Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 23:23
  • Data zakończenia: 4 lutego 2026 00:01

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. L1 i PE
B. N i L3
C. N i PE
D. L1 i L3
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 2

Narzędzie pokazane na rysunku służy do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. cięcia przewodów.
C. zdejmowania izolacji.
D. zaginania końcówek.
Odpowiedź "cięcia przewodów" jest poprawna, ponieważ narzędzie pokazane na zdjęciu to szczypce boczne, które są specjalnie zaprojektowane do precyzyjnego cięcia różnorodnych przewodów elektrycznych. Szczypce te charakteryzują się ostrymi, wąskimi krawędziami, które umożliwiają dotarcie do trudno dostępnych miejsc, co jest istotne w pracach instalacyjnych oraz naprawczych. W praktyce, użycie szczypiec bocznych pozwala na dokładne cięcie przewodów bez ryzyka uszkodzenia ich izolacji, co jest kluczowe dla zachowania bezpieczeństwa w instalacjach elektrycznych. To narzędzie jest niezbędne w branży elektrycznej oraz w wielu projektach DIY, gdzie precyzyjne cięcie przewodów jest wymagane, aby uniknąć zwarć oraz zapewnić estetykę i funkcjonalność instalacji. Zgodnie z normami bezpieczeństwa, właściwe użycie szczypiec bocznych powinno obejmować również stosowanie odzieży ochronnej, aby zminimalizować ryzyko kontuzji podczas pracy.

Pytanie 3

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P304 40-100-AC
B. P304 40-30-AC
C. P202 25-30-AC
D. P302 25-10-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 4

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-L
B. ZL-PE RCD
C. ZL-PE
D. ZL-N
Wybór innych opcji pomiarowych, takich jak ZL-PE, ZL-N, czy ZL-L, nie uwzględnia specyfiki działania urządzeń różnicowoprądowych, które są kluczowe w modernych instalacjach elektrycznych. Opcja ZL-PE, choć zawiera przewód ochronny, nie uwzględnia działania RCD, co jest istotne dla skuteczności ochrony przeciwporażeniowej. Pomiar ZL-N również jest niewłaściwy, ponieważ nie bierze pod uwagę ochrony, którą zapewnia przewód PE. W przypadku zadań związanych z analizą bezpieczeństwa instalacji, nie można ignorować wpływu urządzeń RCD, które wykrywają różnice w prądzie między przewodami fazowymi a ochronnymi, co jest kluczowe w sytuacjach awaryjnych. Odpowiedź ZL-L dotyczy pomiarów między przewodami fazowymi, co nie tylko mija się z celem w kontekście analizy impedancji pętli zwarcia, ale również pomija ważne aspekty ochrony. Te błędy myślowe mogą prowadzić do poważnych konsekwencji bezpieczeństwa, gdyż pomijają istotne elementy ochronne w instalacjach elektrycznych. Właściwe zrozumienie koncepcji pomiaru ZL-PE RCD jest kluczowe dla zapewnienia najwyższych standardów bezpieczeństwa w instalacjach elektroenergetycznych.

Pytanie 5

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TN-C
B. IT
C. TN-S
D. TT
Odpowiedzi IT, TN-S, i TN-C nie są właściwe w kontekście przedstawionego rysunku pętli zwarciowej. W systemie IT, punkt neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. W takim układzie występuje ryzyko wystąpienia wysokich napięć na częściach przewodzących, co zagraża bezpieczeństwu użytkowników. Z kolei w systemie TN-S, przewody neutralne i robocze są oddzielone, ale wymagają wspólnego uziemienia, co w sytuacji zwarcia nie zapewnia dostatecznego poziomu bezpieczeństwa. Natomiast TN-C, w którym przewód neutralny i ochronny są połączone, nie może być stosowany w instalacjach wymagających wysokiego poziomu ochrony, szczególnie w miejscach, gdzie występuje ryzyko porażenia prądem, jak w obiektach przemysłowych. Łączenie funkcji ochronnych i roboczych w TN-C zwiększa ryzyko potencjalnych zagrożeń. Typowym błędem myślowym jest mylenie różnych typów systemów uziemienia i ich wpływu na bezpieczeństwo, co może prowadzić do niewłaściwych decyzji projektowych oraz poważnych konsekwencji w eksploatacji instalacji elektrycznych.

