Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 18:52
  • Data zakończenia: 17 grudnia 2025 18:57

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. B.
B. A.
C. C.
D. D.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 2

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. OMY
B. LY
C. YAKY
D. YDY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 3

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. izolacja jest uszkodzona.
B. działa prawidłowo.
C. jest uszkodzone.
D. występuje zwarcie między zwojami.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 4

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Zwarcie międzyfazowe
B. Przepięcie
C. Przeciążenie
D. Upływ prądu
Przeciążenie, zwarcie międzyfazowe i przepięcie to sytuacje, które nie są bezpośrednio związane z włączaniem wyłącznika różnicowoprądowego. Przeciążenie dotyczy sytuacji, w której obciążenie na linii elektrycznej przekracza dopuszczalny poziom, co może prowadzić do przegrzania przewodów i ich uszkodzenia, ale nie stanowi bezpośredniego zagrożenia dla życia. W takich przypadkach stosuje się wyłączniki nadprądowe, które reagują na wzrost natężenia prądu. Zwarcie międzyfazowe to awaria, która polega na bezpośrednim połączeniu dwóch przewodów fazowych, co prowadzi do znacznego wzrostu prądu i potencjalnie niebezpiecznych warunków, a także wymaga zastosowania wyłączników zabezpieczających. Przepięcie z kolei odnosi się do nagłych wzrostów napięcia, które mogą uszkodzić urządzenia, ale również nie są powodem do załączenia RCD. Zrozumienie różnicy pomiędzy tymi sytuacjami jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych, a błędne przypisanie funkcji RCD do tych zagrożeń może prowadzić do niewłaściwej ochrony oraz zwiększonego ryzyka awarii instalacji.

Pytanie 5

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 6

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Za pomocą kombinerek w braku napięcia
B. Przy użyciu kombinerek, pod napięciem
C. Uchwytem izolacyjnym bez obciążenia
D. Uchwytem izolacyjnym pod obciążeniem
Wymiana nożowych wkładek topikowych przy użyciu kombinerek lub innych narzędzi metalowych pod napięciem jest skrajnie niebezpieczna i niezgodna z zasadami bezpieczeństwa. W przypadku pierwszej opcji, korzystanie z kombinerek pod napięciem naraża technika na ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia metalowe, gdy są używane w obecności napięcia, stają się przewodnikami prądu, co zwiększa ryzyko kontaktu z przewodami pod napięciem. Z kolei wymiana wkładek pod obciążeniem również jest niewłaściwa, ponieważ prowadzi do potencjalnych krótkich spięć, które mogą uszkodzić instalację elektryczną oraz zagrażać życiu ludzi. Dodatkowo, próba pracy pod obciążeniem może powodować iskrzenie i inne nieprzewidywalne zjawiska, co znacznie podnosi stopień ryzyka. W kontekście wymiany wkładek topikowych, kluczowym punktem jest upewnienie się, że obwód jest wolny od obciążenia oraz że używa się odpowiednich narzędzi, jak uchwyty izolacyjne, które zapobiegają przypadkowemu kontaktowi z energią elektryczną. Takie podejście jest zgodne z praktykami bezpieczeństwa w pracy ze sprzętem elektrycznym, które są opisane w normach branżowych, jak na przykład IEC 60364, które podkreślają znaczenie pracy w bezpiecznych warunkach.

Pytanie 7

Jakie uszkodzenie nastąpiło w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1 – L2L2 – L3L1 – L3L1 – PENL2 – PENL3 – PEN
2,101,051,101,401,300,991,00
A. Zwarcie międzyfazowe.
B. Jednofazowe bezimpedancyjne zwarcie doziemne.
C. Przeciążenie jednej z faz.
D. Pogorszenie izolacji jednej z faz.
Odpowiedzi nieprawidłowe odzwierciedlają szereg nieporozumień dotyczących analizy wyników pomiarów rezystancji izolacji. Jednofazowe bezimpedancyjne zwarcie doziemne nie może być rozpatrywane w kontekście przedstawionej sytuacji, ponieważ wyniki pomiarów nie wskazują na bezpośrednie połączenie z ziemią, lecz na specyfikę wartości rezystancji w układzie fazowym. Przeciążenie jednej z faz również nie jest adekwatne, gdyż przeciążenie dotyczy sytuacji, w której prąd przekracza dopuszczalne wartości dla danego przewodu, co nie ma związku z rezystancją izolacji. Natomiast zwarcie międzyfazowe to zjawisko, które występuje w przypadku, gdy dwa przewody fazowe stykają się ze sobą, co prowadzi do znacznego spadku rezystancji, co również nie znajduje odzwierciedlenia w podanych wynikach. Prawidłowa interpretacja danych pomiarowych wymaga zrozumienia, że rezystancja izolacji jest kluczowym wskaźnikiem stanu technicznego instalacji. W sytuacji, gdy izolacja jest pogorszona, istnieje ryzyko wystąpienia awarii lub zagrożenia dla użytkowników. Dlatego też, kluczowe jest stosowanie odpowiednich metod pomiarowych i interpretacja wyników zgodnie z normami, co pozwala na uniknięcie błędnych wniosków i działań w przypadku rozwiązywania problemów związanych z instalacjami elektrycznymi.

