Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 19:32
  • Data zakończenia: 19 grudnia 2025 19:39

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie kanały powinno się wybrać dla trzech sieci WLAN 2,4 GHz, aby zredukować ich wzajemne zakłócenia?

A. 1,3,12
B. 1,6,11
C. 3, 6, 12
D. 2, 5,7
Wybór kanałów, takich jak 2, 5 i 7, jest nieefektywny, ponieważ wszystkie te kanały nachodzą na siebie, co prowadzi do znacznych zakłóceń w komunikacji bezprzewodowej. Kanał 2 ma zakres częstotliwości od 2,412 GHz do 2,417 GHz, kanał 5 od 2,432 GHz do 2,437 GHz, a kanał 7 obejmuje częstotliwości od 2,442 GHz do 2,447 GHz. Wszyscy ci kanały są blisko siebie, co oznacza, że sygnały interferują ze sobą i mogą powodować spadki wydajności oraz problemy z łącznością. Użytkownicy mogą doświadczać przerw w połączeniach oraz wolniejszych prędkości transferu danych, co jest szczególnie problematyczne w biurach czy miejscach publicznych, gdzie wiele urządzeń korzysta z sieci jednocześnie. Z kolei wybór kanałów 3, 6 i 12 również nie jest odpowiedni, ponieważ kanał 3 nachodzi na kanał 6, co powoduje interferencję. W przypadku wyboru kanałów 1, 3 i 12, również występują problemy, ponieważ kanał 1 ma wpływ na kanał 3. W praktyce, dobierając kanały w sieci WLAN, zawsze należy kierować się zasadą, że tylko te kanały, które są od siebie oddalone mogą współistnieć bez zakłóceń, co w przypadku wymienionych opcji nie zachodzi. Dlatego kluczowe jest, aby stosować kanały 1, 6 i 11 dla zapewnienia najlepszego działania sieci bezprzewodowej.

Pytanie 2

Ile punktów przyłączeniowych (2 x RJ45), według wymogów normy PN-EN 50167, powinno być w biurze o powierzchni 49 m2?

A. 4
B. 5
C. 9
D. 1
Wybór innej liczby punktów abonenckich niż 5 może prowadzić do licznych problemów związanych z infrastrukturą sieciową w biurze. Odpowiedzi takie jak 9, 4, czy 1 nie uwzględniają wymagań normy PN-EN 50167 oraz realnych potrzeb biura. W przypadku odpowiedzi 9, nadmiar punktów abonenckich może prowadzić do nieefektywnego wykorzystania zasobów, zwiększając koszty bez rzeczywistej wartości dodanej. W przeciwieństwie do tego, wybór 4 punktów abonenckich może być niewystarczający dla biura o powierzchni 49 m², co prowadzi do sytuacji, w której pracownicy muszą dzielić dostęp do sieci, co może generować problemy z prędkością i jakością połączeń. Z kolei odpowiedź 1 punkt abonencki jest ekstremalnie niewystarczająca, co może skutkować poważnymi ograniczeniami w pracy, gdzie wielu pracowników korzysta z zasobów sieciowych jednocześnie. Typowym błędem myślowym jest próba uproszczenia analizy punktów abonenckich do liczby stanowisk roboczych bez uwzględnienia norm oraz specyfiki pracy w danym biurze. W rzeczywistości, kluczowe jest nie tylko zapewnienie liczby punktów zgodnej z normą, ale również ich odpowiednie rozmieszczenie, aby zaspokoić potrzeby różnych użytkowników oraz sprzętu w biurze. Dlatego też, poprawne zaplanowanie infrastruktury telekomunikacyjnej jest niezbędne dla zapewnienia efektywności i komfortu pracy w biurze.

Pytanie 3

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 10 m2
B. 5 m2
C. 30 m2
D. 20 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 4

Aby oddzielić komputery w sieci, które posiadają ten sam adres IPv4 i są połączone z przełącznikiem zarządzalnym, należy przypisać

A. aktywnych interfejsów do różnych VLAN-ów
B. statyczne adresy MAC komputerów do niewykorzystanych interfejsów
C. niewykorzystane interfejsy do różnych VLAN-ów
D. statyczne adresy MAC komputerów do aktywnych interfejsów
Próba odseparowania komputerów pracujących w sieci o tym samym adresie IPv4 poprzez przypisanie statycznych adresów MAC do używanych interfejsów jest błędnym podejściem, które nie rozwiązuje problemu kolizji adresów IP w sieci. Adresy MAC są unikalnymi identyfikatorami przypisanymi do interfejsów sieciowych, ale nie mają wpływu na logikę routowania czy komunikacji w sieci IP. Przypisanie statycznych adresów MAC nie pozwala na odseparowanie ruchu między komputerami, które mają ten sam adres IP, a co za tym idzie, nadal będzie dochodziło do konfliktów, co może prowadzić do utraty pakietów czy problemów z dostępem do sieci. Z kolei przypisanie nieużywanych interfejsów do różnych VLAN-ów również nie jest właściwe, ponieważ nie można skonfigurować VLAN-ów na interfejsach, które nie są aktywne. W praktyce błędne jest również przypisywanie używanych interfejsów do nieużywanych VLAN-ów, ponieważ uniemożliwia to dostęp do zasobów sieciowych dla komputerów w tych VLAN-ach. Dobrą praktyką jest korzystanie z logicznej separacji za pomocą VLAN-ów, co nie tylko zwiększa bezpieczeństwo, ale również umożliwia lepsze zarządzanie ruchem sieciowym oraz organizację zasobów, zamiast polegać na statycznych konfiguracjach, które mogą prowadzić do błędów i problemów z wydajnością.

Pytanie 5

Do których komputerów dotrze ramka rozgłoszeniowa wysyłana ze stacji roboczej PC1?

Ilustracja do pytania
A. PC4 i PC5
B. PC2 i PC6
C. PC2 i PC4
D. PC3 i PC6
Ramka rozgłoszeniowa wysyłana z PC1 dotrze do PC3 i PC6, ponieważ wszystkie te urządzenia znajdują się w tym samym VLANie, czyli VLAN10. W kontekście sieci komputerowych, ramki rozgłoszeniowe są mechanizmem pozwalającym na wysyłanie danych do wszystkich urządzeń w danym VLANie. To oznacza, że wszystkie urządzenia, które są logicznie połączone w tej samej grupie, mogą odbierać taką ramkę. Chociaż ramki rozgłoszeniowe są ograniczone do jednego VLANu, ich zastosowanie jest kluczowe w przypadku komunikacji w lokalnych sieciach. Przykładem mogą być protokoły ARP (Address Resolution Protocol), które wykorzystują ramki rozgłoszeniowe do mapowania adresów IP na adresy MAC. Z tego względu dobrze zrozumieć, jak działają VLANy oraz zasady ich izolacji, aby efektywnie zarządzać ruchem w sieci oraz poprawić jej bezpieczeństwo, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami.

Pytanie 6

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. serwerem
B. koncentratorem
C. routerem
D. przełącznikiem
Serwer, jako urządzenie, pełni zupełnie inną rolę niż router. Jest to system komputerowy, który dostarcza różnorodne usługi i zasoby innym komputerom w sieci, nie zajmując się bezpośrednim zarządzaniem przepływem informacji między sieciami. Serwery mogą obsługiwać aplikacje, przechowywać dane czy oferować usługi takie jak hosting stron internetowych, ale nie mają zdolności do trasowania pakietów danych jak routery. Przełącznik natomiast działa na warstwie drugiej modelu OSI, czyli zajmuje się przekazywaniem ramek między urządzeniami w tej samej sieci lokalnej. Jego główną funkcją jest przełączanie ramek w oparciu o adresy MAC, co sprawia, że nie jest on w stanie łączyć różnych sieci. Koncentratory, które są urządzeniami starszej generacji, również nie mają zdolności do zarządzania ruchem między sieciami; działają na poziomie fizycznym, po prostu przekazując sygnały do wszystkich podłączonych urządzeń bez inteligentnego kierowania nimi. Te mylne pojęcia mogą prowadzić do nieefektywnego projektowania sieci, ponieważ zrozumienie specyfiki każdego z tych urządzeń jest kluczowe dla ich prawidłowego zastosowania. Warto zwrócić uwagę, że wybór odpowiedniego urządzenia sieciowego powinien być oparty na konkretnej funkcjonalności i wymaganiach sieci.

