Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 17 grudnia 2025 20:57
  • Data zakończenia: 17 grudnia 2025 21:12

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja, która planuje rozpocząć transmisję, nasłuchuje, czy w sieci występuje aktywność, a następnie

A. czeka na token umożliwiający rozpoczęcie nadawania
B. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
C. wysyła prośbę o zezwolenie na transmisję
D. oczekuje na ustalenie priorytetu transmisji przez koncentrator
Analizując podane odpowiedzi, warto zauważyć, że nie wszystkie koncepcje są zgodne z zasadami funkcjonowania metody CSMA/CD. Na przykład, sugerowanie, że stacja wysyła zgłoszenie żądania transmisji, jest mylące, ponieważ w metodzie CSMA/CD nie ma potrzeby formalnego zgłaszania zamiaru nadawania. Mechanizm ten polega na prostym nasłuchiwaniu medium, a nie na składaniu wniosków o zezwolenie. Oczekiwanie na żeton, jak sugeruje inna odpowiedź, dotyczy zupełnie innej metody dostępu do medium, jaką jest Token Ring. W tej metodzie, żeton jest specjalnym pakietem, który krąży w sieci, dając stacjom prawo do nadawania. Oczekiwanie na nadanie priorytetu transmisji przez koncentrator również jest niepoprawne, ponieważ CSMA/CD nie wykorzystuje centralnego zarządzania, a każdy węzeł ma równy dostęp do medium. Typowym błędem myślowym jest mylenie różnych metod dostępu do medium, co prowadzi do nieporozumień w zakresie ich działania. Zrozumienie różnic między CSMA/CD a innymi metodami dostępu jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi. Umiejętność rozpoznania, które metody są odpowiednie w danym kontekście, jest niezbędna dla specjalistów zajmujących się sieciami, szczególnie w erze rosnącej liczby urządzeń podłączonych do sieci oraz konieczności zapewnienia ich płynnej i efektywnej komunikacji.

Pytanie 2

Jakim portem domyślnie odbywa się przesyłanie poleceń (command) serwera FTP?

A. 110
B. 20
C. 25
D. 21
Wybór portów takich jak 20, 25 czy 110 w kontekście FTP prowadzi do nieporozumień związanych z funkcją tych portów w różnych protokołach. Port 20, chociaż związany z FTP, jest używany dla połączeń danych w trybie aktywnym; więc jest to port wykorzystywany przez serwer do przesyłania danych po nawiązaniu połączenia na porcie 21. Użytkownicy mogą mylić jego rolę, sądząc, że to on jest kluczowy dla samego procesu wymiany poleceń. Port 25, z kolei, jest standardowym portem dla protokołu SMTP (Simple Mail Transfer Protocol), służącego do wysyłania wiadomości email, co jest zupełnie inną funkcją. Port 110 jest portem dla protokołu POP3 (Post Office Protocol), który jest używany do pobierania wiadomości email, a nie do transferu plików. Te błędne wybory często wynikają z braku zrozumienia architektury sieciowej oraz różnych protokołów, które operują na różnych portach. Zrozumienie funkcji każdego z tych portów jest kluczowe dla prawidłowego zarządzania siecią oraz konfiguracji serwerów. Ważne jest, aby przy nauce o protokołach internetowych zwracać uwagę na zastosowania poszczególnych portów oraz standardy IETF, które określają ich przeznaczenie.

Pytanie 3

Które z metod szyfrowania wykorzystywanych w sieciach bezprzewodowych jest najsłabiej zabezpieczone przed łamaniem haseł?

A. WPA TKIP
B. WPA2
C. WEP
D. WPA AES
WEP, czyli Wired Equivalent Privacy, to protokół bezpieczeństwa, który pojawił się w 1997 roku jako część standardu IEEE 802.11. Jego głównym celem było zabezpieczenie sieci bezprzewodowych na poziomie, który byłby porównywalny z sieciami przewodowymi. Niestety, po czasie okazało się, że WEP ma sporo słabości. Największym problemem jest krótki klucz szyfrujący, który można łatwo złamać. Ataki statystyczne, jak np. atak IV, pozwalają napastnikom przechwycić dane i odszyfrować klucze, co sprawia, że WEP jest naprawdę łatwy do złamania. Jest sporo narzędzi, jak Aircrack-ng, które potrafią to zrobić w praktyce. Dlatego dzisiaj WEP uznaje się za przestarzały i nie powinno się go stosować w nowych sieciach. Lepiej skorzystać z nowszych standardów, jak WPA2, które korzystają z lepszych algorytmów szyfrowania, takich jak AES, co znacznie poprawia bezpieczeństwo.

Pytanie 4

Aby zmierzyć tłumienie łącza światłowodowego w dwóch zakresach transmisyjnych 1310nm oraz 1550nm, powinno się zastosować

A. rejestratora cyfrowego
B. miernika mocy optycznej
C. reflektometru TDR
D. testera UTP
Miernik mocy optycznej jest kluczowym narzędziem do pomiaru tłumienia łącza światłowodowego w określonych długościach fal, takich jak 1310 nm i 1550 nm. Oferuje on możliwość dokładnego określenia ilości energii optycznej przechodzącej przez włókno, co pozwala na ocenę jego wydajności oraz jakości transmisji. Tłumienie w systemach światłowodowych jest mierzona w decybelach na kilometr (dB/km) i jest istotnym parametrem dla inżynierów zajmujących się projektowaniem oraz konserwacją sieci. Przykładem zastosowania miernika mocy optycznej jest wykonywanie pomiarów w sytuacjach, gdy wprowadzane są nowe segmenty łącza lub podczas przeprowadzania regularnych testów konserwacyjnych, aby zapewnić, że tłumienie nie przekracza dopuszczalnych norm, co zazwyczaj wynosi 0,35 dB/km dla długości fali 1550 nm i 0,5 dB/km dla 1310 nm. Praktyczne zastosowanie miernika mocy optycznej zgodnie z normami ANSI/TIA-568 i ITU-T G.652 umożliwia zachowanie wysokiej jakości sygnału oraz wykrywanie potencjalnych problemów, takich jak uszkodzenia włókna czy niewłaściwe połączenia spawane.

Pytanie 5

Na ilustracji pokazano porty karty graficznej. Które złącze jest cyfrowe?

Ilustracja do pytania
A. tylko złącze 1
B. tylko złącze 2
C. złącze 1 oraz 2
D. tylko złącze 3
Złącze numer 1 widoczne na zdjęciu to złącze VGA (Video Graphics Array) które wykorzystuje sygnał analogowy do przesyłania obrazu do monitora. Technologia VGA jest starsza i chociaż była bardzo popularna w przeszłości obecnie jest rzadziej używana ze względu na niższą jakość przesyłanego obrazu w porównaniu do nowszych złączy cyfrowych. Złącze numer 2 przypomina złącze S-Video które również jest analogowe i używane głównie do przesyłu obrazu wideo o niskiej rozdzielczości. Złącze VGA oraz S-Video są mniej efektywne w przesyłaniu obrazu wysokiej jakości ponieważ są podatne na zakłócenia sygnału i ograniczenia rozdzielczości. W przeciwieństwie do nich złącze numer 3 czyli DVI oferuje bezstratny przesył cyfrowego sygnału wideo co eliminuje problemy związane z konwersją sygnału analogowego na cyfrowy. W rezultacie złącza VGA i S-Video nie są preferowanymi rozwiązaniami w nowoczesnych systemach komputerowych gdzie wymagane są wysokiej jakości wyświetlenia. Typowym błędem jest przyjmowanie że każde złącze wideo jest cyfrowe co wprowadza w błąd zwłaszcza w kontekście starszych technologii. Ostatecznie wybór odpowiedniego złącza zależy od wymagań jakości obrazu i kompatybilności z urządzeniami docelowymi.