Pytanie 6

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 4 szt., Y - 5 szt.
B. X - 5 szt., Y - 4 szt.
C. X - 5 szt., Y - 5 szt.
D. X - 4 szt., Y - 4 szt.
Błędne odpowiedzi opierają się na nieprawidłowym zrozumieniu struktury połączeń w instalacjach oświetleniowych. Odpowiedzi, które proponują mniejszą liczbę przewodów, nie uwzględniają podstawowych zasad działania łączników schodowych i krzyżowych, co prowadzi do niewłaściwej koncepcji ich funkcji. W przypadku łączników schodowych, aby zapewnić prawidłowe działanie, zawsze należy zastosować odpowiednią ilość przewodów. W miejscu X, zbyt mała liczba przewodów, jak np. 3, znacznie ograniczyłaby możliwości sterowania oświetleniem, co jest kluczowe w instalacjach, gdzie oświetlenie jest zdalnie kontrolowane z różnych punktów. W miejscu Y, błędna liczba przewodów także zakłada, że można ograniczyć połączenia, co prowadzi do ryzyka awarii systemu lub jego całkowitego braku funkcjonalności. Wiele osób myli pojęcie liczby przewodów potrzebnych do połączeń z ilością łączników, co jest typowym błędem myślowym. Aby poprawnie zrozumieć, ile przewodów jest potrzebnych w danym układzie, należy uwzględnić nie tylko samą liczbę łączników, ale także rodzaj połączeń oraz ich role w instalacji. Zastosowanie nieodpowiedniej liczby przewodów może prowadzić do poważnych problemów, takich jak niemożność włączania lub wyłączania oświetlenia z różnych punktów, co jest sprzeczne z oczekiwaniami użytkowników oraz normami branżowymi, które nakładają obowiązki na projektantów instalacji elektrycznych.

Pytanie 7

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wyziewami żrącymi.
B. wybuchem pyłu.
C. wzrostem temperatury.
D. nadmierną wilgotnością.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 8

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Szeregowego.
B. Jednofazowego.
C. Obcowzbudnego.
D. Indukcyjnego.
Analiza schematu powinna jasno wskazywać, że nieprawidłowe odpowiedzi są wynikiem mylnego rozumienia konstrukcji silników elektrycznych. Silniki indukcyjne, w przeciwieństwie do obcowzbudnych, nie mają oddzielnych uzwojeń wzbudzenia; ich działanie opiera się na zjawisku indukcji elektromagnetycznej, gdzie pole magnetyczne jest generowane przez prąd płynący w uzwojeniu twornika. W silnikach szeregowych uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co wpływa na charakterystykę pracy, ale nie jest to zgodne z konstrukcją przedstawioną w schemacie. Co więcej, silniki jednofazowe, typowo używane w aplikacjach domowych, nie mają komutatora i działają w oparciu o inne zasady fizyczne, co odróżnia je od silników prądu stałego. Typowe błędy myślowe polegają na pomijaniu kluczowych elementów takich jak komutator oraz struktura uzwojeń, co prowadzi do nieprawidłowych wniosków. Zrozumienie różnic w budowie i zasadzie działania tych silników jest kluczowe dla ich prawidłowego zastosowania, co powinno być priorytetem w nauce o elektrotechnice.

Pytanie 9

Która z przedstawionych oprawek jest oprawką źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. Oprawka IV.
B. Oprawka II.
C. Oprawka I.
D. Oprawka III.
Poprawnie wskazana została oprawka IV, bo jest to ceramiczna oprawka gwintowa przystosowana do pracy z wysokotemperaturowymi źródłami światła dużej mocy. W praktyce chodzi głównie o klasyczne żarówki dużej mocy, halogeny z trzonkiem E27/E40 czy specjalne lampy przemysłowe, które podczas pracy nagrzewają się nawet do około 300°C w strefie trzonka. Korpus tej oprawki wykonany jest z ceramiki (najczęściej porcelany technicznej), która ma bardzo dobrą odporność cieplną, nie ulega deformacji jak tworzywo sztuczne i dobrze znosi długotrwałe nagrzewanie oraz cykle załącz/wyłącz. Zgodnie z dobrymi praktykami i wymaganiami norm PN-EN dotyczących opraw oświetleniowych, do źródeł wysokotemperaturowych nie stosuje się oprawek z tworzyw termoplastycznych, bo te przy takich temperaturach mogłyby się rozmiękczyć, zdeformować, a nawet zwęglić. Ceramiczna oprawka IV ma odpowiednio dobraną izolację, konstrukcję gwintu i styków, żeby zapewnić stabilne połączenie elektryczne oraz odpowiedni odstęp i pełzanie między częściami czynnymi a obudową. Z mojego doświadczenia takie oprawki spotyka się w oprawach warsztatowych, lampach przemysłowych, ogrzewaczach promiennikowych, a także w starych instalacjach z żarówkami 150–200 W, gdzie temperatura klosza i trzonka jest naprawdę spora. W praktyce przy doborze osprzętu zawsze patrzy się na maksymalną temperaturę pracy podaną przez producenta (np. 250°C, 300°C) oraz klasę temperaturową materiału izolacyjnego. Moim zdaniem warto zapamiętać prostą zasadę: tam, gdzie spodziewasz się dużego nagrzewania źródła światła – wybierasz oprawkę ceramiczną o odpowiedniej klasie temperaturowej, taką właśnie jak pokazana na zdjęciu jako oprawka IV.

