Zatem możemy łatwo policzyć, że dla 1 kPa przypada 0,0167 V (10 V / 600 kPa). Teraz wystarczy pomnożyć 450 kPa przez ten współczynnik (450 kPa * 0,0167 V/kPa), co daje nam 7,5 V. Taki sposób wyliczania jest standardową praktyką w branży, szczególnie w systemach automatyki, gdzie precyzyjne przetwarzanie danych procesowych jest kluczowe. W praktyce tego typu przetworniki są szeroko stosowane w przemyśle chemicznym i petrochemicznym, gdzie kontrola ciśnienia jest niezmiernie ważna. Przy wyborze przetwornika warto zwrócić uwagę na jego liniowość, ponieważ to wpływa na dokładność pomiaru. Przemyśl, jak łatwo możemy zastosować tę wiedzę do innych zastosowań, np. do kalibracji czujników w różnych urządzeniach elektronicznych. Znajomość takich zasad jest nieodzowna, jeśli chcemy rozumieć, jak działa sprzęt w nowoczesnych fabrykach, gdzie automatyzacja odgrywa kluczową rolę.

Pytanie 5

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

Ilustracja do pytania
A. 3
B. 4
C. 2
D. 1
Odpowiedź jest prawidłowa, ponieważ na schemacie zespołu przygotowania powietrza, manometr jest oznaczony cyfrą 2. Manometr to instrument pomiarowy służący do mierzenia ciśnienia płynów i gazów. W przypadku systemów pneumatycznych, takich jak zespoły przygotowania powietrza, manometry pełnią kluczową rolę w monitorowaniu ciśnienia roboczego, co jest niezbędne do prawidłowego działania całego układu. Poprawne odczytywanie i interpretacja danych z manometru pozwala na szybkie reagowanie na wszelkie odchylenia od normy, co może zapobiec awariom i zwiększyć efektywność systemu. Standardy w branży pneumatycznej, takie jak ISO 1219, precyzują oznaczanie urządzeń na schematach, co ułatwia identyfikację i obsługę. Moim zdaniem, umiejętność czytania takich schematów jest fundamentalna dla każdego technika pracującego w dziedzinie automatyki i pneumatyki. Dobrze jest także znać różne typy manometrów, jak te z rurką Bourdona, które są popularne ze względu na swoją niezawodność i precyzję.

Pytanie 6

Na ilustracji przedstawiono

Ilustracja do pytania
A. elektroniczny czujnik ciśnienia.
B. zadajnik cyfrowo-analogowy.
C. separator sygnałów USB.
D. przetwornik PWM.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 7

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ miernik o zakresie do 15 V idealnie pasuje do pomiaru sygnału wyjściowego +Q1 analogowego łącznika krańcowego. W przypadku układów, które operują w zakresie do 10 V, jak to przedstawiono na schemacie, wybór miernika z zakresem do 15 V zapewnia odpowiednią precyzję i bezpieczeństwo pomiaru. Dlaczego to ważne? Ponieważ miernik powinien mieć zakres nieco większy niż maksymalna wartość sygnału, aby uniknąć przeciążenia i zapewnić dokładny odczyt. W praktyce często zaleca się, aby zakres miernika wynosił około 120% maksymalnej wartości mierzonej, co w tym przypadku jest spełnione. Dobre praktyki w branży wskazują na znaczenie wyboru odpowiednio skalowanego miernika, aby minimalizować błędy pomiarowe i ryzyko uszkodzenia sprzętu. Warto pamiętać, że wybór odpowiedniego miernika jest kluczowy w uzyskiwaniu wiarygodnych i powtarzalnych wyników, co jest istotne w kontekście utrzymania ruchu i diagnostyki systemów automatyki przemysłowej.

Pytanie 8

Na ilustracji przedstawiono

Ilustracja do pytania
A. ramię robota.
B. podstawę robota.
C. chwytak robota.
D. przegub robota.
Chwytak robota to kluczowy element w automatyzacji przemysłowej, odpowiada za uchwycenie i manipulację przedmiotami. Właściwe dobranie chwytaka jest kluczowe dla efektywności robota. Na przykład w przemyśle motoryzacyjnym chwytaki mogą być używane do montażu części. Istnieją różne rodzaje chwytaków, jak pneumatyczne, elektryczne czy hydrauliczne, każdy z nich ma swoje specyficzne zastosowanie. Pneumatyczne chwytaki, takie jak ten na ilustracji, są często używane ze względu na swoją szybkość i precyzję. Wybór chwytaka zależy od wielu czynników, takich jak masa i kształt przenoszonego obiektu, wymagana siła chwytu oraz warunki pracy. Istotne jest także, aby chwytak był zgodny z normami bezpieczeństwa, takimi jak ISO 10218 dotycząca bezpieczeństwa robotów przemysłowych. Moim zdaniem, zrozumienie funkcji i zastosowania chwytaków to podstawa do efektywnego projektowania i wdrażania systemów robotycznych.