Pytanie 6

Aby umożliwić wymianę informacji pomiędzy sieciami VLAN, wykorzystuje się

A. modem.
B. punkt dostępowy.
C. router.
D. koncentrator.
Routery są kluczowymi urządzeniami w architekturze sieciowej, które umożliwiają komunikację między różnymi sieciami, w tym między sieciami VLAN (Virtual Local Area Network). VLAN-y są technologią, która pozwala na segmentację ruchu sieciowego w obrębie jednej fizycznej sieci lokalnej, co zwiększa bezpieczeństwo i efektywność zarządzania ruchem. Aby urządzenia znajdujące się w różnych VLAN-ach mogły się ze sobą komunikować, niezbędne jest wykorzystanie routera, który działa na warstwie trzeciej modelu OSI. Routery dokonują inspekcji pakietów i podejmują decyzje o trasowaniu ruchu między VLAN-ami, co umożliwia wymianę danych. Przykładem zastosowania routerów w sieciach VLAN jest konfiguracja trunkingowa, gdzie router łączy z różnymi VLAN-ami przy pomocy jednego interfejsu, wykorzystując protokoły takie jak 802.1Q. Dzięki zastosowaniu routerów można również implementować polityki bezpieczeństwa i zarządzania ruchem, co jest zgodne z dobrą praktyką w inżynierii sieciowej.

Pytanie 7

Ustawienia przedstawione na ilustracji odnoszą się do

Ilustracja do pytania
A. Karty sieciowej
B. Modemu
C. Drukarki
D. Skanera
Analizując inne odpowiedzi poza modemem można wskazać, dlaczego są one nieprawidłowe. Skaner typowo nie korzysta z portów COM ani z buforów FIFO. Skanery używają interfejsów takich jak USB, które oferują większą przepustowość i nie wymagają konfiguracji typowej dla portów szeregowych. Przestarzałe skanery mogą wykorzystywać porty równoległe, ale nie szeregowe. Drukarka zazwyczaj komunikuje się przez porty USB lub sieciowe. W nowoczesnych konfiguracjach drukarki rzadko korzystają z portów szeregowych, a jeśli już, to nie używają standardów UART ani buforów FIFO. Karta sieciowa, z kolei, działa w oparciu o protokoły sieciowe takie jak Ethernet i nie korzysta z portów COM. Komunikacja sieciowa wymaga zupełnie innych standardów i mechanizmów transmisji danych niż te używane w komunikacji szeregowej. Typowe dla kart sieciowych są protokoły TCP/IP oraz przydzielanie adresów MAC a nie zarządzanie buforami FIFO. Błąd myślowy może wynikać z nieznajomości specyfikacji technicznych urządzeń oraz ich interfejsów komunikacyjnych. Zrozumienie różnic w sposobie komunikacji między różnymi urządzeniami jest kluczowe dla prawidłowej interpretacji ich ustawień i funkcji w praktyce zawodowej.

Pytanie 8

Która z poniższych opcji nie jest usługą katalogową?

A. Oracle baseDirectory
B. Novell eDirectory
C. Active Directory
D. OpenLDAP
Wszystkie wymienione odpowiedzi, z wyjątkiem Oracle baseDirectory, są przykładami usług katalogowych, które pełnią kluczową rolę w zarządzaniu informacjami o użytkownikach i zasobach w sieciach komputerowych. OpenLDAP to otwarte oprogramowanie, które implementuje protokół LDAP (Lightweight Directory Access Protocol). LDAP jest standardowym sposobem przechowywania i wyszukiwania informacji w hierarchicznej bazie danych, co sprawia, że OpenLDAP jest szanowanym rozwiązaniem wśród administratorów systemów. Novell eDirectory to kolejna usługa katalogowa, która również korzysta z protokołu LDAP i oferuje funkcje z zakresu zarządzania tożsamościami oraz dostępem, szczególnie w złożonych środowiskach korporacyjnych. Active Directory, z kolei, jest najczęściej stosowane w produktach Microsoftu i umożliwia administratorom centralne zarządzanie użytkownikami, grupami i politykami dostępu w sieciach opartych na systemach Windows. Wiele osób może mylnie sądzić, że wszystkie wymienione usługi katalogowe są sobie równe i mogą być używane zamiennie, co jest błędem. Kluczowe jest zrozumienie, że każda z usług katalogowych ma swoje unikalne cechy, zastosowania oraz protokoły, które determinują ich funkcjonalność. Rozpoznawanie różnicy między bazami danych a usługami katalogowymi jest istotne, aby uniknąć nieporozumień w zarządzaniu infrastrukturą IT oraz w projektowaniu architektury systemów, co może prowadzić do problemów operacyjnych w przyszłości.

Pytanie 9

Który zakres adresów pozwala na komunikację multicast w sieciach z użyciem adresacji IPv6?

A. ::/96
B. 3ffe::/16
C. ff00::/8
D. 2002::/24
Odpowiedź ff00::/8 jest poprawna, ponieważ jest to zarezerwowany zakres adresów IPv6 przeznaczony do komunikacji multicast. W architekturze IPv6, adresy multicast są używane do przesyłania pakietów do grupy odbiorców, co jest kluczowe w aplikacjach takich jak transmisje wideo, audio w czasie rzeczywistym oraz różnorodne usługi multimedialne. Umożliwia to efektywne wykorzystanie zasobów sieciowych, ponieważ pakiety są wysyłane raz i mogą być odbierane przez wiele urządzeń jednocześnie, zamiast wysyłać osobne kopie do każdego z nich. Przykładowo, w kontekście protokołów takich jak MLD (Multicast Listener Discovery), urządzenia w sieci mogą dynamicznie dołączać lub opuszczać grupy multicastowe, co zwiększa elastyczność i wydajność komunikacji. Standardy takie jak RFC 4291 dokładnie definiują sposób działania adresacji multicast w IPv6, co czyni ten zakres adresów kluczowym elementem nowoczesnych sieci komputerowych.

Pytanie 10

Aby uzyskać największą prędkość przepływu danych w przypadku, gdy domowy ruter pracuje w paśmie częstotliwości 5 GHz, do notebooka powinno się zamontować bezprzewodową kartę sieciową pracującą w standardzie

A. 802.11b
B. 802.11a
C. 802.11g
D. 802.11n
Standard 802.11n to obecnie (choć już nie najnowszy) bardzo popularny wybór do domowych sieci Wi-Fi, szczególnie jeśli zależy nam na wysokiej prędkości transferu i stabilnym połączeniu w paśmie 5 GHz. Co ciekawe, 802.11n pozwala na pracę zarówno w paśmie 2,4 GHz, jak i 5 GHz, ale to właśnie to drugie zazwyczaj oferuje mniejsze zakłócenia i większą wydajność. W praktyce, dobre routery i karty sieciowe w tym standardzie potrafią wyciągnąć prędkości nawet powyżej 300 Mb/s, oczywiście przy odpowiedniej konfiguracji (np. szerokości kanału 40 MHz i kilku antenach – MIMO). Sam często widzę, że stare laptopy po dołożeniu karty 802.11n zaczynają działać zdecydowanie szybciej, szczególnie przy dużym obciążeniu sieci (np. podczas oglądania filmów Full HD online albo kopiowania większych plików w sieci lokalnej). W branży IT już od dawna 802.11n jest uważany za taki złoty środek między dostępnością cenową a całkiem solidną wydajnością. Oczywiście są już szybsze standardy, jak 802.11ac czy nawet 802.11ax, ale do typowego użytku domowego 802.11n spokojnie wystarcza i współpracuje z większością obecnych routerów. Moim zdaniem, jeśli ktoś ma router pracujący na 5 GHz, a jego laptop jeszcze działa na starszym standardzie, to wymiana karty na 802.11n to naprawdę dobry krok. Dodatkowo, obsługa 5 GHz pozwala uniknąć sąsiadujących zakłóceń, na które pasmo 2,4 GHz jest bardzo podatne.