Pytanie 10

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX3
B. IPX2
C. IPX4
D. IPX5
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 11

Przy wykonywaniu oględzin układu pracy silnika trójfazowego pracującego w obrabiarce należy sprawdzić

A. impedancję pętli zwarcia.
B. czas zadziałania zabezpieczenia zwarciowego. 
C. stan osłon części wirujących.
D. rezystancję izolacji uzwojeń silnika. 
Prawidłowo – przy wykonywaniu oględzin układu pracy silnika trójfazowego w obrabiarce w pierwszej kolejności interesuje nas stan osłon części wirujących. Oględziny to badanie wzrokowe, bez użycia specjalistycznych przyrządów pomiarowych. Celem jest ocena, czy urządzenie można bezpiecznie eksploatować, czy nie stwarza bezpośredniego zagrożenia dla obsługi. W silniku napędzającym obrabiarkę wszystkie elementy wirujące, do których użytkownik może się zbliżyć (sprzęgła, wały, koła pasowe, paski klinowe, wentylator, czasem nawet wystające końcówki wału) muszą być osłonięte trwałymi, nieuszkodzonymi osłonami. Zgodnie z wymaganiami BHP oraz normami, np. PN-EN ISO 12100 i normami z serii PN-EN 60204 dotyczącymi bezpieczeństwa maszyn, brak osłony lub jej uszkodzenie jest traktowane jako poważne zagrożenie – ryzyko wciągnięcia odzieży, włosów, palców w strefę ruchu. Dlatego podczas rutynowych przeglądów i przed uruchomieniem maszyny zawsze patrzy się, czy osłony są kompletne, stabilnie zamocowane, bez pęknięć, czy nie ma „domowych przeróbek” typu zdjęta kratka wentylatora, wycięte fragmenty osłon, poluzowane śruby. W praktyce serwisowej często spotyka się sytuacje, że ktoś dla wygody regulacji czy czyszczenia zdejmie osłonę i jej nie założy z powrotem – to typowa, ale bardzo niebezpieczna praktyka. Moim zdaniem dobry elektryk lub mechanik zawsze zaczyna od takiej prostej kontroli wizualnej, bo nawet perfekcyjna impedancja pętli zwarcia czy idealna rezystancja izolacji nie uratują pracownika, jeśli wciągnie go nieosłonięty wał lub pasek. Oględziny to więc przede wszystkim bezpieczeństwo mechaniczne, a osłony części wirujących są jednym z kluczowych elementów ochrony przed urazami w obrabiarkach i napędach silnikowych.

Pytanie 12

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór symbolu D. jako oznaczenia łącznika świecznikowego jest prawidłowy, ponieważ ten symbol odpowiada branżowym standardom reprezentującym urządzenia do sterowania oświetleniem. Łącznik świecznikowy, znany również jako łącznik grupowy, umożliwia kontrolowanie kilku obwodów oświetleniowych jednocześnie, co jest szczególnie przydatne w dużych pomieszczeniach, takich jak sale konferencyjne lub przestrzenie otwarte. W takich zastosowaniach zastosowanie łącznika grupowego pozwala na efektywne zarządzanie oświetleniem, a także oszczędność energii. Zgodnie z normą PN-IEC 60617 dotyczącą symboli graficznych w elektrotechnice, symbol D. jest uznawany za standardowy sposób przedstawiania tego typu urządzenia. W praktyce, poprawne użycie symboli graficznych na schematach ideowych jest kluczowe dla zrozumienia i prawidłowego wykonania instalacji elektrycznych, co pozwala na bezpieczne i efektywne korzystanie z oświetlenia w różnych środowiskach.

Pytanie 13

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. 1 - niesprawny, 2 - sprawny.
B. Oba niesprawne.
C. 1 - sprawny, 2 - niesprawny.
D. Oba sprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 14

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy odłączonych przewodach pomiarowych.
B. cyfrą 1 przy zwartych przewodach pomiarowych.
C. cyfrą 2 przy zwartych przewodach pomiarowych.
D. cyfrą 1 przy odłączonych przewodach pomiarowych.
W przypadku niepoprawnych odpowiedzi ważne jest zrozumienie, dlaczego poszczególne podejścia są błędne, co może wynikać z nieprawidłowego zrozumienia procesu wyzerowania omomierza. Kiedy wybierzesz cyfrę 1 lub 2 przy odłączonych przewodach pomiarowych, nie uwzględniasz faktu, że w takim przypadku nie ma zwarcia, co skutkuje brakiem odniesienia do zero. W konsekwencji nie możesz prawidłowo ustawić miernika, co prowadzi do pomiarów obarczonych błędem. Z kolei wybór cyfr przy odłączonych przewodach jest podstawowym błędem, ponieważ odczytany wynik nie będzie odpowiadał rzeczywistej rezystancji, a jedynie wartości, którą miernik rejestruje w stanie spoczynku, co zmniejsza jego dokładność. Ostatecznie, nie zrozumienie, dlaczego konieczne jest zwarcie przewodów przed wyzerowaniem, może prowadzić do poważnych błędów w analizie wyników pomiarów. Dlatego kluczowe jest, aby każdy użytkownik omomierza rozumiał zasady działania tego narzędzia oraz były świadomy, że wszelkie pomiary należy przeprowadzać zgodnie z procedurami, aby zapewnić maksymalną precyzję i wiarygodność działania. Takie standardy są powszechnie uznawane w branży elektrycznej i pomiarowej.