Pytanie 8

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. A.
B. C.
C. D.
D. B.
Wybór odpowiedzi, która nie uwzględnia parametrów prądu znamionowego i prądu różnicowego, prowadzi do niewłaściwych wniosków dotyczących wymiany wyłącznika różnicowoprądowego. Wyłączniki różnicowoprądowe są projektowane w sposób, który musi zapewniać bezpieczeństwo instalacji elektrycznej, co oznacza, że nie można stosować urządzeń o nieodpowiednich parametrach. Na przykład, jeśli wybierzemy wyłącznik o prądzie różnicowym 300 mA, zignorujemy ryzyko porażenia prądem, ponieważ standardowe parametry dla instalacji domowych wymagają prądu różnicowego 30 mA, aby skutecznie zareagować na niewielkie upływy prądu. Wybór wyłącznika z inną liczbą biegunów, jak na przykład 4P, również nie jest odpowiedni dla trójfazowej instalacji z jednym przewodem neutralnym, co może skutkować złą funkcjonalnością i potencjalnym zagrożeniem. Wiele osób popełnia błąd, zakładając, że każda zamiana wyłącznika na inny model, bez uwzględnienia szczegółowych parametrów technicznych, jest wystarczająca. Kluczowe jest, aby przy takich decyzjach kierować się nie tylko dostępnością danego wyłącznika, ale przede wszystkim jego parametrami, które powinny być zgodne z wymaganiami instalacji oraz aktualnymi normami, jak PN-EN 61008-1. Właściwy dobór wyłączników jest nie tylko kwestią zgodności z normami, ale przede wszystkim zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznej.

Pytanie 9

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. zweryfikowanie ciągłości połączeń w instalacji
B. przeprowadzenie pomiarów impedancji pętli zwarcia
C. wykonanie pomiaru rezystancji uziemienia
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 10

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy C
B. Klasy A
C. Klasy D
D. Klasy B
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 11

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 0,06 s ÷ 0,017 s
B. 60 s ÷ 10 000 s
C. 0 s ÷ 0,06 s
D. 10 s ÷ 60 s
Wybór niewłaściwego przedziału czasu zadziałania wyzwalacza termobimetalowego świadczy o nieporozumieniu w zakresie zasad działania tych urządzeń. Czas reakcji wyłącznika powinien być dostosowany do warunków pracy i wartości prądów, a niektóre z podanych odpowiedzi świadczą o braku zrozumienia tych parametrów. Na przykład, odpowiedź sugerująca 0,06 s ÷ 0,017 s odnosi się do wartości, które są zbyt krótkie dla wyzwalacza termobimetalowego, który działa na zasadzie nagrzewania wkładu bimetalowego. Tego typu wyzwalacze mają charakterystykę czasową, która jest zdefiniowana przez ich konstrukcję i zastosowanie, co oznacza, że czas zadziałania będzie na ogół znacznie dłuższy. Z kolei przedział od 60 s do 10 000 s implikuje, jakoby wyzwalacz miał działać w sytuacjach, które są niezgodne z jego przeznaczeniem — są to wartości, które mogą prowadzić do szkodliwych skutków dla instalacji. Typowe błędy myślowe, które prowadzą do takich wniosków, obejmują mylenie charakterystyki czasowej z innymi parametrami oraz brak zrozumienia zasady działania termobimetalu. W praktyce, dla bezpieczeństwa i niezawodności systemów elektrycznych, kluczowe jest, aby użytkownicy i projektanci mieli pełną świadomość działania wyłączników, ich charakterystyk oraz norm, które regulują ich użycie.