Pytanie 11

Jaki skrót odpowiada poniższej masce podsieci: 255.255.248.0?

A. /22
B. /24
C. /23
D. /21
Skrócony zapis /21 odpowiada masce podsieci 255.255.248.0, co oznacza, że pierwsze 21 bitów adresu IP jest zarezerwowanych dla identyfikacji podsieci, a pozostałe 11 bitów dla hostów w tej podsieci. Taka konfiguracja pozwala na skonfigurowanie do 2046 hostów (2^11 - 2, ponieważ musimy odjąć adres sieci oraz adres rozgłoszeniowy). W praktyce, maski podsieci są kluczowe dla efektywnego zarządzania adresacją w sieciach komputerowych. Umożliwiają one podział dużych sieci na mniejsze, bardziej zarządzalne segmenty, co zwiększa bezpieczeństwo oraz efektywność transmisji danych. W kontekście standardów sieciowych, stosowanie maski /21 jest powszechnie spotykane w większych przedsiębiorstwach, gdzie istnieje potrzeba podziału sieci na mniejsze grupy robocze. Warto również zauważyć, że każda zmiana maski podsieci wpływa na rozkład adresów IP, co czyni umiejętność ich odpowiedniego stosowania niezbędną w pracy administratora sieci.

Pytanie 12

Tester strukturalnego okablowania umożliwia weryfikację

A. liczby komputerów w sieci
B. obciążenia ruchu sieciowego
C. mapy połączeń
D. liczby przełączników w sieci
Wybranie odpowiedzi dotyczącej liczby przełączników w sieci to raczej mylne zrozumienie tego, co robi tester okablowania. Właściwie, tester nie zlicza urządzeń takich jak przełączniki, a skupia się na tym, jak dobrze działają połączenia i czy są jakieś problemy w kablach. Podobnie jest z odpowiedzią o liczbie komputerów w sieci – tester wcale tego nie robi, bo nie mierzy obecności urządzeń końcowych, a raczej bada sygnał w kablach. Tutaj warto pamiętać, że obciążenie sieci to inna sprawa, wymagająca innych narzędzi, jak analizatory ruchu. Zazwyczaj to zarządcy sieci monitorują ruch, a nie tester okablowania, który nie ma takich funkcji. Często ludzie mylą testerów z urządzeniami do monitorowania ruchu, co może prowadzić do błędnych wniosków. Testerzy okablowania są do diagnozowania fizycznych problemów z instalacją, a nie do oceny wydajności całej sieci. To ważne, żeby rozumieć tę różnicę, gdy mówimy o zarządzaniu siecią.

Pytanie 13

Urządzeniem w zestawie komputerowym, które obsługuje zarówno dane wejściowe, jak i wyjściowe, jest

A. modem.
B. urządzenie do skanowania.
C. rysownik.
D. głośnik.
Modem jest urządzeniem, które pełni kluczową rolę w komunikacji komputerowej, przetwarzając zarówno dane wejściowe, jak i wyjściowe. Jego podstawową funkcją jest modulacja i demodulacja sygnałów, co umożliwia przesyłanie danych przez różnorodne media, takie jak linie telefoniczne, kable koncentryczne czy łącza światłowodowe. Przykładem zastosowania modemu może być połączenie z Internetem, gdzie modem przekształca sygnały cyfrowe z komputera na sygnały analogowe, które mogą być przesyłane przez infrastrukturę telekomunikacyjną. W praktyce, modem jest integralną częścią zestawu komputerowego, umożliwiającą komunikację z siecią, co jest zgodne z aktualnymi standardami, takimi jak DSL czy kablowe połączenia szerokopasmowe. W kontekście dobrych praktyk branżowych, dobór odpowiedniego modemu jest istotny dla zapewnienia optymalnej prędkości i stabilności połączenia, co w konsekwencji wpływa na wydajność i efektywność pracy zdalnej.

Pytanie 14

FDDI (ang. Fiber Distributed Data Interface) jest standardem przesyłania danych opartym na technologii światłowodowej. Jaką topologię wykorzystuje się w sieciach zbudowanych według tej technologii?

A. pierścienia
B. rozszerzonej gwiazdy
C. podwójnego pierścienia
D. gwiazdy
Wybór pierścienia, rozszerzonej gwiazdy lub gwiazdy jako topologii dla sieci FDDI jest nieprawidłowy, ponieważ te konfiguracje nie wykorzystują w pełni zalet oferowanych przez technologię światłowodową w kontekście zapewnienia niezawodności i efektywności transmisji. Pierścień, jako pojedyncza pętla, jest podatny na uszkodzenia; jeśli jakikolwiek element w pierścieniu ulegnie awarii, cała sieć przestaje działać. Rozszerzona gwiazda, mimo że pozwala na centralizację połączeń, nie spełnia standardów FDDI, które wymagają zastosowania podwójnego pierścienia dla zapewnienia redundancji. Podobnie, gwiazda, jako topologia oparta na centralnym punkcie, nie zapewnia dostatecznego poziomu odporności na awarie, co jest kluczowe w wymagających środowiskach transmisji danych. Typowe błędy myślowe, które prowadzą do takich wniosków, to nieuwzględnienie zasad redundancji i niezawodności w projektowaniu sieci, które są podstawowymi elementami standardów branżowych. Należy pamiętać, że w przypadku zastosowania technologii FDDI, kluczowe jest zrozumienie jej architektury i celów, jakie ma spełniać w danym środowisku, co czyni podwójny pierścień najlepszym wyborem.

Pytanie 15

Główny protokół stosowany do ustalania ścieżki i przesyłania nią pakietów danych w sieci komputerowej to

A. PPP
B. POP3
C. RIP
D. SSL
RIP, czyli Routing Information Protocol, to jeden z najstarszych protokołów do routingu. Został zaprojektowany, żeby ustalać trasy i przesyłać dane w sieciach komputerowych. Działa tak, że rozsyła info o dostępnych trasach do wszystkich routerów w lokalnej sieci. Dzięki temu routery mogą wymieniać się informacjami o trasach i dostosowywać do zmian w sieci. Używa się tu algorytmu Bellmana-Forda, a metryka bazuje na liczbie przeskoków. Krótko mówiąc, najkrótsza trasa to ta, gdzie jest najmniej routerów. RIP sprawdza się w małych i średnich sieciach IP, bo jest prosty i łatwy w obsłudze. Kiedy już sieci stają się bardziej skomplikowane, to administratory mogą patrzeć na inne protokoły, jak OSPF czy EIGRP, które mają bardziej zaawansowane opcje. Ale RIP jest ważny, bo wprowadza nas w podstawowe pojęcia, których potrzeba, żeby zrozumieć bardziej złożone protokoły routingu.