Pytanie 15

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Wyłącznik nadmiarowoprądowy.
B. Stycznik.
C. Rozłącznik instalacyjny.
D. Ogranicznik przepięć.
Wybór "Rozłącznik instalacyjny" jest nietrafny, ponieważ to urządzenie pełni inną rolę w instalacji elektrycznej. Rozłączniki instalacyjne są stosowane do odłączania obwodów od źródła zasilania, co jest istotne podczas prac konserwacyjnych lub naprawczych. Nie chronią one jednak przed przepięciami, co jest kluczową funkcją ogranicznika przepięć. Kolejną błędną odpowiedzią jest "Stycznik", który jest urządzeniem służącym do zdalnego włączania i wyłączania obwodów elektrycznych, jednak podobnie jak rozłącznik, nie ma zastosowania w kontekście ochrony przed przepięciami. Odpowiedź "Ogranicznik przepięć" była właściwa, ponieważ jego zadanie polega na tłumieniu skoków napięcia. Ostatnia z odpowiedzi, "Wyłącznik nadmiarowoprądowy", także nie odpowiada na pytanie, gdyż to urządzenie ma na celu zabezpieczenie obwodów przed przeciążeniami oraz zwarciami, a nie przed przepięciami. Wybierając błędne odpowiedzi, można kierować się mylnym skojarzeniem funkcji lub wyglądu urządzeń, co prowadzi do nieprawidłowych wniosków. W kontekście instalacji elektrycznych ważne jest zrozumienie specyficznych ról poszczególnych urządzeń, aby skutecznie zabezpieczać zarówno instalację, jak i urządzenia w niej zainstalowane. Zastosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem, w oparciu o normy i standardy, jest kluczowe dla bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 16

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję izolacji przewodów oraz rezystancję uziemienia
B. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
C. Rezystancję przewodów ochronnych i rezystancję uziemienia
D. Impedancję pętli zwarcia oraz pomiar prądu upływu
Rezystancja izolacji przewodów i rezystancja uziemienia, mimo że są ważnymi parametrami w analizie instalacji elektrycznych, nie są wystarczające do przeprowadzenia kompleksowego przeglądu w sieci TN-S. Zmierzona rezystancja izolacji informuje o stanie izolacji, ale nie dostarcza informacji o zabezpieczających mechanizmach w instalacji, które są kluczowe dla ochrony przed skutkami zwarcia. Ponadto, rezystancja uziemienia sama w sobie nie jest wystarczająca do zapewnienia bezpieczeństwa, ponieważ nie uwzględnia wymagań dotyczących szybkiego wyłączenia w przypadku awarii. Z kolei mierzona rezystancja przewodów ochronnych oraz rezystancja uziemienia, chociaż istotne, mogą prowadzić do mylnego wniosku o kompletnym bezpieczeństwie systemu, nie uwzględniając przy tym dynamiki systemu oraz potencjalnych zagrożeń związanych z zanikami uziemienia. Zastosowanie tylko pomiaru impedancji pętli zwarcia jest niewystarczające, ponieważ nie zapewnia pełnej oceny stanu instalacji, a brak pomiaru rezystancji izolacji może prowadzić do niedostrzegania uszkodzeń, które z czasem mogą stać się poważnym zagrożeniem. Z tego powodu, przeprowadzając przegląd instalacji elektrycznej, nie można pomijać żadnego z wymienionych parametrów, co jest zgodne z najlepszymi praktykami branżowymi i obowiązującymi normami.

Pytanie 17

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
B. Sprawdzenie kolejności faz sieci zasilającej
C. Weryfikacja działania przycisku testowego
D. Weryfikacja poprawności podłączenia do sieci
Analizując pozostałe odpowiedzi, można zauważyć, że niektóre z nich dotyczą istotnych aspektów badania wyłączników różnicowoprądowych. Sprawdzenie zadziałania przycisku testującego jest kluczowym elementem, ponieważ pozwala na symulację warunków, w których wyłącznik powinien zareagować na upływność prądu. Użytkownicy często mylą rolę tego przycisku, sądząc, że jego obecność jest jedynie formalnością. Jednak w praktyce, regularne testowanie tej funkcji jest niezbędne, aby zapewnić, że urządzenie będzie działać w sytuacjach krytycznych. Kolejnym aspektem jest pomiar czasu i różnicowego prądu zadziałania, które są kluczowe dla określenia, czy wyłącznik spełnia normy bezpieczeństwa. Warto zaznaczyć, że normy te, m.in. PN-EN 61008-1, precyzują wymagania dotyczące czasów reakcji oraz wartości prądów, co jest zatem kluczowe dla oceny ich skuteczności. Nieprawidłowe podejście do tych czynności może prowadzić do błędów w diagnozowaniu stanu technicznego wyłączników, co z kolei może zagrażać bezpieczeństwu użytkowników. Wiele osób lekceważy również sprawdzenie poprawności podłączenia do sieci, co jest istotnym krokiem w zapewnieniu, że wyłącznik będzie działać zgodnie z przeznaczeniem. Często w praktyce zapominają o tym etapie, co może prowadzić do fałszywych alarmów lub braku reakcji w momencie rzeczywistego zagrożenia. Dlatego kluczowe jest, aby wszystkie wymienione czynności były regularnie przeprowadzane przez wykwalifikowanych specjalistów, aby zapewnić odpowiedni poziom bezpieczeństwa w obiektach korzystających z wyłączników różnicowoprądowych.