Pytanie 9

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. RS-232
B. HDMI
C. RJ-45
D. USB
Złącze USB, które często jest mylone z RS-232, jest bardziej nowoczesnym rozwiązaniem, zapewniającym znacznie szybsze prędkości przesyłu danych oraz funkcje zasilania urządzeń peryferyjnych. USB stało się standardem w komputerach osobistych, oferując uniwersalność i łatwość użycia, co czyni go bardziej wszechstronnym niż RS-232. Złącze HDMI z kolei służy do transmisji cyfrowego sygnału audio i wideo, co czyni je idealnym rozwiązaniem dla nowoczesnych urządzeń multimedialnych, takich jak telewizory czy monitory. HDMI zapewnia doskonałą jakość obrazu i dźwięku, co całkowicie odróżnia go od analogowych standardów takich jak RS-232. RJ-45 jest natomiast standardem wykorzystywanym w sieciach komputerowych Ethernet, umożliwiając przesyłanie danych z dużą szybkością na duże odległości, co jest kluczowe w przypadku sieci lokalnych i internetowych. Pomimo że wszystkie te złącza mają swoje specyficzne zastosowania, mylenie ich może wynikać z nieznajomości ich konkretnych funkcji i przeznaczeń. Często przyczyną błędnych wyborów jest brak praktycznego doświadczenia w pracy z różnymi rodzajami złącz, co prowadzi do nieporozumień. Dla osób zaczynających przygodę z elektroniką, kluczowe jest zrozumienie różnic między tymi standardami, ponieważ każdy z nich ma specyficzne zastosowania i ograniczenia, które determinują ich użycie w różnych scenariuszach.

Pytanie 10

Dokładna obróbka elementów współpracujących ze sobą polegająca na usuwaniu drobnych cząstek materiału w obecności pasty ściernej to

A. szlifowanie.
B. struganie.
C. docieranie.
D. honowanie.
Docieranie to proces, który pozwala na uzyskanie bardzo dokładnych wymiarów i gładkości powierzchni poprzez delikatne usuwanie materiału. Technika ta jest szczególnie popularna w przemyśle mechanicznym, gdzie precyzyjne dopasowanie elementów jest kluczowe, na przykład w produkcji części optycznych czy narzędzi precyzyjnych. Docieranie polega na użyciu pasty ściernej, która jest rozprowadzana pomiędzy powierzchniami, a następnie poddana kontrolowanemu tarciu. Dzięki temu możliwe jest usunięcie mikroskopijnych nierówności, co w praktyce oznacza doskonałe dopasowanie współpracujących elementów. Moim zdaniem, to trochę jak sztuka, bo wymaga cierpliwości i precyzji. W branży lotniczej i motoryzacyjnej docieranie jest nieodłącznym elementem zapewniającym niezawodność i bezpieczeństwo. Standardy, takie jak ISO 9001, często podkreślają znaczenie tej techniki w zachowaniu jakości produkcji. Warto również wspomnieć, że dobór odpowiedniej pasty ściernej, zależnie od materiału, jest kluczowy dla powodzenia całego procesu.

Pytanie 11

Wskaż, które przebiegi kombinacyjne odpowiadają realizacji funkcji AND.

A. Przebiegi 4
Ilustracja do odpowiedzi A
B. Przebiegi 3
Ilustracja do odpowiedzi B
C. Przebiegi 2
Ilustracja do odpowiedzi C
D. Przebiegi 1
Ilustracja do odpowiedzi D
Pozostałe przebiegi nie odpowiadają funkcji logicznej AND, ponieważ sposób pojawiania się sygnału wyjściowego nie wynika wyłącznie z jednoczesnego stanu wysokiego na obu wejściach. W przebiegu pierwszym widać, że sygnał %Q0.3 jest aktywny w większym zakresie niż rzeczywiste nakładanie się impulsów %I0.0 i %I0.7 – wygląda to raczej jak realizacja funkcji OR (alternatywy), w której stan wysoki występuje, gdy dowolny z sygnałów wejściowych jest aktywny. Przebieg trzeci natomiast przypomina funkcję XOR (różnicy symetrycznej), gdzie wyjście jest wysokie, gdy tylko jeden z sygnałów jest w stanie 1, a nie oba jednocześnie. Czwarty przykład można z kolei zinterpretować jako funkcję opóźnioną lub z dodatkową pamięcią – wyjście pojawia się później niż faktyczne przecięcie obu sygnałów wejściowych. W praktyce w systemach PLC takie różnice wynikają często z błędnej konfiguracji przekaźników logicznych lub złego taktowania sygnałów wejściowych. Funkcja AND jest bardzo precyzyjna – wyjście pojawia się dokładnie tam, gdzie oba wejścia są równe 1 w tym samym czasie. Dlatego każdy przypadek, w którym %Q0.3 utrzymuje się dłużej, krócej lub w innych momentach niż wspólny fragment 1 na wejściach, nie może być uznany za prawidłową realizację tej funkcji. W automatyce takie pomyłki skutkują np. uruchomieniem urządzenia mimo braku potwierdzenia bezpieczeństwa, co jest niezgodne z zasadami logiki sterowania.

Pytanie 12

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. AQ
B. AI
C. Q
D. I
Sterowniki PLC, czyli programowalne sterowniki logiczne, są kluczowym elementem w automatyce przemysłowej. W ich działaniu wykorzystuje się różne typy sygnałów, które są oznaczane unikalnymi symbolami literowymi. Wejścia cyfrowe w sterownikach PLC oznacza się literą 'I' od angielskiego słowa 'input'. Taki sygnał cyfrowy jest kluczowy w przekazywaniu danych do sterownika z różnych czujników i przełączników, które są częścią procesu przemysłowego. Co ciekawe, te sygnały pozwalają na odczytanie informacji o stanie procesów, takich jak obecność produktu na taśmie czy pozycja urządzenia. W praktyce, wejścia te są często związane z urządzeniami typu przyciski lub przełączniki krańcowe, które umożliwiają bezpośredni odczyt stanów logicznych '0' lub '1'. Z mojego doświadczenia, wiedza ta jest niezastąpiona podczas projektowania i uruchamiania instalacji automatyki. Warto pamiętać, że prawidłowe oznaczenie i zrozumienie działania wejść cyfrowych jest podstawą do efektywnej pracy z PLC i pozwala na osiągnięcie wysokiej efektywności i niezawodności systemów automatyki.