Pytanie 16

Sieć komputerowa, która obejmuje wyłącznie urządzenia jednej organizacji, w której dostępne są usługi realizowane przez serwery w sieci LAN, takie jak strony WWW czy poczta elektroniczna to

A. Internet
B. Infranet
C. Intranet
D. Extranet
Intranet to wewnętrzna sieć komputerowa, która jest ograniczona do jednego podmiotu, najczęściej organizacji lub firmy. Umożliwia ona pracownikom dostęp do zasobów, takich jak serwery, aplikacje, a także usługi, takie jak poczta elektroniczna czy strony internetowe, które są dostępne tylko dla użytkowników wewnętrznych. Dzięki zastosowaniu protokołów internetowych, takich jak TCP/IP, intranet może wykorzystywać te same technologie, co Internet, zapewniając jednocześnie wyższy poziom bezpieczeństwa i kontroli nad danymi. W praktyce intranety są wykorzystywane do wymiany informacji, komunikacji oraz współpracy w ramach organizacji. Jako przykład, wiele firm korzysta z intranetu do hostowania wewnętrznych portali, które mogą zawierać dokumentację, ogłoszenia czy umożliwiać dostęp do narzędzi zarządzania projektami. Zastosowanie intranetów jest zgodne z dobrymi praktykami w zakresie zarządzania informacjami, zapewniając efektywność i bezpieczeństwo w obiegu danych.

Pytanie 17

Adres fizyczny karty sieciowej AC-72-89-17-6E-B2 jest zapisany w formacie

A. binarnym
B. dziesiętnym
C. oktalnym
D. heksadecymalnym
Adres AC-72-89-17-6E-B2 jest zapisany w formacie heksadecymalnym, co oznacza, że używa systemu liczbowego o podstawie 16. W heksadecymalnym stosuje się cyfry od 0 do 9 oraz litery od A do F, które reprezentują wartości od 10 do 15. Taki format jest powszechnie stosowany w kontekście adresów MAC (Media Access Control), które identyfikują unikalne urządzenia w sieciach komputerowych. Adresy MAC są kluczowe dla komunikacji w warstwie 2 modelu OSI i są używane podczas przesyłania danych przez Ethernet oraz inne technologie sieciowe. Dla przykładu, w sieciach lokalnych routery i przełączniki wykorzystują adresy MAC do przekazywania pakietów do odpowiednich urządzeń. W praktyce, rozumienie formatu heksadecymalnego jest niezbędne dla administratorów sieci, którzy muszą konfigurować urządzenia, monitorować ruch sieciowy i diagnozować problemy. Przyjmuje się również, że adresy MAC zapisane w formacie heksadecymalnym są bardziej kompaktowe i czytelne niż w innych systemach liczbowych, co wpływa na łatwość ich wykorzystania w dokumentacji oraz konfiguracji sprzętu sieciowego.

Pytanie 18

W jakim typie członkostwa w VLAN port może należeć do wielu sieci VLAN?

A. Multi-VLAN
B. Port-Based VLAN
C. Statycznym VLAN
D. Dynamicznym VLAN
Odpowiedzi, które wskazują na 'Port-Based VLAN', 'Statyczny VLAN' lub 'Dynamiczny VLAN', nie są poprawne, ponieważ sugerują ograniczone zrozumienie koncepcji VLAN-ów. Port-Based VLAN odnosi się do modelu, w którym każdy port na przełączniku jest przypisany do jednego konkretnego VLAN-u. Taki model nie pozwala na jednoczesne przypisanie portu do wielu VLAN-ów, co ogranicza elastyczność sieci i nie spełnia wymagań nowoczesnych środowisk IT. Statyczny VLAN z kolei polega na manualnym przypisywaniu portów do VLAN-ów, co również ogranicza możliwość dynamicznego zarządzania ruchem oraz dostosowywania konfiguracji w odpowiedzi na zmieniające się potrzeby. Z kolei dynamiczny VLAN, mimo że pozwala na automatyczne przypisywanie użytkowników do VLAN-ów na podstawie ich identyfikatorów, nadal nie daje możliwości jednoczesnego członkostwa w wielu VLAN-ach na poziomie portu. Typowe błędy myślowe prowadzące do takich odpowiedzi to zrozumienie VLAN-ów wyłącznie w kontekście przypisania portów, bez uwzględnienia ich dynamicznej i wielowarstwowej natury. Współczesne architektury sieciowe wymagają większej elastyczności, a Multi-VLAN stanowi odpowiedź na te potrzeby, poprawiając zarówno zarządzanie ruchami, jak i bezpieczeństwo sieci.

Pytanie 19

Serwer Apache to rodzaj

A. DNS
B. WWW
C. DHCP
D. baz danych
Odpowiedź 'WWW' jest prawidłowa, ponieważ Apache jest najczęściej używanym serwerem WWW, odpowiedzialnym za obsługę stron internetowych. Apache HTTP Server, znany po prostu jako Apache, jest oprogramowaniem serwerowym, które umożliwia użytkownikom publikowanie treści w Internecie, zarządzanie żądaniami HTTP oraz generowanie odpowiedzi w postaci stron internetowych. Dzięki elastyczności i rozbudowanym możliwościom konfiguracji, Apache może być używany zarówno w małych projektach, jak i w dużych aplikacjach webowych. Jako przykład zastosowania, wiele popularnych platform, takich jak WordPress czy Drupal, bazuje na Apache, co podkreśla jego znaczenie w branży. Zgodnie z najlepszymi praktykami, serwer Apache można łączyć z różnymi modułami, co umożliwia rozszerzenie jego funkcji, na przykład poprzez obsługę SSL/TLS dla bezpiecznych połączeń. Warto również pamiętać, że Apache jest zgodny z wieloma systemami operacyjnymi, co czyni go wszechstronnym rozwiązaniem w różnych środowiskach. Z tego względu, wybór Apache jako serwera WWW to często rekomendowane podejście w kontekście tworzenia i zarządzania stronami internetowymi.

Pytanie 20

Jakie urządzenie jest przedstawione na rysunku?

Ilustracja do pytania
A. Bridge.
B. Switch.
C. Access Point.
D. Hub.
Punkt dostępowy to urządzenie, które umożliwia bezprzewodowy dostęp do sieci komputerowej. Działa jako most pomiędzy siecią przewodową a urządzeniami bezprzewodowymi, takimi jak laptopy, smartfony czy tablety. W praktyce punkt dostępowy jest centralnym elementem sieci WLAN i pozwala na zwiększenie jej zasięgu oraz liczby obsługiwanych użytkowników. Standardy takie jak IEEE 802.11 regulują działanie tych urządzeń, zapewniając kompatybilność i bezpieczeństwo. W zastosowaniach domowych oraz biurowych punkty dostępowe są często zintegrowane z routerami, co dodatkowo ułatwia zarządzanie siecią. Ich konfiguracja może obejmować ustawienia zabezpieczeń, takie jak WPA3, aby chronić dane przesyłane przez sieć. Dobre praktyki sugerują umieszczanie punktów dostępowych w centralnych lokalizacjach w celu optymalizacji zasięgu sygnału i minimalizacji zakłóceń. Przy wyborze punktu dostępowego warto zwrócić uwagę na obsługiwane pasma częstotliwości, takie jak 2.4 GHz i 5 GHz, co pozwala na elastyczne zarządzanie przepustowością sieci.

Pytanie 21

Jaką liczbę adresów IP należy wykorzystać, aby 4 komputery podłączone do switcha mogły się swobodnie komunikować?