Pytanie 18

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-4, III-2, IV-3
B. I-1, II-2, III-3, IV-4
C. I-4, II-3, III-2, IV-1
D. I-2, II-4, III-1, IV-3
Analizując zastosowane podejścia w niepoprawnych odpowiedziach, widać, że błędnie interpretują one zasady dotyczące podłączenia łącznika krzyżowego. Wiele osób może mylnie sądzić, że wystarczy zamienić miejscami wejścia i wyjścia bez zrozumienia ich funkcji. Na przykład, konfiguracja I-2, II-4, III-1, IV-3 sugeruje, że wejście 2 pełni rolę głównego źródła sygnału, co jest niezgodne z funkcją łącznika krzyżowego. Tego typu błędne myślenie można przypisać braku zrozumienia, jak sygnały elektryczne przepływają przez system, co prowadzi do nieprawidłowego sterowania oświetleniem. Kolejnym typowym błędem jest nieodróżnianie między funkcją wejść a wyjść łącznika. Wejścia 1 i 4 mają za zadanie przyjmować sygnały sterujące, a wyjścia 2 i 3 są odpowiedzialne za przekazywanie energii do oświetlenia. Niezrozumienie tej struktury może prowadzić do nieefektywnego działania całego układu oraz problemów z instalacją. Ważne jest, aby zrozumieć, że każdy element ma swoją określoną rolę w systemie elektrycznym i nie można dowolnie zmieniać ich funkcji bez konsekwencji dla bezpieczeństwa i wydajności instalacji.

Pytanie 19

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. Zastosowano niewłaściwy typ łącznika instalacyjnego.
B. W instalacji nieprawidłowo połączono przewód ochronny.
C. W rury wciągnięto niewłaściwą liczbę przewodów.
D. Błędnie połączono przewody instalacji do zacisków żyrandola.
Błędne odpowiedzi, takie jak niewłaściwe połączenie przewodów instalacji do zacisków żyrandola czy niesprawidłowe połączenie przewodu ochronnego, wynikają z niepełnego zrozumienia zasady działania instalacji elektrycznych. W przypadku pierwszego błędu, pomylenie przewodów może prowadzić do poważnych zagrożeń, takich jak zwarcie czy uszkodzenie sprzętu, co negatywnie wpływa na bezpieczeństwo użytkowników. Z kolei niepoprawne połączenie przewodu ochronnego wprowadza ryzyko porażenia prądem, co jest sprzeczne z fundamentalnymi zasadami bezpieczeństwa, określonymi w normach takich jak PN-IEC 60364. Drugą nieprawidłową koncepcją jest zrozumienie liczby przewodów w instalacji. W przypadku stosowania zbyt wielu przewodów w rurze, może dojść do ich przegrzewania i uszkodzenia izolacji, co stwarza ryzyko pożaru. W praktyce, projektanci instalacji muszą przestrzegać odpowiednich standardów dotyczących liczby przewodów, które mogą być prowadzone w danej rurze, aby zachować optymalne warunki pracy i bezpieczeństwo. Zrozumienie tych zasad jest kluczowe dla prawidłowego montażu i eksploatacji systemów elektrycznych, co powinno być priorytetem dla każdego specjalisty w branży.

Pytanie 20

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Impedancji zwarciowej.
B. Napięcia dotykowego.
C. Rezystancji izolacji stanowiska.
D. Ciągłości przewodów.
Pomiar rezystancji izolacji to naprawdę ważny element, jeśli chodzi o ocenę stanu instalacji elektrycznych. Bez tego nie da się mówić o bezpieczeństwie użytkowników, zwłaszcza w różnych warunkach. Na rysunku widzisz miernik rezystancji, który jest podłączony do badanego elementu i do ziemi. Taki sposób pomiaru pozwala ocenić jakość izolacji oraz wykryć ewentualne usterki. To ważne, bo niektóre problemy mogą prowadzić do groźnych sytuacji, jak na przykład porażenie prądem. W instalacjach przemysłowych regularne pomiary rezystancji izolacji to konieczność, żeby zapewnić, że wszystko działa jak należy, zgodnie z normami IEC 61557. Mierzenie z odpowiednim dociskiem elektrody, w tym przypadku 750 N, też jest kluczowe. Wartości rezystancji powinny być zgodne z normami, a przynajmniej 1 MΩ, żeby mieć pewność, że wszystko jest w porządku i bezpieczne. Znajomość tych parametrów i umiejętność ich analizy jest mega ważna dla każdego, kto zajmuje się elektryką.

Pytanie 21

W jaki sposób steruje się oświetleniem w układzie, którego schemat przedstawiono na rysunku?