Pytanie 13

Kolejność dokręcania śrub mocujących płytę jest następująca:

Ilustracja do pytania
A. 4 – 3 – 2 – 1
B. 1 – 2 – 3 – 4
C. 1 – 3 – 4 – 2
D. 4 – 3 – 1 – 2
Prawidłowa kolejność dokręcania to 1–3–4–2. W praktyce technicznej oznacza to, że śruby dokręca się na krzyż, czyli naprzemiennie po przekątnej. Dzięki temu docisk płyty do powierzchni jest równomierny, a naprężenia w materiale rozkładają się symetrycznie. Taki sposób montażu zapobiega wykrzywieniu lub pęknięciu płyty, a także nieszczelnościom w połączeniu – szczególnie gdy pod spodem znajduje się uszczelka. Z mojego doświadczenia wynika, że warto najpierw dokręcać śruby lekko, z momentem wstępnym, a dopiero potem dociągnąć je końcowo momentem zalecanym przez producenta (np. wg normy ISO 898-1). W mechanice, hydraulice i motoryzacji ten sposób jest standardem przy montażu głowic silników, kołnierzy czy obudów przekładni. Równomierne dokręcanie na krzyż to niby drobiazg, ale decyduje o trwałości całego połączenia.

Pytanie 14

Przed podłączeniem układu pneumatycznego do układu zasilającego ustawia się odpowiednią wartość ciśnienia. Do odczytu nastawianej wartości trzeba użyć

A. rotametru.
B. termometru.
C. pirometru.
D. manometru.
Manometr to jedno z podstawowych narzędzi w pneumatyce, które pozwala na dokładne monitorowanie ciśnienia w systemie. Użycie manometru jest niezbędne, aby zapewnić odpowiednią pracę układu, ponieważ zbyt wysokie lub zbyt niskie ciśnienie może prowadzić do uszkodzeń komponentów lub niewłaściwego działania całego systemu. W praktyce, manometr umożliwia odczyt ciśnienia w jednostkach takich jak bary czy PSI, co jest standardem w branży. Dzięki manometrom operatorzy maszyn mogą kontrolować ciśnienie w czasie rzeczywistym i dostosowywać je według potrzeb, co jest kluczowe w wielu procesach przemysłowych. Dobre praktyki w pneumatyce nakazują regularne kalibrowanie manometrów, aby zapewnić dokładność odczytów. Manometr jest nieodzownym elementem podczas uruchamiania i konserwacji systemów pneumatycznych, a jego zastosowanie jest szerokie - od prostych instalacji warsztatowych po zaawansowane systemy przemysłowe. Dzięki temu urządzeniu jesteśmy w stanie zapewnić nie tylko bezpieczeństwo, ale także efektywność energetyczną układów pneumatycznych.

Pytanie 15

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. grzechotkowy.
B. dynamometryczny.
C. przegubowy.
D. udarowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 16

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i amperomierza.
B. termometru i miernika natężenia przepływu powietrza.
C. termometru i woltomierza.
D. woltomierza i miernika natężenia przepływu powietrza.
Pierwsza odpowiedź sugeruje użycie termometru i woltomierza, co jest błędnym podejściem do pomiaru mocy czynnej. Termometr, choć jest przydatny do oceny temperatury otoczenia lub powietrza wylotowego z klimatyzatora, nie dostarcza żadnych informacji o ilości energii elektrycznej przetwarzanej przez urządzenie. Brak tu pomiaru prądu, który jest niezbędny do obliczenia mocy czynnej. Druga błędna koncepcja to użycie termometru i miernika natężenia przepływu powietrza. Miernik ten rzeczywiście mierzy ilość powietrza przemieszczającego się przez urządzenie, co może być wskaźnikiem wydajności chłodzenia, ale znowu - nie dostarcza informacji o zużyciu energii elektrycznej. To typowy błąd myślowy, gdzie myli się wskaźniki wydajności z rzeczywistym zużyciem energii. Trzecia błędna odpowiedź to woltomierz i miernik natężenia przepływu powietrza. Choć tutaj pojawia się już element pomiaru napięcia, które jest potrzebne do obliczenia mocy, to brak pomiaru natężenia prądu czyni tę odpowiedź niekompletną. Wszystkie te błędne odpowiedzi opierają się na niepełnym zrozumieniu, że moc czynna to wynik oddziaływania napięcia i prądu w obwodzie, a nie tylko ich częściowych miar. Dla poprawnego pomiaru zawsze trzeba zastosować oba przyrządy: woltomierz i amperomierz, zgodnie z dobrymi praktykami w branży elektrycznej. Szczególne znaczenie ma to w kontekście dużych instalacji, gdzie precyzyjny pomiar umożliwia optymalizację kosztów energii. Dlatego warto pogłębiać wiedzę na temat właściwego stosowania tych narzędzi.