A. 3
B. 2
C. 4
D. 5
Wybór mniejszej liczby adresów IP, takich jak 2, 3 czy 5, jest błędny z perspektywy podstawowych zasad adresacji IP. W przypadku 2 adresów IP, można by pomyśleć, że dwa komputery mogłyby się komunikować, ale w praktyce nie wystarczy to, aby zapewnić komunikację między wszystkimi 4 komputerami. Komunikacja w sieci wymaga, aby każde urządzenie miało unikalny adres IP, co oznacza, że każdemu z 4 komputerów musi zostać przypisany oddzielny adres. Wybór 3 adresów IP również nie wystarcza, ponieważ brakujący adres uniemożliwi jednemu z komputerów komunikację. Wreszcie, wybór 5 adresów IP prowadzi do nadmiarowości, co nie jest konieczne w tej sytuacji i może prowadzić do nieefektywnej organizacji adresacji sieciowej. W myśleniu o adresacji IP kluczowe jest zrozumienie zasady, że każdy element sieci musi być identyfikowalny, co nie jest możliwe przy mniejszej liczbie adresów niż liczba urządzeń. Stosowanie dobrych praktyk w zarządzaniu adresami IP przyczynia się do efektywności i bezpieczeństwa w sieciach komputerowych.

Pytanie 22

Na ilustracji, złącze monitora zaznaczone czerwoną ramką, będzie kompatybilne z płytą główną, która ma interfejs

Ilustracja do pytania
A. DisplayPort
B. D-SUB
C. HDMI
D. DVI
DisplayPort to zaawansowany interfejs cyfrowy stworzony do przesyłu sygnałów wideo i audio. W odróżnieniu od starszych technologii, takich jak DVI czy D-SUB, DisplayPort obsługuje wysoki zakres przepustowości, co pozwala na przesyłanie obrazów o wysokiej rozdzielczości i wielokanałowego dźwięku. Jest powszechnie stosowany w komputerach, monitorach i kartach graficznych nowej generacji. W praktyce, DisplayPort pozwala na połączenie wielu monitorów za pomocą jednego złącza dzięki funkcji Multi-Stream Transport (MST). W porównaniu do HDMI, DisplayPort oferuje wyższą przepustowość, co czyni go idealnym do profesjonalnych zastosowań graficznych i gier. Inżynierowie i projektanci często wybierają DisplayPort do konfiguracji wymagających wysokiej jakości obrazu i dźwięku. Zastosowanie tego interfejsu w praktyce pozwala na pełne wykorzystanie możliwości nowoczesnych płyt głównych i kart graficznych, które często wspierają najnowsze standardy DisplayPort, takie jak wersja 1.4, umożliwiająca przesyłanie obrazu 8K przy 60 Hz. Standaryzacja DisplayPort przez organizację VESA zapewnia jego wszechstronność i kompatybilność z różnymi urządzeniami.

Pytanie 23

Na ilustracji widoczny jest

Ilustracja do pytania
A. zaślepka kabla światłowodowego
B. zastępczy wtyk RJ-45
C. terminator BNC
D. zaślepka gniazda RJ-45
Terminator BNC jest niezbędnym elementem w systemach sieciowych wykorzystujących architekturę magistrali, takich jak stare sieci Ethernet 10Base2. Magistrale te wymagają zakończenia za pomocą terminatorów, które są rezystorami o rezystancji 50 Ohm, dopasowującymi impedancję linii przesyłowej, co zapobiega odbiciom sygnału. Odbicia mogą zakłócać transmisję danych, prowadząc do błędów komunikacji. W systemach takich jak Ethernet z terminatorami BNC, sygnał jest tłumiony na końcu kabla koncentrycznego, co zapewnia poprawne działanie sieci. Dzięki zastosowaniu poprawnego zakończenia sygnału, można uniknąć problemów z prędkością transmisji i jej stabilnością. W dzisiejszych czasach, chociaż technologia BNC została w dużej mierze zastąpiona nowoczesnym Ethernetem opartym na skrętce lub światłowodach, wiedza o terminatorach BNC jest wciąż istotna, szczególnie w kontekście specjalistycznych zastosowań jak systemy monitoringu wideo i przemysłowe układy pomiarowe, gdzie kable koncentryczne są nadal używane. Praktyczne zrozumienie zastosowania terminatorów BNC jest kluczowe dla techników utrzymania sieci i inżynierów odpowiedzialnych za starsze lub wyspecjalizowane systemy sieciowe.

Pytanie 24

Tworzenie zaszyfrowanych połączeń pomiędzy hostami przez publiczną sieć Internet, wykorzystywane w rozwiązaniach VPN (Virtual Private Network), to

A. trasowanie
B. mostkowanie
C. tunelowanie
D. mapowanie
Trasowanie, mapowanie i mostkowanie to techniki związane z zarządzaniem ruchem w sieciach komputerowych, ale nie są one odpowiednie dla opisanego kontekstu. Trasowanie odnosi się do procesu określania najlepszego ścieżki, jaką pakiety danych powinny podążać przez sieć. Jako strategia zarządzania ruchem, trasowanie nie zapewnia jednak bezpieczeństwa ani prywatności, co czyni je niewłaściwym rozwiązaniem do tworzenia zaszyfrowanych połączeń VPN. Mapowanie natomiast odnosi się do procesu przypisywania jednego zestawu wartości do innego, co jest użyteczne w kontekście baz danych lub geolokalizacji, ale nie ma zastosowania w kontekście zabezpieczania komunikacji sieciowej. Mostkowanie z kolei umożliwia połączenie dwóch segmentów sieci w celu zwiększenia rozmiarów sieci lokalnej, ale nie implementuje mechanizmów szyfrowania ani ochrony danych. W rzeczywistości te techniki mogą wprowadzać w błąd, sugerując, że zapewniają one bezpieczeństwo w komunikacji. Powszechnym błędem myślowym jest uznawanie trasowania za wystarczające dla ochrony danych, podczas gdy w rzeczywistości nie zapewnia ono żadnych zabezpieczeń przed podsłuchiwaniem lub atakami. Zrozumienie różnic między tymi technikami a tunelowaniem jest kluczowe dla skutecznej ochrony informacji przesyłanych w sieciach publicznych.

Pytanie 25

Wskaż urządzenie, które należy wykorzystać do połączenia drukarki wyposażonej w interfejs Wi-Fi z komputerem stacjonarnym bez interfejsu Wi-Fi, ale z interfejsem USB.

A. Urządzenie 3
Ilustracja do odpowiedzi A
B. Urządzenie 2
Ilustracja do odpowiedzi B
C. Urządzenie 4
Ilustracja do odpowiedzi C
D. Urządzenie 1
Ilustracja do odpowiedzi D
Zadanie polegało na dobraniu odpowiedniego urządzenia, które pozwoli na połączenie komputera stacjonarnego bez Wi-Fi z drukarką mającą moduł Wi-Fi, przy założeniu że komputer posiada tylko port USB. Częstym błędem jest wybieranie adapterów, które wyglądają podobnie lub wykorzystują inne popularne technologie łączności bezprzewodowej, ale nie są zgodne ze standardem Wi-Fi. Przykład stanowią adaptery Bluetooth (ostatnie zdjęcie) – owszem, Bluetooth jest powszechny i używany do łączenia różnych urządzeń, takich jak klawiatury, myszy, czy głośniki, ale zupełnie nie nadaje się do obsługi drukarek Wi-Fi, które komunikują się wyłącznie w standardzie 802.11. Równie częstym błędem jest sięganie po adaptery IrDA (drugie zdjęcie) – podczerwień była wykorzystywana w starszych urządzeniach, lecz dziś to zabytek i nie funkcjonuje już praktycznie nigdzie poza bardzo niszowymi zastosowaniami. Osoby mniej obyte z technologiami mogą także wybierać różnego typu przejściówki dedykowane innym ekosystemom (jak te z pierwszego zdjęcia, przeznaczone do urządzeń Apple z portem Lightning), jednak taki adapter w żaden sposób nie doda funkcji Wi-Fi komputerowi PC. Typowym źródłem pomyłek jest nieumiejętność rozróżnienia standardów komunikacji i zamienne stosowanie pojęć Bluetooth oraz Wi-Fi albo zakładanie, że „byle bezprzewodowe” urządzenie wystarczy do połączenia z drukarką sieciową. W codziennej pracy technika IT warto zawsze upewnić się, jaki standard łączności obsługują urządzenia końcowe i dobrać sprzęt zgodnie z ich specyfikacją. To nie tylko ułatwia konfigurację, ale też zapobiega frustracjom i niepotrzebnie straconym godzinom na szukanie przyczyn niedziałającego połączenia.