Pytanie 7

Które z poniższych urządzeń pozwala na bezprzewodowe łączenie się z siecią lokalną opartą na kablu?

A. Przełącznik
B. Modem
C. Punkt dostępowy
D. Media konwerter
Punkt dostępowy, znany również jako access point, jest kluczowym urządzeniem w kontekście bezprzewodowych sieci lokalnych. Jego głównym zadaniem jest umożliwienie urządzeniom bezprzewodowym, takim jak laptopy, smartfony czy tablety, dostępu do kablowej sieci lokalnej. Punkty dostępowe działają na zasadzie połączenia z routerem lub przełącznikiem za pomocą kabla Ethernet, a następnie transmitują sygnał bezprzewodowy w określonym zasięgu, co pozwala użytkownikom na wygodne korzystanie z internetu bez konieczności używania kabli. Standardy takie jak IEEE 802.11, powszechnie znane jako Wi-Fi, definiują parametry pracy punktów dostępowych, w tym szybkości transmisji danych oraz zakresy częstotliwości. Dzięki implementacji punktów dostępowych w biurach, szkołach czy przestrzeniach publicznych, można zapewnić użytkownikom mobilny dostęp do sieci, co jest niezbędne w dobie pracy zdalnej i mobilności. Przykładem zastosowania punktów dostępowych są sieci hot-spot w kawiarniach lub na lotniskach, gdzie użytkownicy mogą łączyć się z internetem w sposób elastyczny i wygodny.

Pytanie 8

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 6 m
B. 3 m
C. 10 m
D. 5 m
Wybór długości kabla mniejszej niż 10 metrów, jak 3, 5 lub 6 metrów, wynika z powszechnego błędnego przekonania, że krótsze kable zawsze skutkują lepszą jakością sygnału. W rzeczywistości, norma PN-EN 50174 jasno określa, że maksymalna długość kabla połączeniowego wynosi 10 metrów, co jest optymalnym rozwiązaniem zarówno dla jakości sygnału, jak i elastyczności instalacji. Zbyt krótkie kable mogą ograniczać możliwości rozbudowy sieci w przyszłości, co jest istotne w kontekście dynamicznego rozwoju technologii i zmieniających się potrzeb użytkowników. Często przyczyną błędnego wyboru długości kabla jest także niewłaściwe zrozumienie zasad działania sygnałów elektrycznych i optycznych w kablach. W przypadku kabli sieciowych, takich jak kable Ethernet, wartość maksymalnej długości oznacza, że nawet przy pełnym obciążeniu sieci, sygnał będzie utrzymywany na odpowiednim poziomie bez strat jakości. Ponadto, długość kabla powinna być zawsze dostosowana do konkretnej konfiguracji środowiska oraz zastosowania, co nie jest możliwe przy użyciu standardowych skrótów myślowych. Dlatego kluczowe jest zapoznanie się z obowiązującymi normami oraz wytycznymi, aby zapewnić nie tylko optymalne działanie sieci, ale także przyszłą możliwość rozwoju infrastruktury.

Pytanie 9

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Przełącznik warstwy 3
B. Ruter ADSL
C. Punkt dostępu
D. Konwerter mediów
Punkt dostępu, choć użyteczny w kontekście rozbudowy sieci lokalnej, nie jest urządzeniem, które łączy lokalną sieć z Internetem. Jego główną funkcją jest umożliwienie bezprzewodowego dostępu do sieci, jednak nie ma zdolności do bezpośredniego integrowania połączenia internetowego z operatorem telekomunikacyjnym. Z kolei przełącznik warstwy 3, który może kierować ruch pomiędzy różnymi podsieciami, również nie jest zaprojektowany do nawiązywania połączeń z Internetem, a raczej do zarządzania ruchem wewnątrz lokalnej sieci. Takie urządzenie działa na podstawie adresacji IP, ale aby nawiązać połączenie z Internetem, potrzebuje innego urządzenia, takiego jak ruter. Konwerter mediów, który używany jest do konwersji sygnałów pomiędzy różnymi rodzajami mediów transmisyjnych, także nie ma zdolności do zarządzania połączeniami z Internetem. W praktyce, korzystając z tych urządzeń, można popełnić błąd polegający na myleniu ich funkcji z rolą rutera ADSL w kontekście dostępu do Internetu. To prowadzi do nieefektywnego projektowania sieci, co w dłuższej perspektywie może skutkować problemami z łącznością oraz wydajnością. Aby zapewnić prawidłowe połączenie z Internetem, kluczowe jest użycie rutera ADSL, który jest dedykowanym urządzeniem do tej funkcji.

Pytanie 10

Które urządzenie jest stosowane do mocowania kabla w module Keystone?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Urządzenie oznaczone literą D to narzędzie do zaciskania, które jest niezbędne w procesie mocowania kabli w modułach Keystone. Dzięki zastosowaniu tego narzędzia, możliwe jest pewne i trwałe połączenie kabla z modułem, co jest kluczowe dla zapewnienia stabilności i jakości sygnału w systemach teleinformatycznych. W praktyce, narzędzie to pozwala na precyzyjne wprowadzenie żył kabla do złącza, a następnie ich zaciśnięcie, co zapewnia dobre przewodnictwo oraz minimalizuje ryzyko awarii. Użycie narzędzia do zaciskania zgodnie z normami EIA/TIA-568 umożliwia osiągnięcie wysokiej jakości połączeń w sieciach lokalnych. Dobrą praktyką jest również stosowanie narzędzi, które umożliwiają testowanie poprawności wykonania połączenia, co pozwala na wczesne wykrycie ewentualnych błędów. W efekcie, stosowanie odpowiednich narzędzi do mocowania kabli w modułach Keystone przyczynia się do zwiększenia efektywności i niezawodności całej infrastruktury sieciowej.

Pytanie 11

Na którym rysunku został przedstawiony panel krosowniczy?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Panel krosowniczy, przedstawiony na zdjęciu oznaczonym literą B, jest kluczowym elementem infrastruktury teleinformatycznej. Służy do organizacji i zarządzania połączeniami kablowymi w szafach serwerowych oraz rozdzielniach telekomunikacyjnych. Warto zauważyć, że panele te umożliwiają łatwe przemiany połączeń, co jest istotne w kontekście utrzymania i modyfikacji sieci. Typowy panel krosowniczy zawiera wiele portów, najczęściej RJ-45, które są standardem w sieciach Ethernet. Praktyczne zastosowanie paneli krosowniczych obejmuje nie tylko uporządkowanie kabli w sposób estetyczny, ale także poprawę efektywności zarządzania siecią, co jest zgodne z zaleceniami standardów ANSI/TIA-568 dotyczących okablowania strukturalnego. Dodatkowo, panel krosowniczy pozwala na szybką diagnostykę i serwisowanie, co znacznie przyspiesza czas reakcji w przypadku wystąpienia problemów. Właściwe użycie tych urządzeń jest kluczowe dla zapewnienia niezawodności oraz wydajności systemów teleinformatycznych.