Pytanie 17

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. temperatury.
B. ciśnienia.
C. pola magnetycznego.
D. naprężeń.
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 18

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. podkładek dystansowych.
B. zabezpieczeń E-ring.
C. kołków rozprężnych.
D. pierścieni Segera.
Zrozumienie różnicy między różnymi typami narzędzi do montażu zabezpieczeń jest kluczowe dla efektywnej pracy. Pierścienie Segera, znane również jako pierścienie sprężynujące, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Nie są to jednak te same końcówki, co w przypadku narzędzi do E-ringów. Zastosowanie niewłaściwego narzędzia może prowadzić do uszkodzenia pierścienia lub nawet samego mechanizmu. Podobnie, zabezpieczenia typu E-ring różnią się konstrukcją od pierścieni Segera i wymagają innych narzędzi. Kołki rozprężne to całkiem inna kategoria elementów mocujących, które są używane do zamocowania elementów w otworach, zwykle bez użycia dodatkowych narzędzi. Ich montaż zazwyczaj polega na wciśnięciu ich w miejsce docelowe, co nie wymaga użycia specjalnych szczypiec. Podkładki dystansowe służą do zapewnienia odpowiedniego odstępu między elementami, ale nie są montażowym zabezpieczeniem w tradycyjnym tego słowa znaczeniu. Mylenie tych elementów prowadzi często do błędnych wniosków, co może skutkować niewłaściwym doborem narzędzi i materiałów w pracy mechanicznej. Ważne jest, aby przed przystąpieniem do pracy dokładnie zidentyfikować, jakie zabezpieczenia są stosowane i jakie narzędzia są potrzebne do ich montażu.

Pytanie 19

W regulatorze PID symbolem TI oznacza się czas

A. wyprzedzenia.
B. propagacji.
C. opóźnienia.
D. zdwojenia.
Regulator PID to fundament automatyki przemysłowej. Symbol TI w tym kontekście oznacza czas zdwojenia, czyli czas, po którym skumulowany efekt działania członu całkującego zrównoważy efekt działania członu proporcjonalnego na wyjście regulatora. To istotne, bo czas zdwojenia wpływa na dynamikę układu regulacji. Przykładowo, w procesach przemysłowych, jak kontrola temperatury w piecu, odpowiednie ustawienie TI pozwala na stabilizację procesu bez oscylacji i nadmiernych przeregulowań. Standardy, jak ISO 9001, zalecają dokładne dostrajanie regulatorów PID, by zoptymalizować efektywność procesów. Dobrą praktyką jest stosowanie metod eksperymentalnych lub algorytmów autotuningu, które automatycznie dostosowują parametry PID do charakterystyki układu. Moim zdaniem, umiejętność właściwego ustawienia TI jest jedną z kluczowych kompetencji inżyniera automatyka, bo dzięki temu możemy znacznie poprawić jakość i wydajność produkcji. Warto więc poświęcić czas na zrozumienie tego zagadnienia i eksperymentowanie z różnymi ustawieniami w symulacjach czy rzeczywistych aplikacjach."

Pytanie 20

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 2, P2 – 1, P3 – B10
B. P1 – 2, P2 – 2, P3 – A0,1
C. P1 – 1, P2 – 1, P3 – A10
D. P1 – 1, P2 – 2, P3 – B0,1
Wybrana konfiguracja P1 – 2, P2 – 1, P3 – B10 jest prawidłowa, ponieważ pozwala na opóźnione załączenie przekaźnika czasowego na 2 minuty. Ustawienie P1 na 2 oraz P2 na 1 oznacza, że czas opóźnienia wynosi 20 jednostek bazowych. W przypadku P3 ustawionego na B10, przekaźnik działa w trybie opóźnionego załączenia (B), a jednostką bazową jest 10 sekund. Mnożymy więc 20 jednostek przez 10 sekund, co daje nam dokładnie 200 sekund, czyli 2 minuty. W praktyce ustawienia te są często wykorzystywane w aplikacjach, gdzie konieczne jest precyzyjne sterowanie czasowe, np. w automatyce przemysłowej do sterowania sekwencjami maszyn. Ważne jest, aby zawsze stosować się do instrukcji producenta, by uniknąć błędów w konfiguracji. Warto również wiedzieć, że takie przekaźniki są niezastąpione w systemach automatyki budynkowej, gdyż pozwalają na oszczędność energii i zwiększenie efektywności operacyjnej poprzez optymalizację czasu działania urządzeń.

Pytanie 21

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. XOR.
B. OR.
C. NAND.
D. NOR.
Funkcja NOR, którą realizuje ten program PLC, jest jedną z podstawowych funkcji logicznych używanych w automatyce. Działa na zasadzie negacji funkcji OR. Aby wynik był prawdziwy (czyli aktywować wyjście), oba wejścia muszą być nieaktywne. Gdy chociaż jedno wejście jest aktywne, wyjście pozostaje nieaktywne. Zastosowanie tego logicznego operatora znajduje się często w układach zabezpieczeń, gdzie wymagane jest, by żaden z czujników nie był aktywowany, by umożliwić dalsze działanie maszyny. Moim zdaniem, NOR jest bardzo przydatny, gdy potrzebujemy prostego i niezawodnego sposobu na monitorowanie kilku sygnałów jednocześnie. W praktyce przemysłowej takie rozwiązania są zgodne z normami bezpieczeństwa, co jest kluczowe w dzisiejszych czasach. Dodatkowo, dla początkujących programistów PLC, nauka operowania funkcjami NOR może pomóc zrozumieć bardziej skomplikowane układy logiczne, gdzie operacje negacji są często stosowane. Równocześnie, praktyczne zastosowanie tego typu funkcji można zaobserwować w systemach sterowania procesami, gdzie wymagane jest, aby wszystkie warunki były spełnione do wyzwolenia pewnej akcji.