Pytanie 26

Przesyłanie informacji przy użyciu fal radiowych w pasmie ISM odbywa się w standardzie

A. IrDA
B. Bluetooth
C. FireWire
D. HDMI
FireWire, HDMI i IrDA to technologie, które różnią się zasadniczo od Bluetooth pod względem mechanizmów transmisji oraz zastosowań. FireWire, znany również jako IEEE 1394, to standard interfejsu, który wykorzystuje przewodowe połączenia do szybkiej transmisji danych, szczególnie w kontekście transferu multimediów, takich jak wideo i audio. Jest on wykorzystywany głównie w kamerach cyfrowych oraz zewnętrznych dyskach twardych, co sprawia, że nie ma zastosowania w kontekście bezprzewodowej komunikacji. HDMI (High-Definition Multimedia Interface) to kolejny standard, który skupia się na przesyłaniu sygnału wideo i audio w wysokiej rozdzielczości. HDMI to technologia przewodowa, która nie ma zdolności do bezprzewodowej transmisji i jest używana głównie w telewizorach i projektorach. IrDA (Infrared Data Association) to technologia oparta na przesyłaniu danych za pomocą podczerwieni, która wymaga bezpośredniej linii wzroku pomiędzy urządzeniami. Choć IrDA była popularna w przeszłości, została w dużej mierze zastąpiona przez technologie takie jak Bluetooth, które oferują większą elastyczność i zasięg. Wybór odpowiedniej technologii do komunikacji bezprzewodowej powinien opierać się na wymaganiach aplikacji oraz specyfikach danego zastosowania, a Bluetooth jest preferowaną opcją dzięki swojej uniwersalności i szerokiemu wsparciu w urządzeniach mobilnych oraz konsumenckich.

Pytanie 27

Jak wygląda maska dla adresu IP 92.168.1.10/8?

A. 255.0.0.0
B. 255.255.0.0
C. 255.0.255.0
D. 255.255.255.0
Maska sieciowa 255.0.0.0 jest właściwym odpowiednikiem dla adresu IP 92.168.1.10/8, ponieważ zapis /8 oznacza, że pierwsze 8 bitów adresu jest używane do identyfikacji sieci, co daje nam 1 bajt na identyfikację sieci. W tym przypadku, adres 92.168.1.10 znajduje się w klasie A, gdzie maska sieciowa wynosi 255.0.0.0. Przykładowe zastosowania takiej maski obejmują sieci o dużej liczbie hostów, gdzie zazwyczaj wymaga się więcej niż 65 tysięcy adresów IP. W praktyce maska /8 jest stosowana w dużych organizacjach, które potrzebują obsługiwać wiele urządzeń w jednej sieci. Przykładem może być operator telekomunikacyjny lub duża korporacja. Ponadto, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), maskowanie w sposób elastyczny pozwala na bardziej efektywne zarządzanie adresacją IP, co jest szczególnie ważne w dobie rosnącej liczby urządzeń sieciowych. Warto także pamiętać, że w praktyce stosowanie maski /8 wiąże się z odpowiedzialnością za efektywne wykorzystanie zasobów adresowych, zwłaszcza w kontekście ich ograniczonej dostępności.

Pytanie 28

Najskuteczniejszym zabezpieczeniem sieci bezprzewodowej jest

A. protokół WPA2
B. protokół WPA
C. protokół WEP
D. protokół SSH
Protokół WPA2 (Wi-Fi Protected Access 2) jest uważany za najbezpieczniejszy standard zabezpieczeń sieci bezprzewodowych dostępny do tej pory. WPA2 wprowadza silniejsze mechanizmy szyfrowania, w tym AES (Advanced Encryption Standard), który jest znacznie bardziej odporny na ataki niż starsze metody szyfrowania, takie jak TKIP (Temporal Key Integrity Protocol). Implementacja WPA2 w sieciach Wi-Fi pozwala na skuteczną ochronę przed nieautoryzowanym dostępem oraz zapewnia integralność przesyłanych danych. Przykładem zastosowania WPA2 jest konfiguracja domowej sieci Wi-Fi, w której użytkownik zabezpiecza swoje połączenie, aby chronić prywatne informacje przed hakerami. Warto również zaznaczyć, że WPA2 wspiera protokół 802.1X, co pozwala na wdrożenie systemu autoryzacji, co dodatkowo zwiększa poziom bezpieczeństwa. Aktualizacje i korzystanie z silnych haseł w połączeniu z WPA2 są kluczowe dla utrzymania bezpieczeństwa sieci.

Pytanie 29

Topologia fizyczna, w której wszystkie urządzenia końcowe są bezpośrednio połączone z jednym punktem centralnym, takim jak koncentrator lub switch, to topologia

A. Gwiazda
B. Magistrala
C. Pierścień
D. Siatka
Topologia gwiazdy jest jedną z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia końcowe, takie jak komputery, drukarki czy serwery, są bezpośrednio podłączone do centralnego punktu, którym jest koncentrator, przełącznik lub router. Taki układ umożliwia łatwe dodawanie i usuwanie urządzeń z sieci bez zakłócania jej działania, co jest istotne w środowiskach, gdzie zmiany są nieuniknione. W przypadku awarii jednego z urządzeń końcowych, problemy nie rozprzestrzeniają się na inne urządzenia, co zwiększa niezawodność całej sieci. Standardy takie jak Ethernet (IEEE 802.3) często wykorzystują topologię gwiazdy, co potwierdza jej szerokie zastosowanie i akceptację w branży. W praktyce, w biurach i w domowych sieciach lokalnych, topologia gwiazdy pozwala na efektywne zarządzanie ruchem sieciowym i centralizację zarządzania, co jest korzystne w kontekście zabezpieczeń. Efektywność monitorowania i diagnostyki w topologii gwiazdy stanowi kolejny atut, umożliwiający szybkie wykrywanie i rozwiązywanie problemów.

Pytanie 30

Który adres IP posiada maskę w postaci pełnej, zgodną z klasą adresu?

A. 140.16.5.18, 255.255.255.0
B. 118.202.15.6, 255.255.0.0
C. 169.12.19.6, 255.255.255.0
D. 180.12.56.1, 255.255.0.0
Analizując pozostałe odpowiedzi, można zauważyć pewne nieprawidłowości w przypisanych maskach do adresów IP. Adres 118.202.15.6 należy do klasy B, jednak zastosowanie maski 255.255.0.0 dla adresu klasy C nie jest poprawne. Adres klasy C, który obejmuje zakres od 192.0.0.0 do 223.255.255.255, wymaga zastosowania maski 255.255.255.0, co pozwala na utworzenie 256 podsieci, w których każda z nich może mieć 254 hosty. Nieprawidłowe przypisanie maski do adresu prowadzi do nieefektywnego zarządzania przestrzenią adresową i potencjalnych problemów z routingiem. Z kolei adres 140.16.5.18 również należy do klasy B, a zastosowanie maski 255.255.255.0 jest niewłaściwe. Zgodnie z konwencją, dla klasy B właściwa maska to 255.255.0.0, co pozwala na szersze możliwości podziału na podsieci. W przypadku adresu 169.12.19.6, który jest adresem klasy B, również nie powinno się używać maski 255.255.255.0, co mogłoby skutkować problemami w identyfikacji właściwej sieci oraz hostów. Te pomyłki mogą wynikać z braku zrozumienia podstawowej klasyfikacji adresów IP oraz ich masek, co jest kluczowe w projektowaniu sieci. Właściwe przypisanie adresów IP i ich masek jest fundamentalne dla zapewnienia stabilności i wydajności sieci, a także dla efektywnego zarządzania jej zasobami.