Pytanie 12

Podczas realizacji projektu sieci LAN zastosowano medium transmisyjne w standardzie Ethernet 1000Base-T. Która z poniższych informacji jest poprawna?

A. Jest to standard sieci optycznych działających na wielomodowych światłowodach
B. To standard sieci optycznych, którego maksymalny zasięg wynosi 1000 metrów
C. Standard ten umożliwia transmisję w trybie full-duplex przy maksymalnym zasięgu 100 metrów
D. Standard ten pozwala na transmisję w trybie half-duplex przy maksymalnym zasięgu 1000 metrów
Wykorzystanie nieprawidłowych stwierdzeń w pytaniu prowadzi do błędnych wniosków na temat standardu 1000Base-T. Po pierwsze, standard ten nie dotyczy sieci optycznych, co zostało błędnie zasugerowane w jednej z opcji. Ethernet 1000Base-T operuje na kablach miedzianych, co oznacza, że nie jest to technologia związana z przesyłem danych przez światłowody. W kontek

Pytanie 13

Które urządzenie sieciowe przedstawiono na ilustracji?

Ilustracja do pytania
A. Bramka VoIP.
B. Ruter.
C. Konwerter mediów.
D. Przełącznik.
Bramka VoIP, jak przedstawiona na ilustracji, jest kluczowym urządzeniem w modernizacji komunikacji głosowej, które pozwala na integrację tradycyjnych telefonów z nowoczesnymi systemami telefonii internetowej. Na zdjęciu widoczne są porty Ethernet, które umożliwiają podłączenie urządzenia do lokalnej sieci komputerowej, oraz dodatkowe porty do podłączenia telefonów analogowych. Użycie bramek VoIP jest szczególnie korzystne w działalności biznesowej, gdzie możliwość prowadzenia rozmów telefonicznych przez Internet może znacząco obniżyć koszty połączeń. W praktyce, bramki VoIP wykorzystują protokoły takie jak SIP (Session Initiation Protocol), co umożliwia zarządzanie połączeniami głosowymi w sposób wydajny i elastyczny. Ponadto, urządzenia te wspierają funkcje takie jak przekazywanie połączeń, konferencje telefoniczne oraz nagrywanie rozmów, co czyni je niezbędnymi w nowoczesnych środowiskach pracy. Warto także zauważyć, że zgodność z normami i standardami branżowymi, takimi jak IEEE 802.3 dla Ethernetu, zapewnia niezawodność i wysoką jakość połączeń.

Pytanie 14

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Skrętki ekranowanej STP
B. Fal radiowych
C. Kabla współosiowego
D. Światłowodu jednodomowego
Analizując odpowiedzi inne niż światłowód jednodomowy, można zauważyć, że mają one sporo ograniczeń, zwłaszcza jeśli chodzi o transmisję danych na większe odległości i w obecności zakłóceń elektromagnetycznych. Kabel współosiowy, mimo że kiedyś był popularny, nie dorasta do pięt światłowodowi, bo ma słabszą przepustowość i wydajność. Ponadto, objawia większą wrażliwość na zakłócenia, co czyni go słabym wyborem w miejscach z dużą ilością EMI. Fal radiowych można używać do bezprzewodowej transmisji danych, ale tutaj znów mamy problem z zasięgiem i stabilnością sygnału, które mogą być niewystarczające, zwłaszcza na takim dystansie jak 110 m – sygnał często traci na jakości. Skrętka ekranowana STP, choć ma pewną ochronę przed zakłóceniami, też nie jest idealna, głównie z powodu ograniczeń długości kabli oraz maksymalnej przepustowości. Często popełniamy błąd, skupiając się na krótkoterminowych kosztach czy wygodzie, a nie myśląc o długoterminowej wydajności i niezawodności. W nowoczesnych sieciach kluczowe jest, aby wybierać rozwiązania, które nie tylko sprostają obecnym wymaganiom, ale też będą przyszłościowe i łatwe do rozbudowy.

Pytanie 15

Jak nazywa się komunikacja w obie strony w sieci Ethernet?

A. Simplex
B. Duosimplex
C. Halfduplex
D. Fuli duplex
Odpowiedź "Fuli duplex" odnosi się do trybu transmisji, w którym dane mogą być przesyłane w obu kierunkach jednocześnie, co znacząco zwiększa efektywność komunikacji w sieci Ethernet. W przeciwieństwie do trybu half-duplex, gdzie dane mogą być przesyłane tylko w jednym kierunku w danym czasie, fuli duplex umożliwia pełne wykorzystanie dostępnej przepustowości łącza. Jest to szczególnie istotne w nowoczesnych sieciach komputerowych, gdzie szybkość i płynność przesyłania danych mają kluczowe znaczenie dla usług wymagających dużej ilości transferu, takich jak strumieniowe przesyłanie wideo czy telekonferencje. W praktyce, urządzenia sieciowe wspierające fuli duplex, takie jak przełączniki i routery, zapewniają lepszą wydajność i mniejsze opóźnienia, co jest zgodne z najlepszymi praktykami branżowymi w zakresie projektowania sieci. Uznanie tego trybu jako standardowego w sieciach Ethernet przyczyniło się do rozwoju technologii, takich jak Ethernet 10G i wyższe, które wymagają efektywnej i szybkiej komunikacji.

Pytanie 16

W strukturze hierarchicznej sieci komputery należące do użytkowników znajdują się w warstwie

A. dystrybucji
B. rdzenia
C. szkieletowej
D. dostępu
Wybór odpowiedzi dotyczącej warstwy rdzenia, dystrybucji lub szkieletowej pokazuje pewne nieporozumienia związane z hierarchiczną strukturą sieci komputerowych. Warstwa rdzenia, będąca najwyższą warstwą w modelu, jest odpowiedzialna za szybkie przesyłanie danych między różnymi segmentami sieci oraz zapewnianie wysokiej przepustowości i niezawodności. Jej głównym zadaniem jest transportowanie ruchu danych, a nie bezpośrednia obsługa użytkowników. Z kolei warstwa dystrybucji pełni funkcję pośrednią, agregując ruch z warstwy dostępu i kierując go do rdzenia, co również nie jest jej głównym zadaniem. W kontekście szkieletowej warstwy, można zauważyć, że odnosi się ona do infrastruktury, która wspiera połączenia na dużą skalę, a nie do podłączenia użytkowników. Często popełnianym błędem jest mylenie funkcji i zadań poszczególnych warstw, co prowadzi do nieprawidłowego zrozumienia struktury sieci. Dlatego istotne jest zrozumienie, że to warstwa dostępu jest miejscem, gdzie użytkownicy fizycznie łączą się z siecią, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Niezrozumienie różnic między tymi warstwami może skutkować nieefektywnym projektowaniem sieci oraz problemami z wydajnością i bezpieczeństwem.

Pytanie 17

Które z urządzeń służy do testowania okablowania UTP?

Ilustracja do pytania
A. 3.
B. 2.
C. 4.
D. 1.
Wybór jednego z pozostałych urządzeń jako testera okablowania UTP może prowadzić do poważnych nieporozumień dotyczących ich zastosowania. Multimetr, oznaczony numerem 1, jest narzędziem elektronicznym do pomiaru napięcia, prądu oraz oporu, ale nie jest przystosowany do diagnostyki połączeń kabli UTP. Jego funkcja polega na pomiarach elektrycznych, co nie obejmuje testowania integralności komunikacji w sieciach komputerowych. Oscyloskop, przedstawiony jako odpowiedź numer 3, służy do analizy kształtu sygnałów elektrycznych i, chociaż może być użyteczny w bardziej zaawansowanych testach, nie jest dedykowany do oceny poprawności okablowania UTP. Jest to złożone urządzenie, które wymaga doświadczenia i wiedzy w zakresie analizy sygnałów, co czyni je niepraktycznym wyborem do prostych testów kabli. Natomiast urządzenie do testowania instalacji elektrycznych, oznaczone jako 4, również nie spełnia wymogów dla testowania okablowania UTP, ponieważ jest przeznaczone do oceny instalacji elektrycznych, a nie sieciowych. Wybierając niewłaściwe urządzenie, można nie tylko zignorować istotne problemy z połączeniami, ale także narażać się na nieefektywność i straty w działaniu sieci. Kluczowe jest zrozumienie, że wybór odpowiednich narzędzi ma fundamentalne znaczenie dla jakości i niezawodności systemów komunikacyjnych.