Pytanie 22

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Rezystancji żył L1, L2, L3.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji izolacji między przewodami L1 i L2 i L3.
Wykonanie pomiaru rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowe w ocenie bezpieczeństwa elektrycznego instalacji. Taki pomiar pomaga zidentyfikować możliwe uszkodzenia izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Rezystancja izolacji jest mierzona przy użyciu specjalnych mierników, które podają wysokie napięcie pomiarowe, aby dokładnie ocenić stan izolacji. Standardy branżowe, takie jak PN-HD 60364, zalecają regularne wykonywanie takich pomiarów w celu utrzymania bezpieczeństwa instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w przemyśle budowlanym, gdzie bezpieczeństwo instalacji elektrycznych jest priorytetem. W domowych warunkach, choć rzadko wykonywane przez laików, pomiary te mogą być kluczowe przy odbiorze nowych instalacji. Moim zdaniem, znajomość i wykonywanie takich pomiarów to podstawa zdrowego rozsądku w zawodzie elektryka. Z doświadczenia wiem, że regularne pomiary rezystancji izolacji pozwalają na wczesne wykrycie potencjalnych problemów, co przekłada się na bezpieczeństwo użytkowników.

Pytanie 23

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 1.
B. Tabliczka 2.
C. Tabliczka 3.
D. Tabliczka 4.
Twoja odpowiedź jest prawidłowa, ponieważ tabliczka 1 wskazuje na silnik przeznaczony do pracy ciągłej, co opisuje symbol S1. Praca ciągła oznacza, że silnik może działać bez przerw przez długi czas na stałym obciążeniu bez ryzyka przegrzania. To jest istotne w wielu zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe, np. w produkcji masowej lub liniach montażowych. Standard IEC 60034, który jest podany na tabliczce, zapewnia zgodność z międzynarodowymi normami dotyczącymi wydajności i bezpieczeństwa silników elektrycznych. Ważne jest, aby silniki do pracy ciągłej były prawidłowo chłodzone i miały odpowiednią klasę ochrony IP, jak IP54, co oznacza ochronę przed kurzem i rozbryzgami wody. Praktyczne zastosowanie takiego silnika może być widoczne w przypadku ciągłej pracy pomp, wentylatorów czy taśm produkcyjnych, gdzie przestoje mogą prowadzić do strat finansowych. Ważne jest, aby zawsze dobierać silnik odpowiedni do specyfiki pracy, co zwiększa jego trwałość i niezawodność.

Pytanie 24

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 5,4 V DC
B. 4,4 V DC
C. 15,0 V DC
D. 10,0 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 25

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego załączenie TON
B. blok timera opóźniającego wyłączenie TOF
C. blok licznika impulsów zliczającego w dół CTD
D. blok licznika impulsów zliczającego w górę CTU
Analizując inne dostępne opcje, warto skupić się na błędnych koncepcjach związanych z działaniem timerów i liczników. Timer opóźniający załączenie (TON) jest często używany w aplikacjach, gdzie po otrzymaniu sygnału wejściowego chcemy uzyskać opóźnione załączenie wyjścia. Na wykresie jednak nie obserwujemy charakterystycznego dla TON stałego przyrostu wartości w miarę upływu czasu. Podobnie, timer opóźniający wyłączenie (TOF) działa na zasadzie opóźnionego wyłączenia sygnału wyjściowego po zaniku sygnału wejściowego. Tutaj również, brak charakterystycznego zachowania pokazującego wyłączenie po upływie określonego czasu dyskwalifikuje TOF. Licznik impulsów zliczający w górę (CTU) z kolei zwiększa wartość CV przy każdym kolejnym impulsie, co jest odwrotnością tego, co widzimy na wykresie. Typowym błędem jest mylenie tych funkcji z powodu podobnych nazw i zastosowań, jednak kluczowe różnice w ich działaniu mają istotne znaczenie w projektowaniu systemów automatyki. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów sterowania.

Pytanie 26

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Wizualizacja przebiegu procesu.
B. Programowanie układu.
C. Pomiar wielkości procesowych.
D. Zasilanie układu sterowania.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 27

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 9°C
B. 18°C
C. 19°C
D. 8°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 28

Którą funkcję logiczną realizuje element przedstawiony na rysunku?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Analizując różne możliwości, można zauważyć, że często jest trudno odróżnić funkcje logiczne tylko na podstawie tabelki prawdy. Źle dobrana odpowiedź mogła wynikać z błędnej interpretacji tabeli prawdy, która jest kluczowa w zrozumieniu logiki systemu. Tabela prawdy dla funkcji OR pokazuje, że wynik jest prawdziwy, gdy przynajmniej jedno wejście jest prawdziwe. W przeciwnym razie, jak w funkcji AND, wynik byłby prawdziwy tylko wtedy, gdy oba wejścia są prawdziwe, co w kontekście zaworów pneumatycznych oznaczałoby brak przepływu przy zasilaniu tylko jednego wejścia. Błędne wybranie funkcji NOT, sugerowałoby, że przy jednym zasileniu występuje brak przepływu, co nie odpowiada rzeczywistości w tym przypadku. Typowym błędem jest mieszanie funkcji XOR z OR, gdzie XOR wymaga tylko jednego aktywnego sygnału dla wyniku prawdziwego, ale nie obu jednocześnie. Zrozumienie tych różnic jest fundamentalne w projektowaniu niezawodnych systemów logicznych i ma kluczowe znaczenie w automatyzacji procesów.

Pytanie 29

Który z elementów należy zastosować do wykonania rozgałęzienia sygnału/przewodu pneumatycznego w celu podłączenia w układzie manometru?