Pytanie 12

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. gG 16 A
B. aM 20 A
C. gB 20 A
D. aR 16 A
Wybór wkładek aR, aM oraz gB w kontekście zabezpieczenia obwodu jednofazowego grzejnika rezystancyjnego jest nieodpowiedni z kilku powodów. Wkładki aR, które są przeznaczone do ochrony obwodów przed zwarciami w obwodach silnikowych, nie są odpowiednie dla obciążeń rezystancyjnych, takich jak grzejniki, ponieważ nie zapewniają wystarczającej ochrony przed przeciążeniem. Jeśli grzejnik zaczyna pracować, może wystąpić chwilowy wzrost prądu, który nie zostanie zarejestrowany przez wkładkę aR, co może prowadzić do poważnych uszkodzeń instalacji. Wkładki aM, przeznaczone do zabezpieczania obwodów z silnikami, również nie są odpowiednie dla obwodów grzewczych, ponieważ ich charakterystyka czasowo-prądowa nie jest dostosowana do reakcji na przeciążenie w przypadku obciążeń rezystancyjnych. Z kolei wkładka gB 20 A, mimo że może wydawać się odpowiednia, przewyższa obliczoną wartość prądu znamionowego (około 13 A), co może prowadzić do niebezpieczeństwa przegrzania przewodów lub sprzętu, a także spowodować, że zabezpieczenie nie zadziała w odpowiednim czasie. Wybierając odpowiednie zabezpieczenie, należy zawsze kierować się zasadą, że wartości prądu znamionowego wkładki powinny być dostosowane do rzeczywistych potrzeb obwodu, a także uwzględniać elastyczność w kontekście ewentualnych chwilowych wzrostów prądu.

Pytanie 13

Na podstawie przedstawionego schematu oraz przedstawionych wyników pomiarów zlokalizuj usterkę typowego stycznika w układzie 1-fazowym, 230V.

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór odpowiedzi, w której wskazano na inne zestyki lub elementy układu, może wynikać z niepełnego zrozumienia podstaw działania stycznika oraz jego schematu. Uszkodzenie jednego z zestyków, jak zestyk 3-4, powoduje, że nie są one w stanie przełączać się w odpowiedni sposób, co prowadzi do niesprawności całego układu. Osoby, które wybrały inne odpowiedzi, mogą mylnie zakładać, że problem leży w innych zestyku, podczas gdy kluczem do rozwiązania jest skupienie się na rzeczywistych objawach, takich jak wynik pomiaru. Często takie błędne podejścia wynikają z braku znajomości zasad działania obwodów elektrycznych oraz interpretacji wyników pomiarów. Należy pamiętać, że pomiary rezystancji zestyków są kluczowe dla prawidłowego funkcjonowania urządzeń. Przykłady nieprawidłowego wnioskowania mogą obejmować pominięcie kontekstu schematu lub nieuwzględnienie specyfiki danego układu, co prowadzi do nieoptymalnych decyzji w zakresie diagnozowania usterek. Kluczem do skutecznej analizy jest nie tylko znajomość norm, ale także umiejętność ich stosowania w praktyce, co pozwala na skuteczne identyfikowanie i eliminowanie problemów w układach elektrycznych.

Pytanie 14

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny D, przedstawiający suszarkę do ubrań, jest zgodny z ustalonymi standardami oznaczeń stosowanymi w branży AGD. Suszarka, jako urządzenie do obróbki tkanin, ma charakterystyczny symbol, który pozwala na jednoznaczne zidentyfikowanie jej funkcji. W kontekście praktycznym, znajomość takich oznaczeń jest kluczowa dla użytkowników, którzy chcą rozpoznać urządzenia w sklepie lub w instrukcji obsługi. Również, w sytuacjach awaryjnych, szybka identyfikacja urządzeń może przyczynić się do efektywnego działania. Warto również zaznaczyć, że zgodność z normami, takimi jak IEC 60417, pozwala na standaryzację i ułatwienie użytkownikom rozpoznawania różnych urządzeń, co jest szczególnie ważne w kontekście międzynarodowym, gdzie różne kraje mogą mieć swoje lokalne symbole. Wiedza o tym, jak wygląda symbol graficzny suszarki, jest niezbędna dla każdego, kto korzysta z urządzeń AGD, a znajomość klasyfikacji tych symboli zdecydowanie ułatwia ich używanie i zarządzanie domowymi obowiązkami.