Pytanie 31

Jakie medium transmisyjne używają myszki Bluetooth do interakcji z komputerem?

A. Promieniowanie ultrafioletowe
B. Fale radiowe w paśmie 800/900 MHz
C. Promieniowanie podczerwone
D. Fale radiowe w paśmie 2,4 GHz
Wybór innych odpowiedzi opiera się na pewnych nieporozumieniach dotyczących technologii bezprzewodowej. Promieniowanie ultrafioletowe, chociaż może być używane w niektórych zastosowaniach technologicznych, nie jest medium transmisyjnym dla urządzeń takich jak myszki Bluetooth. Promieniowanie ultrafioletowe ma zupełnie inne właściwości i zastosowanie, głównie w obszarze medycyny i nauki, a nie w komunikacji bezprzewodowej. Kolejną niepoprawną odpowiedzią jest fala radiowa w paśmie 800/900 MHz; ten zakres częstotliwości jest bardziej powszechnie używany w telekomunikacji mobilnej, ale nie jest standardowo stosowany w technologii Bluetooth. Takie pomylenie może wynikać z braku zrozumienia różnych pasm częstotliwości oraz ich zastosowań. Promieniowanie podczerwone, chociaż było używane w przeszłości w niektórych bezprzewodowych urządzeniach wejściowych, takich jak myszy i piloty zdalnego sterowania, jest ograniczone w zakresie zasięgu i wymaga bezpośredniej linii widzenia między nadajnikiem a odbiornikiem. Nie zapewnia więc elastyczności i wszechstronności, jakie oferuje Bluetooth w paśmie 2,4 GHz. Zrozumienie różnicy pomiędzy tymi technologiami oraz ich zastosowaniami jest kluczowe dla prawidłowego doboru urządzeń i optymalizacji środowiska pracy.

Pytanie 32

Jakie będzie całkowite koszty materiałów potrzebnych do zbudowania sieci lokalnej dla 6 komputerów, jeśli do realizacji sieci wymagane są 100 m kabla UTP kat. 5e oraz 20 m kanału instalacyjnego? Ceny komponentów sieci zostały przedstawione w tabeli

Elementy siecij.m.cena brutto
Kabel UTP kat. 5em1,00 zł
Kanał instalacyjnym8,00 zł
Gniazdo komputeroweszt.5,00 zł
A. 290,00 zł
B. 320,00 zł
C. 360,00 zł
D. 160,00 zł
Odpowiedź 29000 zł jest poprawna ponieważ obliczenia kosztów materiałów są zgodne z danymi w tabeli Do wykonania sieci lokalnej potrzebujemy 100 m kabla UTP kat 5e oraz 20 m kanału instalacyjnego Z tabeli wynika że cena brutto za metr kabla wynosi 1 zł a za metr kanału 8 zł Obliczając koszt 100 m kabla otrzymujemy 100 zł a koszt 20 m kanału to 160 zł Suma tych kosztów daje 260 zł Dodatkowo należy uwzględnić zakup 6 gniazd komputerowych po 5 zł każde co daje łącznie 30 zł Sumując wszystkie koszty 100 zł za kabel 160 zł za kanał i 30 zł za gniazda otrzymujemy 290 zł Jest to zgodne z zasadami projektowania sieci gdzie ważne jest precyzyjne planowanie budżetu aby zapewnić jakość i efektywność sieci Kabel UTP kat 5e jest standardem w budowie sieci lokalnych dzięki swojej przepustowości do 1 Gbps co jest wystarczające dla większości zastosowań domowych i biurowych Kanały instalacyjne umożliwiają estetyczne i bezpieczne prowadzenie okablowania co jest zgodne z dobrymi praktykami instalacyjnymi

Pytanie 33

Jakie urządzenie pozwala na podłączenie drukarki, która nie ma karty sieciowej, do lokalnej sieci komputerowej?

A. Koncentrator
B. Punkt dostępu
C. Regenerator
D. Serwer wydruku
Wybór innego urządzenia jako alternatywy dla serwera wydruku prowadzi do zrozumienia błędnych koncepcji dotyczących komunikacji w sieci. Regenerator, jako urządzenie mające na celu wzmacnianie sygnału w sieci, nie łączy rzeczywiście drukarki z siecią; jego zadaniem jest jedynie przedłużenie zasięgu sygnału, co nie wpływa na możliwość drukowania. Koncentrator, znany również jako hub, działa jako punkt centralny w sieci, ale nie zarządza urządzeniami peryferyjnych, takimi jak drukarki. W rzeczywistości, koncentrator jedynie przesyła dane do wszystkich podłączonych urządzeń, co nie jest wystarczające do efektywnego zarządzania dostępem do drukarki. Punkt dostępu to urządzenie, które umożliwia bezprzewodowe podłączenie do sieci, ale również nie ma zdolności do łączenia drukarki, która nie dysponuje własną kartą sieciową. Te urządzenia nie wpłyną na możliwość drukowania z sieci, ponieważ nie mają funkcji zarządzania drukiem ani nie mogą zrealizować protokołów komunikacji wymaganych do przesyłania zadań drukowania. W rezultacie, mylenie tych urządzeń z serwerem wydruku często prowadzi do frustracji i nieefektywności w biurze, gdzie dostęp do drukarki jest kluczowy dla wydajności pracy.

Pytanie 34

Jaką maskę powinno się zastosować, aby podzielić sieć z adresem 192.168.1.0 na 4 podsieci?

A. 255.255.255.128
B. 255.255.225.192
C. 255.255.255.0
D. 255.255.255.224
Aby podzielić sieć o adresie 192.168.1.0 na 4 podsieci, konieczne jest zwiększenie liczby bitów używanych do identyfikacji podsieci. Adres 192.168.1.0 jest adresem klasy C, co oznacza, że początkowa maska podsieci to 255.255.255.0 (lub /24). W tym przypadku, aby uzyskać 4 podsieci, musimy wygenerować 2 dodatkowe bity do identyfikacji podsieci, co daje nam 2^2 = 4 możliwe podsieci. Nowa maska podsieci będzie zatem wynosić 255.255.255.252 (lub /26). Jednak w dostępnych odpowiedziach poprawna maska to 255.255.255.192 (lub /26), a nie 255.255.225.192, co jest błędem w treści pytania. Stąd, po dodaniu dwóch bitów, mamy 64 adresy na każdą podsieć, z czego 62 można przypisać urządzeniom (przy założeniu, że 2 adresy są zarezerwowane na adres rozgłoszeniowy i adres sieci). Przykładowe podsieci to: 192.168.1.0/26, 192.168.1.64/26, 192.168.1.128/26 oraz 192.168.1.192/26.