A. Element 1.
Ilustracja do odpowiedzi A
B. Element 3.
Ilustracja do odpowiedzi B
C. Element 4.
Ilustracja do odpowiedzi C
D. Element 2.
Ilustracja do odpowiedzi D
Do wykonania rozgałęzienia przewodu pneumatycznego stosuje się element typu „trójnik”, czyli ten przedstawiony na zdjęciu numer 2. Trójnik umożliwia podłączenie trzech przewodów – jednego doprowadzającego sygnał i dwóch odprowadzających, co pozwala np. na równoczesne zasilenie siłownika i podłączenie manometru kontrolnego. W układach pneumatycznych takie złącze typu „T” jest podstawowym sposobem tworzenia odgałęzień sygnału ciśnienia lub przepływu powietrza. Moim zdaniem to jedno z najczęściej używanych złączy w praktyce – proste, szczelne i bardzo wygodne w montażu, szczególnie w systemach z przewodami poliuretanowymi. Wystarczy wsunąć przewód aż do oporu, a uszczelnienie zapewnia pierścień zaciskowy. Trójniki występują w wielu wersjach: proste, z gwintem, obrotowe, a nawet z zaworem odcinającym, ale zasada działania zawsze ta sama – jedno wejście, dwa wyjścia. Dzięki temu można łatwo podłączyć manometr do istniejącego przewodu bez przerywania pracy całego układu. W automatyce przemysłowej stosuje się je przy rozdziale powietrza do kilku zaworów lub przy pomiarze ciśnienia w różnych punktach instalacji.

Pytanie 30

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 10001100, output SW2 - 0000
B. input SW1 - 01011010, output SW2 - 1001
C. input SW1 - 01001001, output SW2 - 0000
D. input SW1 - 01011010, output SW2 - 0110
Ustawienia separatora dla czujnika muszą być dokładne, aby system działał poprawnie. W przypadku błędnych ustawień, jak w odpowiedziach 1, 2 i 4, w systemie mogą pojawić się istotne błędy pomiarowe. Na przykład, ustawienie SW1 na 01011010 i SW2 na 1001 nie pokrywa właściwego zakresu prądowego, co może prowadzić do niedokładnych odczytów. Podobnie, konfiguracja SW1 na 10001100 i SW2 na 0000 jest nieodpowiednia, ponieważ nie w pełni odpowiada wymaganiom dla zakresu 0÷20 mA. To często spotykany błąd, gdy użytkownik nie dostosowuje ustawień do specyfikacji czujnika i sterownika, co skutkuje błędami w interpretacji danych. Każde urządzenie wymaga precyzyjnej kalibracji i dostosowania, co jest kluczowe w inżynierii systemów automatyki. Również ustawienie SW1 na 01011010 i SW2 na 0110 może być mylące, gdyż nie obejmuje prawidłowego zakresu dla sygnałów. Dobrą praktyką jest zawsze odwoływanie się do dokumentacji technicznej przed dokonaniem ustawień, aby uniknąć niezgodności i zapewnić optymalną pracę systemu.

Pytanie 31

Zgodnie z programem sterującym przedstawionym na rysunku załączenie wyjścia %Q0.1 w sterowniku PLC nastąpi

Ilustracja do pytania
A. natychmiast i będzie trwało przez 5 sekund gdy wejście %I0.1 będzie aktywne
B. po 5 sekundach od pojawienia się stanu 1 na wejściu %I0.1
C. natychmiast i będzie trwało 5 sekund od zmiany stanu z 0 na 1 na wejściu %I0.1
D. po 5 sekundach od zmiany stanu z 1 na 0 na wejściu %I0.1
Rozważając inne odpowiedzi, warto skupić się na zrozumieniu działania timera TON. Gdy analizujemy błędne odpowiedzi, najczęstszym błędem jest niepoprawne zrozumienie, kiedy dokładnie timer zaczyna odliczanie. Wielu błędnie zakłada, że timer aktywuje się natychmiast po zmianie stanu wejścia. W rzeczywistości jednak TON zaczyna odliczać dopiero wtedy, gdy na wejściu pojawia się sygnał aktywny (stan 1), a nie gdy stan się zmienia z 1 na 0 czy z 0 na 1. Dodatkowo, niektóre błędne odpowiedzi sugerują, że wyjście zostaje natychmiast załączone, co nie jest zgodne z działaniem timera opóźniającego. TON ma za zadanie właśnie wprowadzić kontrolowane opóźnienie, co jest kluczowym elementem w synchronizacji procesów przemysłowych i zapobieganiu niepożądanym sytuacjom, takim jak zbyt szybkie załączanie urządzeń. Opierając się na standardach IEC 61131-3, warto też wspomnieć, że każda zmiana stanu wyjścia powinna być poprzedzona dokładnym zrozumieniem logiki działania bloku funkcjonalnego, w tym przypadku timera. Z mojego doświadczenia wynika, że często jest to problem wynikający z braku praktyki w programowaniu PLC oraz niepełnego zrozumienia fundamentalnych zasad automatyki. Aby uniknąć takich błędów, warto zwrócić uwagę na dokumentację oraz symulacje programów, które pozwalają lepiej zrozumieć działanie każdego elementu.

Pytanie 32

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe
B. rezystancyjne półprzewodnikowe.
C. bimetalowe.
D. termoelektryczne.
Pt100 to popularny typ rezystancyjnego czujnika temperatury, który wykonany jest z platyny (stąd oznaczenie Pt). Często używa się go w aplikacjach przemysłowych ze względu na jego precyzję i stabilność. Charakterystyczne dla czujników Pt100 jest to, że przy 0°C mają one rezystancję równo 100 Ω. Zmiana temperatury powoduje zmianę rezystancji, co pozwala na dokładne pomiary. W systemach automatyki, takich jak ten, używa się przetworników, które konwertują zmiany rezystancji na sygnał prądowy, standardowo 4-20 mA. Dlaczego 4-20 mA? Jest to standard przemysłowy, pozwalający na wykrycie awarii (np. złamany kabel daje prąd poniżej 4 mA). Pt100 są preferowane w wielu branżach, zwłaszcza tam, gdzie wymagana jest duża dokładność pomiaru temperatury, np. w przemyśle chemicznym, spożywczym czy farmaceutycznym. Dzięki zastosowaniu platyny, czujniki te charakteryzują się dużą liniowością i szerokim zakresem pomiaru, co czyni je uniwersalnym wyborem dla inżynierów.