Pytanie 18

Urządzenie, które łączy sieć kablową z siecią bezprzewodową, to

A. most.
B. koncentrator.
C. przełącznik.
D. punkt dostępu.
Most (brigde) jest urządzeniem, które łączy różne segmenty tej samej sieci lokalnej, a jego zadaniem jest filtracja ramek w celu ograniczenia ruchu w sieci oraz zwiększenia wydajności. Nie jest on odpowiedni do łączenia sieci przewodowej z bezprzewodową, ponieważ nie ma funkcji, które umożliwiałyby komunikację bezprzewodową. Przełącznik (switch) to urządzenie, które pracuje na poziomie drugiej warstwy modelu OSI, kierując ruch w obrębie sieci LAN poprzez analizę adresów MAC. Jego rola polega na efektywnym przesyłaniu danych w sieci przewodowej, co czyni go nieodpowiednim do integracji z siecią bezprzewodową. Koncentrator (hub) działa na poziomie pierwszej warstwy modelu OSI i przesyła dane do wszystkich podłączonych urządzeń w sieci, co prowadzi do nieefektywnego wykorzystania pasma. W przeciwieństwie do punktu dostępu, nie obsługuje on komunikacji bezprzewodowej, więc nie może łączyć sieci przewodowej z bezprzewodową. Typowym błędem przy wyborze odpowiedniego urządzenia jest mylenie funkcji mostu, przełącznika i koncentratora z punktem dostępu, co może prowadzić do nieprawidłowego zaprojektowania sieci, skutkującego brakiem efektywności i niezawodności komunikacji. Ważne jest zrozumienie różnicy pomiędzy tymi urządzeniami, aby prawidłowo zbudować architekturę sieciową, która spełnia oczekiwania użytkowników oraz zapewnia odpowiednią wydajność i bezpieczeństwo.

Pytanie 19

Który komponent serwera w formacie rack można wymienić bez potrzeby demontażu górnej pokrywy?

A. Moduł RAM
B. Chip procesora
C. Karta sieciowa
D. Dysk twardy
Wybór procesora jako elementu do wymiany bez demontażu obudowy to nie najlepszy pomysł. Procesor to serce serwera i jego wymiana wymaga dostęp do płyty głównej, a to często wiąże się z koniecznością ściągnięcia obudowy. Dodatkowo, wymiana procesora to nie tylko fizyczna robota, ale też trzeba pamiętać o różnych sprawach, jak zworki, pasty termoprzewodzącej oraz dopasowaniu do płyty głównej. Jest to dużo bardziej skomplikowane niż przy wydaniu dysku twardego. Co do pamięci RAM, choć czasem wymienia się ją łatwiej, to też często wymaga dostępu do wnętrza serwera. A karta sieciowa, nawet jeśli teoretycznie da się ją wymienić bez wyłączania serwera, w praktyce w wielu przypadkach też wymaga częściowego dostępu do środka. Warto zrozumieć, które komponenty można wymieniać na gorąco, a które wymagają pełnej interwencji, bo w środowisku produkcyjnym, gdzie każdy przestój kosztuje, to naprawdę istotne.

Pytanie 20

W specyfikacji sieci Ethernet 1000Base-T maksymalna długość segmentu dla skrętki kategorii 5 wynosi

A. 500 m
B. 100 m
C. 250 m
D. 1000 m
Wybór długości segmentu 500 m, 250 m lub 1000 m opiera się na nieporozumieniu dotyczącym standardów Ethernet. W przypadku 1000Base-T maksymalna długość dla kabla skrętki kategorii 5 wynosi 100 m, a nie 250 m czy 500 m. Przekroczenie tego limitu może prowadzić do znacznych strat sygnału i zakłóceń, co w konsekwencji wpływa na jakość transmisji danych. Warto zaznaczyć, że skrętki Cat 5 oraz Cat 5e są zaprojektowane do efektywnego przesyłania sygnałów na krótszych dystansach, a ich wydajność maleje w miarę zwiększania długości kabla. Na przykład, długości 500 m lub 1000 m są zbyt odległe dla standardu 1000Base-T; takie długości są bardziej odpowiednie dla technologii światłowodowej, która może obsługiwać znacznie większe odległości bez utraty jakości sygnału. Typowym błędem w myśleniu jest założenie, że im dłuższy kabel, tym lepsze połączenie, co jest dalekie od prawdy w kontekście Ethernetu. Dla efektywności i niezawodności sieci lokalnych ważne jest stosowanie się do ściśle określonych standardów i dobrych praktyk branżowych, co obejmuje ograniczenie długości segmentów kablowych do maksymalnie 100 m w przypadku 1000Base-T.

Pytanie 21

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Wkrętaka płaskiego
B. Wkrętaka krzyżakowego
C. Narzędzia uderzeniowego
D. Zaciskarki do wtyków RJ45
Zastosowanie nieodpowiednich narzędzi do zarabiania końcówek kabla UTP w module keystone ze stykami typu 110 może prowadzić do wielu problemów, w tym do słabej jakości połączeń i awarii systemów. Wkrętak krzyżakowy, mimo że jest przydatny w wielu zastosowaniach, nie jest w stanie zapewnić odpowiedniego połączenia pomiędzy przewodami a stykami. Jego głównym przeznaczeniem jest dokręcanie lub odkręcanie śrub, co jest zupełnie inną funkcją niż mechaniczne wciśnięcie żył w styk. Zaciskarka do wtyków RJ45, na którą wielu może pomyśleć, jest narzędziem przeznaczonym do innego rodzaju połączeń, zazwyczaj stosowanych z wtykami RJ45, a nie do modułów keystone. Wkrętak płaski również nie jest odpowiedni, ponieważ nie ma mechanizmu uderzeniowego, który jest kluczowy w tym kontekście. Użycie niewłaściwego narzędzia może prowadzić do problemów z transmisją danych, takich jak zakłócenia sygnału czy niestabilność połączeń, co może negatywnie wpłynąć na całą infrastrukturę sieciową. W związku z tym, dla uzyskania wysokiej jakości i niezawodnych połączeń, kluczowe jest stosowanie narzędzia uderzeniowego zgodnie z ustalonymi standardami branżowymi.

Pytanie 22

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Gwiazda.
B. Drzewo.
C. Pierścień.
D. Siatka.
Topologia drzewa, w odróżnieniu od pierścienia, opiera się na hierarchicznej strukturze, gdzie węzły są powiązane w formie gałęzi. Każde urządzenie sieciowe, z reguły, ma połączenie z jednym rodzicem oraz wieloma potomkami, co skutkuje tym, że nie każde urządzenie ma po dwa połączenia. Takie rozmieszczenie prowadzi do silnie zdefiniowanej struktury, ale nie przekłada się na możliwość bezpośredniego przesyłania danych w sposób, w jaki odbywa się to w topologii pierścienia. Topologia gwiazdy z kolei polega na tym, że wszystkie urządzenia są podłączone do centralnego punktu, co również nie spełnia warunków zadania. W modelu gwiazdy, w przypadku awarii centralnego węzła, cała sieć może przestać działać, co jest istotnym ograniczeniem w kontekście niezawodności. Natomiast topologia siatki charakteryzuje się dużą liczbą połączeń między urządzeniami, co zwiększa odporność na awarie, ale również komplikuje strukturę i może generować nadmiarowe koszty związane z instalacją. Kluczowym błędem myślowym przy wyborze nieprawidłowych odpowiedzi jest pomylenie charakterystyki układu połączeń oraz sposobu transmisji danych, co prowadzi do mylnych wniosków na temat funkcjonalności różnych topologii sieciowych. Zrozumienie tych różnic jest niezbędne dla projektowania efektywnych i niezawodnych sieci.