Pytanie 15

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawka oznaczona literą D jest właściwa, ponieważ została wykonana z ceramiki, co czyni ją idealnym materiałem do zastosowania w źródłach światła o dużej mocy. Ceramika charakteryzuje się wysoką odpornością na temperatury, które mogą osiągać nawet 300°C, co jest kluczowe dla zapewnienia bezpieczeństwa i wydajności systemu oświetleniowego. W praktyce, oprawki ceramiczne są szeroko stosowane w lampach halogenowych i LED o dużej mocy, gdzie efektywne odprowadzanie ciepła jest niezbędne. Materiał ten nie tylko dobrze przewodzi ciepło, ale również minimalizuje ryzyko deformacji pod wpływem wysokich temperatur. Zastosowanie ceramiki w takich oprawkach wpisuje się w standardy branżowe, które uwzględniają bezpieczeństwo i efektywność energetyczną. Warto również zauważyć, że w przypadku źródeł światła dużej mocy, niewłaściwie dobrane materiały mogą prowadzić do uszkodzeń zarówno oprawki, jak i samego źródła światła, co może skutkować awarią i zwiększonym ryzykiem pożaru. Dlatego wybór ceramiki jako materiału na oprawki jest zgodny z najlepszymi praktykami inżynieryjnymi.

Pytanie 16

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Lutownicy.
B. Szczypiec uniwersalnych.
C. Praski hydraulicznej.
D. Wkrętaka.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 17

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 18

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd różnicowy
B. Prąd różnicowy oraz czas reakcji
C. Obciążenie prądowe i czas reakcji
D. Napięcie w sieci oraz prąd obciążeniowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 19

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 1.
C. Symbolem 4.
D. Symbolem 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny, który dobrze oznacza prowadzenie przewodów na drabinkach kablowych, to symbol 2. Przedstawia on drabinkę z poprzeczkami. Drabinki kablowe są naprawdę ważne w instalacjach elektrycznych, bo pomagają w utrzymaniu porządku i ułatwiają konserwację. W praktyce używanie odpowiednich symboli jest kluczowe dla zrozumienia schematów elektrycznych. Dzięki temu możemy uniknąć wielu problemów i zapewnić sobie bezpieczeństwo podczas pracy z instalacjami. W normach jak PN-EN 60617 mówi się o tym, jak ważne są jednoznaczne oznaczenia, by uniknąć błędów. Dlatego symbol 2 jest powszechnie akceptowany w branży, co czyni go bardzo przydatnym.

Pytanie 20

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,7 A
B. 11,1 A
C. 12,2 A
D. 10,5 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 21

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-L
B. Z L-N
C. Z L-PE(RCD)
D. Z L-PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 22

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze wysokoprężne.
B. Półprzewodnikowe.
C. Wyładowcze niskoprężne.
D. Żarowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Żarowe" jest prawidłowa, ponieważ na ilustracji przedstawiono lampę halogenową, stanowiącą jeden z typów żarówek. Żarówki halogenowe działają na zasadzie żarzenia się włókna wolframowego w atmosferze gazu halogenowego, co pozwala na uzyskanie wyższej efektywności świetlnej oraz dłuższej żywotności w porównaniu do tradycyjnych żarówek. W praktyce, lampy halogenowe są szeroko stosowane w oświetleniu domowym, biurowym oraz w zastosowaniach przemysłowych, gdzie wymagana jest intensywna biel i wysoka jakość światła. Dzięki ich zdolności do wytwarzania naturalnego, białego światła, są często wykorzystywane w oświetleniu akcentującym, a także w reflektorach. Warto również zauważyć, że lampy halogenowe są zgodne z normami dotyczącymi efektywności energetycznej, co czyni je dobrym wyborem w kontekście zrównoważonego rozwoju.