Pytanie 33

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 440 ÷ 480 V
B. 220 ÷ 240 V
C. 380 ÷ 420 V
D. 254 ÷ 277 V
Analizując niewłaściwe opcje dotyczące zakresu napięć zasilania, warto zwrócić uwagę na kilka kluczowych kwestii. Niewłaściwe dobranie napięcia zasilania może prowadzić do poważnych problemów technicznych, takich jak przegrzanie silnika, zwiększone zużycie energii, a nawet uszkodzenie uzwojeń. Głównym powodem wyboru niewłaściwego zakresu napięć jest często nieuwzględnienie specyfikacji częstotliwości sieci oraz konfiguracji uzwojeń. W przypadku tego silnika, gdy pracuje on przy częstotliwości 60 Hz i w konfiguracji gwiazdy, wyraźnie określony jest zakres 440 ÷ 480 V. Inne wartości, takie jak 220 ÷ 240 V czy 254 ÷ 277 V, mogą być mylące, jeśli nie zwróci się uwagi na inne parametry pracy, takie jak częstotliwość czy sposób połączenia uzwojeń. Zrozumienie, jak te parametry wpływają na wydajność i bezpieczeństwo pracy silnika, jest kluczowe dla unikania błędnych decyzji. Często spotykanym błędem jest stosowanie domyślnych wartości napięcia bez analizy specyficznych wymagań aplikacji, co może prowadzić do nieefektywnej pracy urządzenia i zwiększenia kosztów operacyjnych. Dlatego tak ważne jest gruntowne zapoznanie się z dokumentacją techniczną i stosowanie się do zawartych w niej wskazówek.

Pytanie 34

Który blok czasowy należy zastosować w programie, by realizował on bezpośrednio zależności czasowe przedstawione na rysunku?

Ilustracja do pytania
A. TOF
B. TP
C. TON
D. TONR
Wybór odpowiedniego bloku czasowego w programowaniu jest kluczowy dla poprawnego działania systemów automatyki. Często popełnianym błędem jest mylenie różnych typów timerów, takich jak TP, TOF i TONR, z ich specyficznymi zastosowaniami. Timer TP, czyli Timer Pulse, generuje impuls o określonym czasie po wykryciu sygnału wejściowego. Nie jest odpowiedni do zastosowań, gdzie wymagane jest opóźnienie przed aktywacją sygnału, ponieważ TP natychmiast generuje impuls, co jest sprzeczne z wymogami opóźnienia na rysunku. Natomiast TOF, Timer Off-Delay, działa odwrotnie do TON - po odłączeniu sygnału wejściowego odlicza czas do wyłączenia sygnału wyjściowego. Jest to użyteczne w sytuacjach, gdzie potrzebujemy, aby urządzenie działało jeszcze przez chwilę po zaniku sygnału, co jednak nie ma zastosowania w przykładzie z rysunku. TONR, czyli Timer On-Delay Retentive, zachowuje odliczany czas w przypadku chwilowej utraty zasilania, co jest przydatne w systemach o niestabilnym zasilaniu. Jednak w tym przypadku, gdzie opóźnienie ma być zastosowane przy stabilnym sygnale, nie jest to konieczne. Typowym błędem myślowym jest założenie, że każdy timer można zastosować zamiennie, co prowadzi do nieprawidłowego działania programów i błędów operacyjnych. Zrozumienie specyfiki każdego z tych bloków jest kluczowe dla projektowania niezawodnych systemów automatyki. Ostatecznie, wybór niewłaściwego bloku czasowego może prowadzić do nieoczekiwanych zachowań systemu, co może być kosztowne i czasochłonne do naprawy.

Pytanie 35

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. kluczy płaskich.
B. kluczy nasadowych.
C. szczypiec Segera.
D. wkrętaków płaskich.
Na zdjęciu widać czujnik indukcyjny z gwintowanym korpusem i nakrętkami montażowymi. Do jego zamocowania w otworze montażowym używa się kluczy płaskich, które pozwalają odpowiednio dokręcić nakrętki po obu stronach ścianki montażowej. Klucz płaski zapewnia dobre dopasowanie do sześciokątnych nakrętek i pozwala na kontrolę siły dokręcenia, co jest istotne, aby nie uszkodzić gwintu ani nie zdeformować czujnika. Wkrętaki czy szczypce Segera nie nadają się do tego zadania, ponieważ czujnik nie posiada żadnych śrub ani pierścieni sprężystych. Klucze nasadowe teoretycznie też mogłyby być użyte, ale w praktyce dostęp do nakrętek w obudowie maszyny bywa ograniczony, dlatego klucz płaski jest najwygodniejszym i najczęściej stosowanym narzędziem. Moim zdaniem to klasyczny przykład pytania praktycznego — widać od razu, kto faktycznie miał w rękach czujnik indukcyjny i zna jego montaż. Często stosuje się też podkładki sprężyste lub kontrnakrętki, żeby czujnik nie luzował się od drgań, ale sam montaż zawsze odbywa się właśnie przy użyciu klucza płaskiego.