Łącznik 1 sterujeŁącznik 2 steruje
A.oddzielnie źródłami światła tylko w punkcie A.oddzielnie źródłami światła tylko w punkcie B.
B.oddzielnie po jednym ze źródeł światła w punktach A i B.oddzielnie po jednym ze źródeł światła w punktach A i B.
C.wszystkimi źródłami światła jednocześnie tylko w punkcie A.wszystkimi źródłami światła jednocześnie tylko w punkcie B.
D.wszystkimi źródłami światła w punktach A i B jednocześnie.wszystkimi źródłami światła w punktach A i B jednocześnie.
Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór niewłaściwej odpowiedzi wskazuje na pewne nieporozumienia dotyczące sposobu, w jaki układ oświetlenia funkcjonuje. Ważne jest zrozumienie, że każdy element w schemacie, w tym łączniki i źródła światła, został zaprojektowany w celu umożliwienia prostego i jednoczesnego sterowania. Odpowiedzi A, B oraz C mogą sugerować, że układ pozwala na niezależne sterowanie każdym źródłem światła, co jest błędne. W rzeczywistości brak jakichkolwiek dodatkowych komponentów, takich jak przełączniki schodowe lub krzyżowe, uniemożliwia niezależne włączanie i wyłączanie poszczególnych żarówek. Często pojawia się mylne przekonanie, że jakakolwiek obecność wielu źródeł światła w jednym obwodzie automatycznie wskazuje na możliwość ich oddzielnego sterowania. Również, przy projektowaniu układów oświetleniowych, kluczowe jest przestrzeganie zasad dotyczących prostoty i przejrzystości działania instalacji. Niezrozumienie tych podstawowych zasad może prowadzić do nieefektywnego wykorzystania energii i frustracji użytkowników, którzy oczekują, że będą w stanie sterować oświetleniem w sposób elastyczny. Dlatego tak istotne jest, aby w analizie schematów oświetleniowych zwracać uwagę na każdy detal układu oraz zrozumieć, jakie funkcje i możliwości on oferuje.

Pytanie 22

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Liczba urządzeń zasilanych z tej instalacji
B. Metoda montażu instalacji
C. Warunki zewnętrzne, którym instalacja jest poddawana
D. Kształt budynku w przestrzeni
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 23

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie W
B. Przerwa w uzwojeniu fazy V
C. Zwarcie międzyzwojowe w fazie V
D. Przerwa w uzwojeniu fazy W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 24

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 25

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Nóż monterski, szczypce boczne, szczypce monterskie
B. Nóż monterski, szczypce boczne, zestaw wkrętaków
C. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
D. Szczypce długie, nóż monterski, szczypce czołowe
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 26

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 2, N - 3, PE - 4
B. L - 1, N - 4, PE - 3
C. L - 1, N - 3, PE - 4
D. L - 3, N - 4, PE - 1
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 27

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana dwóch faz miejscami
B. brak podłączenia jednej fazy
C. brak podłączenia dwóch faz
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 28

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do zaciskania końcówek tulejkowych.
C. do ściągania izolacji z żył przewodów.
D. do docinania przewodów.
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 29

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Elektronicznego przekaźnika czasowego
B. Ochronnika przepięć
C. Wyłącznika nadprądowego
D. Wyłącznika różnicowoprądowego
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 30

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyłącznik nadprądowy dwubiegunowy.
B. Ogranicznik przepięć.
C. Czujnik zaniku i kolejności faz.
D. Wyłącznik różnicowoprądowy z członem nadprądowym.
Wyłącznik różnicowoprądowy z członem nadprądowym to urządzenie o kluczowym znaczeniu w systemach elektroenergetycznych, które zapewnia zarówno ochronę przed przeciążeniem, jak i przed porażeniem prądem elektrycznym. Jego charakterystyczne oznaczenia i symbole na obudowie pozwalają na łatwe zidentyfikowanie go wśród innych urządzeń elektrycznych. W praktyce, wyłączniki różnicowoprądowe z członem nadprądowym są często stosowane w instalacjach domowych oraz przemysłowych, gdzie zabezpieczają przed skutkami zwarć i przeciążeń. Zgodnie z normami PN-EN 61008 oraz PN-EN 60947, urządzenia te powinny być stosowane w obwodach, gdzie istnieje ryzyko porażenia prądem, zwłaszcza w pomieszczeniach wilgotnych, jak łazienki czy kuchnie. Regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich skuteczności. Dobrą praktyką jest również ich instalacja w obwodach, gdzie zasilane są urządzenia o dużym poborze mocy, co minimalizuje ryzyko uszkodzenia sprzętu i zapewnia bezpieczeństwo użytkowników.

Pytanie 31

Której z lamp dotyczy przedstawiony na schemacie układ zasilania?