Pytanie 23

Jakie urządzenie pozwala komputerom na bezprzewodowe łączenie się z przewodową siecią komputerową?

A. koncentrator
B. modem
C. punkt dostępu
D. regenerator
Modem to urządzenie, które zamienia sygnał cyfrowy na analogowy, dzięki czemu możemy komunikować się przez linie telefoniczne lub inne media. Oczywiście, modemy są kluczowe do dostępu do Internetu, ale nie mają nic wspólnego z bezprzewodowym dostępem do lokalnej sieci. Regenerator to z kolei coś innego – wzmacnia sygnał w sieciach przewodowych, co jest przydatne, ale nie zapewnia dostępu bezprzewodowego. Koncentrator również nie ma tej funkcji; on łączy różne urządzenia w lokalnej sieci, ale też nie działa bez kabli. Takie mylenie urządzeń to częsty problem, który może wynikać z niepełnego zrozumienia ich funkcji. Ważne, żeby wiedzieć, jakie rolę odgrywają te urządzenia w sieciach, bo to jest kluczowe dla projektowania i zarządzania nowoczesnymi systemami komunikacyjnymi, które coraz częściej polegają na bezprzewodowej technologii.

Pytanie 24

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
B. światłowód jednomodowy lub kabel U-UTP kategorii 5e
C. kabel S-FTP kategorii 5e lub światłowód
D. światłowód jednomodowy lub fale radiowe 2,4 GHz
Zastosowanie światłowodu jednomodowego lub fal radiowych 2,4 GHz nie jest najlepszym rozwiązaniem w kontekście budynku produkcyjnego, w którym występują silne zakłócenia elektromagnetyczne. Światłowód jednomodowy, mimo że jest odporny na zakłócenia elektromagnetyczne, jest w praktyce droższy i bardziej skomplikowany w instalacji. Dodatkowo, w przypadku fal radiowych 2,4 GHz, istnieje wiele ograniczeń związanych z zakłóceniami i interferencjami, szczególnie w gęsto zaludnionych obszarach przemysłowych, gdzie wiele urządzeń może współdzielić to samo pasmo. Wybór kabla U-UTP kategorii 6 również nie jest optymalny, ponieważ nie oferuje wystarczającego ekranowania, aby efektywnie chronić przed zakłóceniami elektromagnetycznymi. Kable te są bardziej podatne na zakłócenia, co może prowadzić do spadku wydajności oraz zwiększenia liczby błędów w przesyłanych danych. W praktyce, niewłaściwy dobór medium transmisyjnego w środowisku produkcyjnym może prowadzić do znacznych problemów z niezawodnością i stabilnością systemów komunikacyjnych. Dlatego kluczowe jest, aby stosować kable o odpowiednich właściwościach ekranowania i wykonania, takie jak S-FTP, które są zgodne z wymaganiami standardów branżowych oraz zapewniają efektywną transmisję danych w trudnych warunkach.

Pytanie 25

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Punkt dostępu
B. Ruter z WiFi
C. Konwerter mediów
D. Przełącznik zarządzalny
Punkt dostępu to urządzenie, które umożliwia bezprzewodowy dostęp do sieci LAN, ale nie posiada funkcji segmentacji ruchu w taki sposób, aby ograniczać komunikację pomiędzy urządzeniami do konkretnej grupy. Punkt dostępu działa jako most, łącząc urządzenia bezprzewodowe z siecią przewodową, ale nie jest w stanie kontrolować ruchu danych w obrębie różnych użytkowników. W sytuacji, gdy wiele urządzeń jest podłączonych do jednego punktu dostępu, mogą one swobodnie komunikować się ze sobą oraz z innymi urządzeniami w sieci, co nie spełnia wymagań izolacji ruchu. Ruter z WiFi, z kolei, jest bardziej zaawansowanym urządzeniem, które umożliwia nie tylko dostęp do sieci, ale także routing pomiędzy różnymi sieciami. Jego główną funkcją jest kierowanie ruchu oraz zarządzanie adresacją IP, ale nie jest to tożsame z wydzieleniem grupy komputerów w ramach tej samej sieci. Konwerter mediów jest urządzeniem, które zmienia format sygnału (np. z miedzianego na światłowodowy), ale nie ma funkcji zarządzania ruchem w sieci ani wydzielania grup komputerów. Typowe błędy myślowe w przypadku tych odpowiedzi wynikają z nieporozumienia dotyczącego funkcji i zastosowań tych urządzeń; użytkownicy mogą mylić ich podstawowe role, co prowadzi do fałszywych wniosków na temat ich możliwości w kontekście zarządzania siecią.

Pytanie 26

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Repeater (regenerator sygnału)
B. Router
C. Punkt dostępowy (Access Point)
D. Switch
Wiele osób myli funkcje podstawowych urządzeń sieciowych, co prowadzi do błędnych założeń dotyczących segmentacji. <strong>Switch</strong> działa głównie w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Jego głównym zadaniem jest przełączanie ramek w obrębie jednej sieci lokalnej (VLAN), a nie segmentacja na poziomie IP. Co prawda, istnieją switche warstwy trzeciej, które potrafią segmentować ruch na poziomie sieciowym, ale standardowo przyjmuje się, że switch nie jest urządzeniem do segmentacji warstwy trzeciej. <strong>Repeater</strong> to urządzenie jeszcze prostsze – działa w warstwie pierwszej i służy tylko do wzmacniania sygnału, bez jakiejkolwiek analizy czy rozdzielania ruchu. Nie wprowadza żadnej segmentacji ani logiki sieciowej. <strong>Punkt dostępowy</strong> (Access Point) odpowiada za umożliwienie urządzeniom bezprzewodowym dołączenie do sieci lokalnej, również operuje na niższych warstwach (głównie warstwa druga i warstwa fizyczna). Nie segmentuje ruchu IP, przekazuje jedynie sygnał dalej do sieci przewodowej. Typowym błędem jest mylenie funkcji tych urządzeń, zwłaszcza gdy w praktyce wiele z nich bywa zintegrowanych w jednym sprzęcie domowym (np. router Wi-Fi z wbudowanym switchem i access pointem). Jednak w kontekście profesjonalnych sieci, każde z tych urządzeń ma jasno określoną rolę i tylko router (lub zaawansowany switch L3) umożliwia segmentację na poziomie warstwy trzeciej. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe przy projektowaniu wydajnej i bezpiecznej infrastruktury sieciowej, bo pomyłki na tym etapie mogą prowadzić do poważnych problemów z bezpieczeństwem, wydajnością czy zarządzaniem ruchem.

Pytanie 27

Które urządzenie w sieci lokalnej nie segreguje obszaru sieci komputerowej na domeny kolizyjne?