Pytanie 23

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę III
B. Klasę II
C. Klasę I
D. Klasę 0

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 24

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. zastosowania dodatkowego źródła.
B. kompensacyjną.
C. bezpośredniego pomiaru.
D. spadku napięcia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda kompensacyjna pomiaru impedancji pętli zwarciowej jest techniką, która znacząco zwiększa precyzję i rzetelność pomiarów w instalacjach elektrycznych. W przeciwieństwie do innych metod, takich jak pomiar spadku napięcia, która może być podatna na zakłócenia i błędy związane z opornością przewodów, metoda kompensacyjna wykorzystuje dodatkowe źródło napięcia do zredukowania wpływu oporności pętli. Kluczowym aspektem tej metody jest użycie transformatora, który umożliwia uzyskanie stabilnego sygnału pomiarowego. W praktyce, metoda ta jest wykorzystywana w instalacjach monitorujących zabezpieczenia przed zwarciami, co jest zgodne z normami takimi jak PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych. Rekomendacje branżowe sugerują, że pomiary przy użyciu metody kompensacyjnej powinny być cyklicznie przeprowadzane w celu zapewnienia ciągłej niezawodności systemów elektrycznych i minimalizowania ryzyka awarii.

Pytanie 25

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Bardzo niskie napięcie ze źródła bezpiecznego
B. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
C. Samoczynne wyłączenie zasilania
D. Dodatkowe miejscowe wyrównawcze połączenia ochronne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 26

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Piła do cięcia, przecinak, młotek.
B. Wiertarka, wiertło, piła do cięcia, wkrętak.
C. Nóż monterski, wiertarka, zestaw kluczy.
D. Zestaw kluczy, wkrętarka, wiertło, przecinak.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 27

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 28

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do docinania przewodów.
B. do zaciskania końcówek tulejkowych.
C. do ściągania izolacji z żył przewodów.
D. do zaciskania końcówek oczkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 29

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 4.
B. Wstawkę 3.
C. Wstawkę 1.
D. Wstawkę 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 30

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Wyłącznik różnicowoprądowy
B. Bezpiecznik topikowy
C. Wyłącznik nadprądowy
D. Przekaźnik czasowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy jest kluczowym komponentem systemu ochrony przeciwporażeniowej w instalacjach elektrycznych. Jego główną funkcją jest wykrywanie prądów upływowych, które mogą świadczyć o uszkodzeniu izolacji lub innym zagrożeniu dla bezpieczeństwa użytkowników. Gdy wyłącznik różnicowoprądowy wykryje prąd upływowy przekraczający określoną wartość, zazwyczaj 30 mA, natychmiast odłącza zasilanie, co skutecznie zapobiega porażeniu prądem elektrycznym. Jest to szczególnie ważne w miejscach, gdzie użytkownicy mogą mieć kontakt z wodą, np. w łazienkach czy kuchniach. Wyłączniki różnicowoprądowe są zgodne z normami międzynarodowymi, takimi jak IEC 61008 i IEC 61009, oraz stanowią część standardowych wymagań instalacyjnych w wielu krajach. Ich zastosowanie w praktyce pozwala na zwiększenie bezpieczeństwa eksploatacji instalacji elektrycznych, dlatego są one nieodzownym elementem każdej nowoczesnej instalacji. Poprawna instalacja i regularne testowanie wyłączników różnicowoprądowych są kluczowe dla skutecznej ochrony użytkowników przed skutkami porażenia prądem elektrycznym.

Pytanie 31

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YDY 5x1 mm2
B. YADY 5x4 mm2
C. YDY 5x1,5 mm2
D. YDY 5x2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YDY 5x1,5 mm2 jest prawidłowy, ponieważ jego obciążalność długotrwała wynosi 18A, co jest wyższe od prądu znamionowego wyłącznika B16, wynoszącego 16A. W praktyce oznacza to, że przewód ten będzie w stanie efektywnie i bezpiecznie przewodzić prąd w instalacji trójfazowej w układzie TN-S. Takie rozwiązanie jest zgodne z normami PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrze dobrany przewód nie tylko zapewnia bezpieczeństwo, ale także wpływa na efektywność energetyczną całej instalacji. W przypadku przewodów miedzianych, ważne jest, aby ich przekrój był dostosowany do obciążenia, co pozwala uniknąć przegrzewania się izolacji i potencjalnych awarii. Przewód YDY 5x1,5 mm2 jest często stosowany w budownictwie mieszkalnym oraz w małych obiektach przemysłowych, gdzie obciążenia nie są bardzo wysokie, a bezpieczeństwo instalacji jest priorytetem.