Ilustracja do pytania
A. Sodowej.
B. Indukcyjnej.
C. Diodowej.
D. Żarowej.
Na schemacie widać typowy układ zasilania lampy wyładowczej, a nie prostej lampy żarowej, diodowej ani układu czysto indukcyjnego. Kluczowe są trzy elementy: dławik oznaczony jako ST, zapłonnik UZ z wyprowadzeniami oraz kondensator C między przewodem fazowym a neutralnym. Taki zestaw nie jest potrzebny ani dla lampy żarowej, ani dla typowej lampy LED. Lampa żarowa jest źródłem światła o charakterze rezystancyjnym, z żarnikiem wolframowym – można ją bezpośrednio podłączyć do sieci 230 V bez żadnego statecznika czy zapłonnika. Wystarczy oprawka, przewód, łącznik i zabezpieczenie nadprądowe. Dodawanie dławika i zapłonnika do żarówki nie tylko nie ma sensu, ale byłoby w praktyce szkodliwe i niezgodne z jakimikolwiek dobrą praktyką czy normami instalacyjnymi. W przypadku lamp diodowych większość źródeł LED do zastosowań ogólnych ma wbudowany zasilacz elektroniczny, który przystosowuje się do napięcia sieciowego. Schematy z klasycznym dławikiem indukcyjnym i zapłonnikiem dotyczą starych technologii wyładowczych, a nie nowoczesnego oświetlenia LED. LED-y wymagają stabilizowanego prądu stałego lub odpowiednio uformowanego prądu przemiennego, realizowanego przez zasilacz impulsowy, a nie przez prosty dławik sieciowy. Z kolei odpowiedź „indukcyjna” bywa myląca, bo ktoś widzi cewkę (statecznik) i od razu kojarzy to z lampą indukcyjną. Tymczasem na schemacie dławik pracuje jako statecznik do lampy sodowej, a nie jako element źródła światła. Lampa indukcyjna ma zupełnie inny, bardziej złożony układ zasilania wysokiej częstotliwości, oparty na przetwornicach elektronicznych, a nie na pojedynczym dławiku 50 Hz i zapłonniku. Typowy błąd polega na utożsamianiu cewki z każdą „lampą indukcyjną” lub na założeniu, że skoro jest kondensator, to może chodzić o LED-y, bo tam też bywają kondensatory. W oświetleniu wyładowczym kondensator ma głównie rolę kompensacji mocy biernej indukcyjnej statecznika oraz czasem poprawy parametrów sieciowych, co jest jasno opisane w dokumentacji opraw sodowych. Z mojego doświadczenia warto patrzeć na obecność zapłonnika – jeśli na schemacie jest osobny zapłonnik i dławik, to mamy do czynienia z klasyczną lampą wyładowczą, najczęściej sodową lub metalohalogenkową, a nie z żarówką czy LED-em.

Pytanie 32

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie miejsca pracy
B. izolowanie części czynnych
C. urządzenia II klasy ochronności
D. połączenia wyrównawcze
Zastosowanie połączeń wyrównawczych, izolowanie miejsca pracy czy używanie urządzeń II klasy ochronności nie jest najlepszym rozwiązaniem, jeśli chodzi o ochronę przed dotykiem bezpośrednim w domowych instalacjach elektrycznych. Połączenia wyrównawcze są fajne, bo zmniejszają różnice potencjałów, ale nie chronią przed kontaktem z częściami czynnymi. Izolowanie stanowiska to raczej coś dla pracy przy urządzeniach elektrycznych w fabrykach niż w domach. A urządzenia II klasy ochronności, chociaż są ważne, to działają w zupełnie innych warunkach. W domach trzeba przede wszystkim dobrze izolować wszystkie elementy, które mogą być na wyciągnięcie ręki. Dlatego tak istotne jest, żeby projektować instalacje według najlepszych praktyk i norm, jak PN-IEC 61140, które podkreślają, jak ważne jest, by skutecznie chronić się przed kontaktem z elektrycznością.

Pytanie 33

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Współczynnika mocy.
B. Spadku napięcia.
C. Częstotliwości.
D. Odkształceń przebiegu napięcia.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 34

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G4,G9,MR11
B. E27,MR11,G4,G9
C. E27,G9,MR11,G4
D. E27,G4,MR11,G9
Zrozumienie różnorodności trzonków źródeł światła jest kluczowe dla efektywnego i praktycznego ich wykorzystania. Wybór niewłaściwej kombinacji trzonków, jak w przypadku niepoprawnych odpowiedzi, może prowadzić do nieefektywnego oświetlenia, a także do problemów z kompatybilnością urządzeń. Na przykład, pomylenie trzonka E27 z G4 w praktycznym zastosowaniu jest poważnym błędem, ponieważ E27 to standardowy gwint dla większych żarówek, podczas gdy G4 jest przeznaczony dla niskonapięciowych źródeł światła, takich jak miniaturowe halogeny. W przypadku odpowiedzi, które sugerują inne porządki, kluczowe jest zrozumienie, że różne typy trzonków mają specyficzne wymiary i przeznaczenia, co sprawia, że ich zamiana lub niewłaściwa identyfikacja prowadzi do nieprawidłowego działania systemu oświetleniowego. Niepoprawne odpowiedzi mogą także wynikać z błędnego przekonania, że różne trzonki mogą być stosowane zamiennie, co nie jest prawdą w kontekście technicznych wymagań. Wiedza o tym, jakie trzonki są używane w określonych zastosowaniach, pozwala na lepsze planowanie i realizację projektów oświetleniowych, jak również na unikanie kosztownych pomyłek przy zakupie źródeł światła.