A. Koncentrator.
B. Przełącznik.
C. Ruter.
D. Most.
Mosty, przełączniki i routery mają różne funkcje w sieciach i pomagają zarządzać ruchem, w tym dzielić sieć na różne domeny kolizyjne. Most działa na drugiej warstwie OSI, a jego zadaniem jest segmentowanie ruchu, co zmniejsza liczbę kolizji, bo tworzy oddzielne segmenty. Przełączniki, które też działają na tej samej warstwie, są jeszcze bardziej zaawansowane, bo używają MAC adresów do wysyłania danych tylko do właściwego urządzenia, co zmniejsza ryzyko kolizji. Z kolei routery działają na trzeciej warstwie i zarządzają ruchem między różnymi sieciami, co czyni je bardzo ważnymi w sieciach IP. Często ludzie myślą, że wszystkie te urządzenia są podobne do koncentratorów, ale tak nie jest. Koncentrator przesyła dane do wszystkich urządzeń, a mosty, przełączniki i routery robią to znacznie lepiej, co poprawia wydajność sieci. Dlatego, wybierając urządzenia do sieci, warto mieć na uwadze te zasady segmentacji ruchu i efektywności według nowoczesnych standardów.

Pytanie 28

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Przełącznik – segmentacja sieci na VLAN-y
B. Ruter – łączenie komputerów w tej samej sieci
C. Modem – łączenie sieci lokalnej z Internetem
D. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
Wszystkie inne odpowiedzi sugerują niezgodne przyporządkowania dotyczące funkcji urządzeń sieciowych. Modem, który jest urządzeniem konwertującym sygnały z sieci lokalnej na sygnały, które mogą być przesyłane przez linię telefoniczną lub kablową, rzeczywiście odpowiada za nawiązywanie połączenia pomiędzy siecią lokalną a Internetem. Jest to kluczowy element w architekturze sieci, szczególnie w przypadku tradycyjnych połączeń DSL czy kablowych. Przełącznik, z kolei, jest urządzeniem operującym na warstwie drugiej modelu OSI, które umożliwia komunikację pomiędzy różnymi urządzeniami w obrębie tej samej sieci lokalnej, a także może implementować technologię VLAN (Virtual Local Area Network), divując ruch sieciowy w sposób logiczny i zwiększający bezpieczeństwo oraz wydajność. Access Point, będący punktem dostępowym, umożliwia bezprzewodowe podłączenie do sieci lokalnej i jest kluczowym elementem w sieciach bezprzewodowych, umożliwiającym komunikację między urządzeniami mobilnymi a lokalnym systemem sieciowym. Zrozumienie ról tych urządzeń w architekturze sieciowej jest fundamentalne, ponieważ błędne przyporządkowania mogą prowadzić do nieefektywnego projektowania i wdrażania sieci, co w praktyce skutkuje problemami z przepustowością, bezpieczeństwem oraz zarządzaniem siecią.

Pytanie 29

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia sieciowe są połączone z jednym centralnym urządzeniem?

A. drzewa
B. siatki
C. gwiazdy
D. pierścienia
Topologie sieciowe, takie jak topologia drzewa, pierścienia i siatki, różnią się od topologii gwiazdy w sposobie organizacji urządzeń. Topologia drzewa łączy w sobie cechy topologii gwiazdy i magistrali, gdzie urządzenia są połączone w hierarchiczny sposób, co może prowadzić do trudności w diagnostyce, gdyż awaria jednego węzła może wpływać na większą część sieci. W topologii pierścienia każdy węzeł jest połączony z dwoma innymi, tworząc zamknięty obieg, co oznacza, że uszkodzenie jednego połączenia może przerwać komunikację w całej sieci. Natomiast topologia siatki, która zakłada połączenie między wieloma urządzeniami, zapewnia dużą redundancję, ale jest bardziej skomplikowana w implementacji i wymagająca większej ilości kabli i portów. Wybór niewłaściwej topologii może prowadzić do trudności w zarządzaniu, awarii i zwiększonych kosztów utrzymania. Dlatego ważne jest, aby przy projektowaniu sieci zawsze kierować się zasadami najlepszych praktyk oraz dostosowywać strukturę do potrzeb organizacji.

Pytanie 30

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja, która planuje rozpocząć transmisję, nasłuchuje, czy w sieci występuje ruch, a następnie

A. oczekuje na żeton pozwalający na nadawanie
B. wysyła prośbę o rozpoczęcie transmitowania
C. czeka na przydzielenie priorytetu transmisji przez koncentrator
D. po zauważeniu ruchu w sieci czeka, aż medium stanie się wolne
Wybór odpowiedzi, która mówi o wysyłaniu zgłoszenia żądania transmisji, jest niepoprawny. W metodzie CSMA/CD nie ma czegoś takiego. Stacja, która chce wysłać dane, najpierw sprawdza, co się dzieje w sieci, a nie wysyła jakiegoś żądania. To bardziej przypomina inne metody, jak Token Ring, gdzie stacje mogą prosić o pozwolenie na nadawanie. Oczekiwanie na żeton do nadawania też nie ma miejsca w CSMA/CD, bo ta metoda skupia się na wykrywaniu kolizji, a nie na posiadaniu jakiegoś żetonu. Jeszcze jedna rzecz, co do oczekiwania na nadanie priorytetu przez koncentrator - to też jest mylne, bo w CSMA/CD nie ma centralnego zarządzania jak w przypadku koncentratorów. Myślę, że te błędne informacje mogą wynikać z niezrozumienia, jak naprawdę działa sieć Ethernet i jakie mechanizmy są tam używane. Ważne jest, żeby wiedzieć, że CSMA/CD polega na tym, że każdy w sieci decyduje sam, kiedy może wysłać dane, bazując na tym, co dzieje się w medium, a nie na zewnętrznych sygnałach albo pozwoleniach od innych urządzeń.

Pytanie 31

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11a
B. IEEE 802.11g
C. IEEE 802.11n
D. IEEE 802.11b
Wybór standardu IEEE 802.11b, 802.11a lub 802.11g nie zapewnia osiągnięcia przepustowości powyżej 54 Mbps. Standard 802.11b, wprowadzony w 1999 roku, obsługuje maksymalną prędkość 11 Mbps, co w praktyce jest niewystarczające do nowoczesnych aplikacji wymagających szerokopasmowego dostępu. Standard 802.11g, również popularny, pozwala na szybkości do 54 Mbps, jednak nie umożliwia ich przekroczenia, co stanowi ograniczenie w kontekście rosnącego zapotrzebowania na wydajność sieci. Z kolei 802.11a, który operuje w paśmie 5 GHz, osiąga prędkości do 54 Mbps, ale nie jest w stanie wykorzystać pełnego potencjału technologii MIMO i szerszych kanałów, które oferuje 802.11n. Decydując się na starsze standardy, użytkownicy mogą napotkać problemy z przepustowością w sytuacjach, gdzie wiele urządzeń łączy się z siecią równocześnie, co prowadzi do spadku wydajności. W kontekście najlepszych praktyk, zaleca się wybór najnowszych standardów, takich jak 802.11n lub 802.11ac, aby zapewnić stabilne i szybkie połączenia, szczególnie w środowiskach intensywnie korzystających z technologii bezprzewodowej. Zrozumienie różnic pomiędzy tymi standardami jest kluczowe dla efektywnego zarządzania sieciami i zaspokajania potrzeb użytkowników.