Pytanie 32

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BU, GY, GNYE
B. BN, BK, GNYE
C. BK, BU, GY
D. BN, BK, GY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie odpowiedzi "BN, BK, GY" jest poprawne, ponieważ zgodnie z polskimi normami dotyczącymi oznaczeń kolorystycznych przewodów elektrycznych, brązowy (BN) jest kolorem przewodu fazowego, czarny (BK) to przewód neutralny, a żółto-zielony (GY) identyfikuje przewód ochronny. Ta kolorystyka ma kluczowe znaczenie dla bezpieczeństwa i poprawnego działania instalacji elektrycznych. Praktyczne przykłady zastosowania tych zasad można znaleźć w projektach instalacji w budynkach mieszkalnych i przemysłowych, gdzie właściwe oznaczenie przewodów pomoże uniknąć błędów podczas montażu oraz konserwacji. Użycie odpowiednich kolorów pozwala na szybką identyfikację funkcji każdego przewodu, co jest niezbędne w przypadku awarii czy modernizacji. Współczesne standardy, takie jak PN-IEC 60446, podkreślają wagę przestrzegania tych norm w celu zapewnienia bezpieczeństwa osób pracujących z instalacjami elektrycznymi oraz zapobiegania ryzyku porażenia prądem.

Pytanie 33

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba niesprawne.
B. 1 - niesprawny, 2 - sprawny.
C. 1 - sprawny, 2 - niesprawny.
D. Oba sprawne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 34

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. YLY 2,5 mm2
D. ALY 2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ALY 2,5 mm2 jest poprawna, ponieważ odnosi się do przewodu jednożyłowego z aluminiową żyłą wielodrutową, który jest powszechnie stosowany w instalacjach elektrycznych. W oznaczeniu tym, litera 'A' wskazuje na materiał przewodnika - aluminium, co jest istotne, ponieważ różni się on właściwościami od miedzi, na przykład mniejszą przewodnością elektryczną i wyższą wagą przy tej samej długości. Litera 'L' oznacza, że przewód jest wielodrutowy, co zwiększa elastyczność i ułatwia instalację w trudnych warunkach. Przewody te są zwykle stosowane w instalacjach oświetleniowych oraz w zasilaniu urządzeń domowych, gdzie ich parametry elektryczne, takie jak maksymalne obciążenie prądowe, są dostosowane do standardów, takich jak PN-IEC 60228. Stosowanie przewodów o odpowiedniej specyfikacji jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w systemach elektrycznych.

Pytanie 35

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód uziemiający
B. Przewód ochronny
C. Przewód neutralny
D. Przewód fazowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol <em>PE</em> na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 36

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zdejmowania pierścieni Segera.
B. zaciskania złączek Wago.
C. wciskania łożysk.
D. profilowania przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do pierścieni Segera, które odgrywają kluczową rolę w branży mechanicznej i motoryzacyjnej. Umożliwiają one szybki i efektywny montaż oraz demontaż pierścieni zabezpieczających, które są powszechnie stosowane do zabezpieczania elementów na wałach lub w otworach. Dzięki charakterystycznym końcówkom, które pasują do otworów w pierścieniach, użytkownik może łatwo rozszerzyć lub ściągnąć pierścień Segera bez ryzyka uszkodzenia zarówno narzędzia, jak i zamontowanych komponentów. W praktyce użycie szczypiec do pierścieni Segera znacznie zwiększa efektywność pracy, minimalizując czas potrzebny na wymianę elementów, co jest niezbędne w kontekście utrzymania ruchu czy serwisowania maszyn. Ponadto, stosowanie odpowiednich narzędzi, takich jak te szczypce, wpisuje się w dobre praktyki inżynieryjne, które zalecają korzystanie z dedykowanych narzędzi do specyficznych zadań, co pozwala na uniknięcie błędów związanych z używaniem nieodpowiednich rozwiązań. Dlatego też, znajomość i umiejętność posługiwania się szczypcami do pierścieni Segera jest nie tylko korzystna, ale wręcz niezbędna w wielu dziedzinach techniki.

Pytanie 37

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Ołówek, poziomnica, miarka taśmowa, sznurek traserski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 38

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Wyłączników różnicowoprądowych.
B. Styczników.
C. Transformatorów.
D. Wyłączników nadprądowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 39

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. TROX
B. PH2
C. płaski.
D. z bitem M8

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 40

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy różnicowoprądowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy podnapięciowy
D. Dwubiegunowy przepięciowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.