Pytanie 36

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DS-w
B. DY-w
C. DG-w
D. LY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 37

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. PNP NO
C. NPN NC
D. NPN NO
Gratulacje, wybrałeś poprawną odpowiedź! Czujnik przedstawiony na schemacie to czujnik z wyjściem typu NPN NC. Oznacza to, że w stanie normalnie zamkniętym (NC), czujnik przewodzi prąd w stanie spoczynkowym. Wyjście NPN oznacza, że czujnik łączy wyjście do masy (0 V) po zmianie stanu. W praktyce takie czujniki często stosuje się w aplikacjach przemysłowych, gdzie ważne jest, aby układ informował o obecności obiektu nawet w sytuacji awarii zasilania - stąd konfiguracja NC. Czujniki NPN są popularne w systemach, gdzie kontroler PLC odbiera sygnały względem masy. Stosowanie NPN w systemach automatyki przemysłowej jest zgodne z wieloma normami i standardami, co czyni je powszechnym wyborem wśród inżynierów. Warto zwrócić uwagę na to, że dobór odpowiedniego typu wyjścia czujnika zależy od konkretnej aplikacji i wymagań systemu, więc warto znać różnice między NPN a PNP oraz między NO a NC.

Pytanie 38

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego załączenie TON.
B. timera opóźniającego wyłączenie TOF.
C. licznika impulsów zliczającego w górę CTU.
D. licznika impulsów zliczającego w dół CTD.
W automatyce przemysłowej znajdziemy różne bloki funkcyjne, które pełnią specyficzne funkcje. Timer opóźniający załączenie (TON) oraz timer opóźniający wyłączenie (TOF) operują na zasadzie odmierzania czasu i nie mają związku z zliczaniem impulsów. TON zaczyna odliczanie po aktywacji sygnału wejściowego, po czym załącza wyjście po określonym czasie. TOF natomiast utrzymuje wyjście aktywne przez zdefiniowany czas po zaniku sygnału wejściowego. Są one używane w aplikacjach wymagających opóźnień czasowych, np. w procesach technologicznych, gdzie wymagane jest dokładne odmierzanie czasu. Natomiast licznik zliczający w górę (CTU) działa odwrotnie do CTD. Zwiększa wartość przy każdym impulsie, co jest przydatne w sytuacjach takich jak zliczanie wyprodukowanych jednostek. Wybierając odpowiedni typ licznika lub timera, kluczowe jest zrozumienie, jaka funkcjonalność jest potrzebna w danej aplikacji. Błędne przypisanie funkcji może prowadzić do nieoptymalnego działania systemu. Typowe błędy mogą wynikać z nieuwzględnienia fizycznego charakteru procesu, co może prowadzić do wyboru niewłaściwego bloku funkcyjnego. Dlatego ważne jest, aby dobrze zrozumieć działanie każdego z tych elementów, zanim zostaną zastosowane w projekcie, co pozwala na unikanie takich nieporozumień w praktyce.

Pytanie 39

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. multimetr cyfrowy.
B. autotransformator.
C. opornik dekadowy.
D. silnik prądu stałego.
Autotransformator to urządzenie transformujące napięcie przy użyciu pojedynczego uzwojenia. Poprzez zmianę odczepów na uzwojeniu, możemy regulować napięcie wyjściowe w stosunku do napięcia wejściowego. Jest to rozwiązanie bardziej ekonomiczne i kompaktowe w porównaniu do klasycznych transformatorów, które mają dwa oddzielne uzwojenia: pierwotne i wtórne. W praktyce, autotransformatory są powszechnie używane w urządzeniach elektronicznych, gdzie wymagane są niewielkie zmiany napięcia. Przykład to regulacja oświetlenia lub prędkości obrotowej silników. Standardy branżowe wskazują na zastosowanie ich w sytuacjach, gdzie potrzebna jest wysoka sprawność i niskie straty mocy. Warto pamiętać, że autotransformatory nie izolują galwanicznie obwodów, co może być zarówno zaletą, jak i wadą, w zależności od aplikacji. Dzięki nim możemy uzyskać regulowane napięcie w sposób bardziej płynny i efektywny, co jest cenione w wielu dziedzinach przemysłu.

Pytanie 40

W dokumentacji powykonawczej nie należy umieszczać

A. dowodów zakupu z cenami.
B. warunków gwarancji.
C. protokołów pomiarowych.
D. certyfikatów użytych materiałów.
Wybór niepoprawnej odpowiedzi w tym przypadku często wynika z błędnego rozumienia roli dokumentacji powykonawczej. Dokumentacja ta ma za zadanie przedstawić pełny obraz techniczny i jakościowy ukończonego projektu, a nie aspekty finansowe, stąd obecność dowodów zakupu z cenami jest nieuzasadniona. Warunki gwarancji to nieodłączny element dokumentacji, ponieważ określają zasady odpowiedzialności producenta czy wykonawcy za ewentualne usterki. Protokoły pomiarowe dokumentują zgodność wykonania z projektem oraz normami, co stanowi podstawę do odbioru prac i weryfikacji jakości. Certyfikaty użytych materiałów potwierdzają, że zastosowane produkty spełniają określone normy i wymagania. Nie można ich pomijać, ponieważ są dowodem na użycie materiałów o właściwych parametrach, co wpływa na trwałość i bezpieczeństwo projektu. Typowym błędem jest myślenie, że każdy dokument związany z realizacją projektu powinien znaleźć się w dokumentacji powykonawczej. To prowadzi do niepotrzebnego przeładowania dokumentacji informacjami, które nie są istotne z punktu widzenia późniejszej eksploatacji obiektu. Warto zawsze pamiętać, że dokumentacja powykonawcza służy głównie do celów technicznych, dlatego powinna zawierać tylko te elementy, które są kluczowe dla oceny i utrzymania jakości projektu.