Pytanie 32

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 32 zł
B. 40 zł
C. 45 zł
D. 50 zł
Koszt brutto kabla UTP Cat 6 dla pięciu punktów abonenckich można obliczyć, stosując się do określonych kroków. Najpierw obliczamy długość kabla potrzebną do połączenia punktów abonenckich z punktem dystrybucyjnym. Dla każdego z pięciu punktów abonenckich mamy średnią odległość 8 m. W związku z tym, całkowita długość kabla wynosi 5 punktów x 8 m = 40 m. Następnie dodajemy zapas 2 m dla każdego punktu abonenckiego, co daje dodatkowe 5 punktów x 2 m = 10 m. Sumując te wartości, otrzymujemy całkowitą długość kabla wynoszącą 40 m + 10 m = 50 m. Cena za 1 m kabla wynosi 1 zł, więc koszt brutto 50 m kabla to 50 zł. Takie podejście uwzględnia nieprzewidziane okoliczności, co jest zgodne z dobrymi praktykami w zakresie instalacji kablowych, gdzie zawsze warto mieć zapas materiałów, aby zminimalizować ryzyko błędów podczas montażu.

Pytanie 33

W wtyczce 8P8C, zgodnie z normą TIA/EIA-568-A, w sekwencji T568A, para przewodów biało-pomarańczowy/pomarańczowy jest przypisana do styków

A. 3 i 5
B. 1 i 2
C. 3 i 6
D. 4 i 6
Odpowiedzi wskazujące na inne kombinacje styków w wtyku 8P8C nie są zgodne z normą TIA/EIA-568-A, a ich wybór może prowadzić do błędnych połączeń w sieci, co może skutkować problemami z transmisją danych. Styk 3 jest przypisany konkretnej parze przewodów, ale wybór styków 1 i 2, 3 i 5 lub 4 i 6 ignoruje kluczowy podział na pary w standardzie T568A. W przypadku styków 1 i 2, które są przypisane do innych par, dochodzi do chaosu w sygnalizacji, co może prowadzić do zjawiska interferencji czy zakłóceń w transmitowanych sygnałach. Wybór styków 3 i 5 również jest błędny, gdyż pomija wymagania dotyczące pary przewodów, co może skutkować nieefektywnym przesyłem danych. Warto pamiętać, że w przypadku wtyków, każdy z kolorów przewodów i przypisanych do nich styków odgrywa istotną rolę w zachowaniu integralności sygnału. Standardy okablowania, takie jak T568A, nie są jedynie zaleceniami, ale są fundamentalnymi zasadami, które przyczyniają się do prawidłowego funkcjonowania sieci komputerowych. Dlatego tak ważne jest, aby stosować się do ustalonych norm, aby uniknąć potencjalnych problemów w przyszłych instalacjach oraz zapewnić sobie i użytkownikom stabilne i wydajne połączenie sieciowe.

Pytanie 34

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. fale radiowe o częstotliwości 2,4 GHz
B. kabel UTP kategorii 5e
C. fale radiowe o częstotliwości 5 GHz
D. kabel koncentryczny o średnicy ¼ cala
Kabel UTP kategorii 5e jest idealnym medium transmisyjnym do budowy sieci przewodowej o maksymalnej szybkości transmisji 1 Gb/s i odległości do 100 m. UTP (Unshielded Twisted Pair) to rodzaj kabla, który składa się z par skręconych przewodów, co znacząco zmniejsza zakłócenia elektromagnetyczne i pozwala na osiąganie wysokich prędkości transmisji. Standard ten zapewnia przepustowość do 100 MHz, co umożliwia przesyłanie danych z prędkościami sięgającymi 1 Gb/s w odległości do 100 m, zgodnie z normą IEEE 802.3ab dla Ethernetu. Przykładem zastosowania mogą być biura, gdzie sieci komputerowe muszą być niezawodne i wydajne, co czyni kabel UTP 5e odpowiednim wyborem. Warto również zwrócić uwagę, że kabel ten jest powszechnie stosowany w standardzie Ethernet, co czyni go dobrze udokumentowanym i łatwo dostępnym rozwiązaniem w branży IT.

Pytanie 35

Jaki będzie całkowity koszt brutto materiałów zastosowanych do wykonania odcinka okablowania łączącego dwie szafki sieciowe wyposażone w panele krosownicze, jeżeli wiadomo, że zużyto 25 m skrętki FTP cat. 6A i dwa moduły Keystone? Ceny netto materiałów znajdują się w tabeli, stawka VAT na materiały wynosi 23%.

Materiałj.m.Cena
jednostkowa
netto
Skrętka FTP cat. 6Am.3,50 zł
Moduł Keystone FTP RJ45szt.9,50 zł
A. 106,50 zł
B. 119,31 zł
C. 131,00 zł
D. 97,00 zł
W przypadku niepoprawnych odpowiedzi, kluczowym błędem jest często nieuwzględnienie całkowitego kosztu netto materiałów lub błędne ich zsumowanie. Na przykład, odpowiedź o wartości 97,00 zł wskazuje na zaniżenie kosztów, co może wynikać z pominięcia jednego z elementów, takich jak skrętka lub moduły Keystone. Z kolei odpowiedź 106,50 zł może sugerować, że respondent dodał jedynie koszt skrętki, nie uwzględniając kosztu modułów. Odpowiedzi takie jak 119,31 zł mogą powstawać na skutek błędnego obliczania wartości podatku VAT, gdzie respondent nieprawidłowo pomnożył lub dodał procent VAT do netto. Te błędy myślowe mogą wynikać z braku zrozumienia procesu kalkulacji cen czy też podstawowych zasad dotyczących obliczania kosztów i podatków. W praktyce, nie tylko należy znać ceny materiałów, ale również umiejętnie operować kalkulacjami finansowymi, aby uniknąć pułapek prowadzących do błędnych wniosków. Zastosowanie się do dobrych praktyk w zakresie obliczeń kosztów projektów instalacyjnych jest niezbędne dla efektywności i przejrzystości finansowej, co jest kluczowe w branży technologii informacyjnej i komunikacyjnej.

Pytanie 36

Jaka jest kolejność przewodów we wtyku RJ45 zgodnie z sekwencją połączeń T568A?

Kolejność 1Kolejność 2Kolejność 3Kolejność 4
1. Biało-niebieski
2. Niebieski
3. Biało-brązowy
4. Brązowy
5. Biało-zielony
6. Zielony
7. Biało-pomarańczowy
8. Pomarańczowy
1. Biało-pomarańczowy
2. Pomarańczowy
3. Biało-zielony
4. Niebieski
5. Biało-niebieski
6. Zielony
7. Biało-brązowy
8. Brązowy
1. Biało-brązowy
2. Brązowy
3. Biało-pomarańczowy
4. Pomarańczowy
5. Biało-zielony
6. Niebieski
7. Biało-niebieski
8. Zielony
1. Biało-zielony
2. Zielony
3. Biało-pomarańczowy
4. Niebieski
5. Biało-niebieski
6. Pomarańczowy
7. Biało-brązowy
8. Brązowy
Ilustracja do pytania
A. Kolejność 1
B. Kolejność 4
C. Kolejność 2
D. Kolejność 3
Błędne odpowiedzi mogą wynikać z kilku typowych nieporozumień dotyczących normy T568A i ogólnych zasad połączeń sieciowych. Często mylone są kolory przewodów oraz ich kolejność w wtyku RJ45. Na przykład, niektórzy mogą zapominać o znaczeniu kolorów, co prowadzi do zamiany miejscami przewodów zielonych z pomarańczowymi. Tego typu błędy mogą skutkować niesprawnymi połączeniami, a nawet uszkodzeniem sprzętu. Również, wielu użytkowników nie zwraca uwagi na różnice między standardami T568A i T568B, co może prowadzić do chaosu w instalacjach, zwłaszcza w dużych biurach, gdzie wiele osób pracuje nad tym samym systemem. Nieprawidłowe połączenie może także wprowadzić zakłócenia, co jest szczególnie problematyczne w sytuacjach, gdy sieć obsługuje wrażliwe dane lub aplikacje wymagające dużej przepustowości. Podczas konfigurowania sieci ważne jest, aby dokładnie trzymać się specyfikacji i zrozumieć, jak poszczególne kolory przewodów wpływają na działanie całego systemu. Jeśli nie jesteśmy pewni poprawnej kolejności, warto skonsultować się z dokumentacją lub specjalistą, aby uniknąć typowych pułapek, które mogą spowodować problemy w przyszłości.