Pytanie 35

Wysyłanie żetonu (ang. token) występuje w sieci o fizycznej strukturze

A. siatki
B. gwiazdy
C. pierścienia
D. magistrali
Sieci w różnych topologiach, jak siatka, gwiazda czy magistrala, naprawdę różnią się w sposobie działania. W siatce, gdzie jest dużo połączeń, węzły mogą się komunikować bezpośrednio, ale to może stworzyć chaos w zarządzaniu ruchem i kolizje. Jest bardziej złożona i wymaga więcej zasobów, ale za to jest bardziej odporna na awarie. Topologia gwiazdy ma centralny węzeł, co ułatwia diagnozowanie problemów, ale jak ten centralny padnie, to cały system się sypie. Z kolei magistrala podłącza wszystko do jednego medium, co jest super, ale może też prowadzić do kolizji, jak wszyscy próbują nadawać naraz. Ważne jest, żeby nie mylić tych struktur z topologią pierścienia, gdzie żeton sprawia, że komunikacja jest dużo bardziej uporządkowana i efektywna. Zrozumienie tych różnic jest kluczowe przy projektowaniu efektywnych rozwiązań sieciowych.

Pytanie 36

Jak nazywa się topologia fizyczna, w której każdy węzeł łączy się bezpośrednio ze wszystkimi innymi węzłami?

A. gwiazdy rozszerzonej
B. hierarchiczna
C. pojedynczego pierścienia
D. siatki
Topologia siatki to struktura, w której każdy węzeł (komputer, serwer, urządzenie) jest bezpośrednio połączony ze wszystkimi innymi węzłami w sieci. Taki układ zapewnia wysoką redundancję oraz odporność na awarie, ponieważ nie ma pojedynczego punktu niepowodzenia. Przykładem zastosowania takiej topologii mogą być sieci w dużych organizacjach, w których niezawodność i szybkość komunikacji są kluczowe. Standardy sieciowe, takie jak IEEE 802.3, opisują sposoby realizacji takiej topologii, a w praktyce można ją zrealizować za pomocą przełączników i kabli światłowodowych, co zapewnia dużą przepustowość i niskie opóźnienia. Dobre praktyki w projektowaniu takich sieci sugerują, aby uwzględniać możliwość rozbudowy i łatwej konserwacji, co jest możliwe w topologii siatki dzięki jej modularnej naturze. Warto również zaznaczyć, że topologia siatki jest często wykorzystywana w systemach, gdzie wymagane jest wysokie bezpieczeństwo danych, ponieważ rozproszenie połączeń utrudnia przeprowadzenie ataku na sieć.

Pytanie 37

Do bezprzewodowej transmisji danych pomiędzy dwiema jednostkami, z wykorzystaniem fal radiowych w zakresie ISM 2,4 GHz, przeznaczony jest interfejs

A. IEEE 1394
B. Fire Wire
C. Bluetooth
D. IrDA
FireWire, znany również jako IEEE 1394, jest interfejsem zaprojektowanym głównie do przesyłu dużych ilości danych między urządzeniami, takimi jak kamery cyfrowe i dyski twarde. Nie jest on jednak interfejsem bezprzewodowym, co czyni go nieodpowiednim w kontekście przesyłania danych w technologii radiowej. Podobnie, IrDA (Infrared Data Association) wykorzystuje podczerwień do komunikacji, co ogranicza zasięg i wymaga bezpośredniej linii widzenia pomiędzy urządzeniami, co również nie pasuje do opisanego przypadku. Z kolei IEEE 1394 również bazuje na połączeniach przewodowych, co wyklucza go z możliwości przesyłania danych w sposób bezprzewodowy. Te technologie, mimo że mają swoje zastosowania, nie są odpowiednie dla scenariuszy wymagających elastyczności i mobilności, jakie oferuje Bluetooth. Często popełnianym błędem jest mylenie różnych technologii komunikacyjnych, co prowadzi do nieprawidłowych wniosków. Warto zrozumieć, że każda z tych technologii ma swoje specyficzne zastosowanie i ograniczenia, a wybór odpowiedniego interfejsu powinien bazować na konkretnych wymaganiach i okolicznościach, a nie na ogólnych założeniach dotyczących przesyłania danych.

Pytanie 38

IMAP jest protokołem do

A. synchronizacji czasu z serwerami
B. nadzoru nad urządzeniami sieciowymi
C. odbierania wiadomości e-mail
D. wysyłania wiadomości e-mail
Ludzie często mylą IMAP z innymi protokołami, na przykład tymi do monitorowania sieci czy do wysyłania maili. Monitorowanie urządzeń w sieci zazwyczaj dzieje się za pomocą czegoś takiego jak SNMP, które zbiera info o stanie sprzętu. Często administratorzy używają tego do sprawdzania, jak działają routery czy przełączniki, co po prostu pomaga w utrzymaniu całej infrastruktury. A synchronizacja czasu? Zwykle to robią serwery NTP, żeby urządzenia miały poprawny czas. Wysyłanie maili z kolei odbywa się przez SMTP, który transportuje wiadomości od nadawcy do odbiorcy. IMAP i SMTP to kompletnie różne rzeczy, bo IMAP skupia się na odbiorze i zarządzaniu wiadomościami. Czasami ludzie nie rozumieją, jakie zadania mają różne protokoły, i stąd biorą się błędy w odpowiedziach.

Pytanie 39

Do czego służy narzędzie 'ping' w sieciach komputerowych?

A. Przesyłania plików między komputerami
B. Zarządzania przepustowością sieci
C. Sprawdzania dostępności hosta w sieci
D. Tworzenia kopii zapasowych danych
Narzędzie 'ping' jest podstawowym, lecz niezwykle użytecznym narzędziem w administracji sieci komputerowych. Służy do sprawdzania dostępności hosta w sieci oraz mierzenia czasu, jaki zajmuje przesłanie pakietów danych do tego hosta i z powrotem. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) echo request do wybranego adresu IP i oczekiwania na echo reply. Dzięki temu można zweryfikować, czy host jest osiągalny i w jakim czasie. Jest to szczególnie przydatne przy diagnozowaniu problemów z siecią, takich jak brak połączenia czy opóźnienia w transmisji danych. Umożliwia także identyfikację problemów związanych z routingiem. W praktyce, administratorzy sieci używają 'ping' do szybkiego sprawdzenia statusu urządzeń sieciowych oraz serwerów, co jest zgodne z dobrymi praktykami i standardami branżowymi. Narzędzie to jest dostępne w większości systemów operacyjnych i stanowi nieocenioną pomoc w codziennej pracy z sieciami.

Pytanie 40

NAT64 (Network Address Translation 64) to proces, który przekształca adresy

A. IPv4 na adresy MAC
B. IPv4 na adresy IPv6
C. MAC na adresy IPv4
D. prywatne na adresy publiczne
NAT64 (Network Address Translation 64) jest technologią, która umożliwia komunikację między sieciami IPv4 a IPv6. W szczególności proces ten mapuje adresy IPv4 na adresy IPv6, co jest niezwykle istotne w kontekście współczesnych sieci, gdzie powoli następuje przejście z IPv4 do IPv6. NAT64 działa na zasadzie translacji, co oznacza, że kiedy urządzenie w sieci IPv6 chce skomunikować się z zasobem dostępnym tylko w sieci IPv4, NAT64 konwertuje pakiety, aby mogły przejść przez różnice w protokołach. Przykładem praktycznego zastosowania NAT64 jest sytuacja, gdy nowoczesne aplikacje i urządzenia w sieci IPv6 próbują uzyskać dostęp do starszych serwisów internetowych, które są dostępne wyłącznie w IPv4. Zastosowanie NAT64 jest zgodne z zaleceniami IETF (Internet Engineering Task Force) dotyczącymi interoperacyjności między różnymi protokołami internetowymi, co czyni tę technologię kluczowym elementem zarówno w migracji, jak i w integracji nowoczesnych rozwiązań sieciowych.