Pytanie 37

Fragment specyfikacji którego urządzenia sieciowego przedstawiono na ilustracji?

L2 Features• MAC Address Table: 8K
• Flow Control
   • 802.3x Flow Control
   • HOL Blocking Prevention
• Jumbo Frame up to 10,000 Bytes
• IGMP Snooping
   • IGMP v1/v2 Snooping
   • IGMP Snooping v3 Awareness
   • Supports 256 IGMP groups
   • Supports at least 64 static multicast addresses
   • IGMP per VLAN
   • Supports IGMP Snooping Querier
• MLD Snooping
   • Supports MLD v1/v2 awareness
   • Supports 256 groups
   • Fast Leave
• Spanning Tree Protocol
   • 802.1D STP
   • 802.1w RSTP
• Loopback Detection
• 802.3ad Link Aggregation
   • Max. 4 groups per device/8 ports per group (DGS-1210-08P)
   • Max. 8 groups per device/8 ports per group (DGS-1210-
     16/24/24P)
   • Max. 16 groups per device/8 ports per group (DGS-1210-48P)
• Port Mirroring
   • One-to-One, Many-to-One
   • Supports Mirroring for Tx/Rx/Both
• Multicast Filtering
   • Forwards all unregistered groups
   • Filters all unregistered groups
• LLDP, LLDP-MED
A. Ruter.
B. Zapora sieciowa.
C. Przełącznik.
D. Koncentrator.
Wybór koncentratora, zapory sieciowej lub rutera jako odpowiedzi na to pytanie wskazuje na pewne nieporozumienia dotyczące funkcji i architektury tych urządzeń. Koncentrator, będący prostym urządzeniem, nie analizuje danych ani nie podejmuje decyzji na poziomie adresów MAC, co czyni go mniej efektywnym w porównaniu do przełącznika. Jego działanie opiera się na metodzie 'flooding', co oznacza, że przesyła dane do wszystkich portów, co może prowadzić do zwiększonego ruchu sieciowego i kolizji. Z kolei zapora sieciowa, która jest zaprojektowana do monitorowania i kontrolowania ruchu sieciowego w celu ochrony przed nieautoryzowanym dostępem, nie jest odpowiedzialna za zarządzanie ruchem wewnętrznym w sieci lokalnej. Ruter, działający na warstwie trzeciej modelu OSI, skupia się na kierowaniu pakietów między różnymi sieciami, a nie na zarządzaniu komunikacją w obrębie jednego segmentu sieci. Wybierając jedną z tych odpowiedzi, można dojść do błędnego wniosku, że wszystkie urządzenia sieciowe pełnią te same funkcje, podczas gdy każde z nich ma swoje specyficzne zastosowania i właściwości. Aby lepiej zrozumieć rolę przełączników, warto zaznajomić się z metodami segmentacji sieci i standardami, takimi jak IEEE 802.1Q dla VLAN czy IEEE 802.3 dla Ethernetu, które podkreślają znaczenie wydajnego zarządzania ruchem w nowoczesnych sieciach.

Pytanie 38

Aby chronić sieć przed zewnętrznymi atakami, warto rozważyć nabycie

A. przełącznika warstwy trzeciej
B. sprzętowej zapory sieciowej
C. skanera antywirusowego
D. serwera proxy
Skaner antywirusowy, choć ważny w ekosystemie zabezpieczeń, nie jest wystarczającym rozwiązaniem w kontekście ochrony całej sieci przed atakami z zewnątrz. Jego głównym zadaniem jest wykrywanie i neutralizowanie złośliwego oprogramowania na poziomie końcówek, a nie kontrola ruchu sieciowego. Również serwer proxy, choć może oferować pewne zabezpieczenia, głównie skupia się na zarządzaniu dostępem do zasobów zewnętrznych, a nie na blokowaniu nieautoryzowanego ruchu. Przełącznik warstwy trzeciej, będący urządzeniem sieciowym, które łączy funkcje przełączania i routingu, nie jest przeznaczony do zwalczania zagrożeń z zewnątrz, a jego główną rolą jest efektywne przekazywanie danych między różnymi segmentami sieci. Użytkownicy często popełniają błąd, uważając, że wystarczy jedna forma zabezpieczenia, aby zapewnić kompleksową ochronę. W rzeczywistości, skuteczna strategia zabezpieczeń sieciowych wymaga wielowarstwowego podejścia, które integruje różnorodne mechanizmy ochrony, w tym sprzętowe zapory, skanery antywirusowe oraz systemy IDS/IPS. Zrozumienie różnic między tymi rozwiązaniami i ich rolą w architekturze bezpieczeństwa jest kluczowe dla skutecznej ochrony przed atakami zewnętrznymi.

Pytanie 39

Co oznacza skrót WAN?

A. prywatną sieć komputerową
B. rozległą sieć komputerową
C. miejską sieć komputerową
D. lokalną sieć komputerową
Skrót WAN oznacza Wide Area Network, co w tłumaczeniu na polski oznacza rozległą sieć komputerową. WAN to typ sieci, który łączy komputery i urządzenia w dużym zasięgu geograficznym, obejmującym miasta, regiony, a nawet kraje. Zastosowanie WAN jest powszechne w dużych organizacjach oraz korporacjach, które potrzebują komunikować się między oddziałami rozrzuconymi na dużym obszarze. Przykłady zastosowania WAN obejmują sieci bankowe, które łączą różne placówki, oraz systemy informatyczne w przedsiębiorstwach międzynarodowych. W kontekście standardów, WAN zazwyczaj korzysta z protokołów takich jak MPLS (Multi-Protocol Label Switching) i Frame Relay, które zapewniają efektywną transmisję danych na dużą skalę. Dobrą praktyką w zarządzaniu WAN jest wykorzystanie rozwiązań typu SD-WAN (Software-Defined Wide Area Network), które umożliwiają lepsze zarządzanie ruchem sieciowym oraz zwiększają bezpieczeństwo połączeń. Zrozumienie koncepcji WAN jest kluczowe dla projektowania nowoczesnych, rozproszonych architektur sieciowych, które odpowiadają na potrzeby globalnych organizacji.

Pytanie 40

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. znacznika ramki Ethernet 802.1Q
B. numeru portu przełącznika
C. adresu MAC karty sieciowej komputera
D. nazwa komputera w sieci lokalnej
Nazwa komputera w sieci lokalnej, znana również jako hostname, jest używana głównie do identyfikacji urządzenia w bardziej przyjazny sposób dla użytkowników. Jednakże, nie ma wpływu na przypisanie komputera do konkretnej sieci wirtualnej, ponieważ przynależność ta opiera się na technicznych aspektach działania sieci, takich jak adresacja i mechanizmy VLAN. Wirtualne sieci lokalne (VLAN) są definiowane na poziomie przełączników sieciowych, które wykorzystują znaczniki ramki Ethernet 802.1Q do identyfikacji i segregacji ruchu. Dlatego, aby przypisać komputer do konkretnej VLAN, kluczowe jest wykorzystanie adresów MAC i numerów portów przełącznika, które są bezpośrednio związane z fizycznym połączeniem urządzenia w sieci. Zastosowanie VLAN-ów pozwala na efektywne zarządzanie ruchem sieciowym oraz zwiększenie bezpieczeństwa i organizacji w dużych środowiskach sieciowych. Zrozumienie tej kwestii jest niezbędne dla skutecznego projektowania i zarządzania infrastrukturą sieciową.