Pytanie 35

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SH-s (2)
B. SP-d (1)
C. SP-d (2)
D. SH-s (1)
Odpowiedź SP-d (2) jest poprawna, ponieważ zgodnie z normami budowlanymi w Polsce, łącznik oświetlenia głównego powinien być zainstalowany w łatwo dostępnym miejscu, zazwyczaj w pobliżu drzwi wejściowych do pomieszczenia. Umieszczenie łącznika w strefie SP-d (2) jest zgodne z zaleceniami dotyczącymi ergonomii i użyteczności, co pozwala użytkownikom na wygodne włączanie i wyłączanie światła od razu po wejściu do pomieszczenia. W przypadku strefy SP-d (2), łącznik znajduje się po prawej stronie drzwi, co jest standardowym rozwiązaniem w projektowaniu wnętrz, ułatwiającym dostęp do oświetlenia. Taki układ zwiększa komfort użytkowania oraz zapewnia większe bezpieczeństwo, gdyż pozwala na szybkie oświetlenie pomieszczenia, eliminując ryzyko potknięcia się w ciemności. Dobrą praktyką jest także umieszczanie łączników na odpowiedniej wysokości, co dodatkowo zwiększa ich funkcjonalność. Zastosowanie się do tych norm jest kluczowe w każdym projekcie budowlanym, aby zapewnić optymalne warunki użytkowania oraz zgodność z przepisami prawa budowlanego.

Pytanie 36

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 4.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 3.
Wybór innych narzędzi niż ściągacz do demontażu przewietrznika z wału silnika elektrycznego może wynikać z nieodpowiedniego zrozumienia funkcji poszczególnych narzędzi. Narzędzie 1, na przykład, może być korzystne w innych zastosowaniach, ale nie jest zaprojektowane do precyzyjnego ściągania elementów, co jest kluczowe podczas demontażu przewietrznika. Korzystanie z narzędzi, które nie są odpowiednie do danego zadania, może prowadzić do ich uszkodzenia lub, jeszcze gorzej, do uszkodzenia przewietrznika lub wału silnika. Narzędzie 3 oraz 4 także nie spełniają wymogów dotyczących delikatnego podejścia do demontażu, co jest niezbędne w przypadku precyzyjnych elementów maszynowych. Typowym błędem myślowym jest zakładanie, że każde narzędzie nadaje się do wykonania każdego zadania. W rzeczywistości, wybór narzędzia powinien opierać się na specyfikacji zadania oraz na zrozumieniu, jak konkretne narzędzie działa i jakie ma zastosowanie. Niewłaściwe podejście do wyboru narzędzi nie tylko zwiększa ryzyko uszkodzeń, ale również może zagrażać bezpieczeństwu operatora. Użycie dedykowanego narzędzia, takiego jak ściągacz, jest zawsze najlepszym rozwiązaniem, co podkreśla znaczenie edukacji w zakresie doboru narzędzi w przemyśle elektrycznym.

Pytanie 37

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 mA oraz znamionowy prąd ciągły 63 mA
B. 0,03 A oraz napięcie znamionowe 63 V
C. 0,03 mA oraz napięcie znamionowe 63 V
D. 0,03 A i znamionowy prąd ciągły 63 A
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 38

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik przepięciowy.
B. Wyłącznik nadmiarowoprądowy.
C. Rozłącznik bezpiecznikowy.
D. Odłącznik bezpiecznikowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 39

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Sodową.
B. Żarową.
C. Ledową.
D. Rtęciową.
Odpowiedź "Ledową" jest poprawna, ponieważ na zdjęciu widoczna jest lampa LED, która charakteryzuje się wieloma małymi diodami emitującymi światło. W przeciwieństwie do lamp żarowych, które mają jedno większe źródło światła, lampy LED oferują szereg zalet. Przykładowo, ich wydajność energetyczna jest znacznie wyższa, co prowadzi do oszczędności energii i dłuższej żywotności. W praktycznym zastosowaniu oznacza to, że lampy LED mogą być wykorzystywane w różnych kontekstach, jak oświetlenie wnętrz, iluminacje zewnętrzne, a także w instalacjach przemysłowych. Zgodnie z normami branżowymi, lampy LED nie emitują promieniowania UV, co czyni je bezpiecznymi w zastosowaniach, gdzie istotna jest ochrona przed szkodliwym wpływem światła. Warto również dodać, że technologia LED jest zgodna z trendami zrównoważonego rozwoju, co czyni je preferowanym wyborem w nowoczesnych budynkach.

Pytanie 40

Która z wymienionych lamp należy do żarowych źródeł światła?

A. Halogenowa.
B. Sodowa.
C. Rtęciowa.
D. Indukcyjna.
Poprawna odpowiedź to lampa halogenowa, ponieważ należy ona do grupy klasycznych źródeł żarowych. W lampie halogenowej mamy do czynienia z tym samym zjawiskiem co w zwykłej żarówce – świeci rozgrzany do wysokiej temperatury żarnik wolframowy, przez który płynie prąd elektryczny. Różnica polega na tym, że bańka jest wypełniona gazem halogenowym (np. jodem lub bromem), co powoduje tzw. cykl halogenowy. Dzięki temu wolfram, który odparowuje z żarnika, częściowo wraca z powrotem na jego powierzchnię. W praktyce oznacza to wyższą trwałość, mniejsze zaczernienie bańki i wyższą skuteczność świetlną w porównaniu ze starą żarówką tradycyjną. Z punktu widzenia elektryka i instalatora halogeny traktuje się jako typowe źródła żarowe: zasilane prądem przemiennym 230 V lub przez transformator elektroniczny 12 V, o charakterystyce praktycznie rezystancyjnej. Przy doborze osprzętu, przekrojów przewodów czy zabezpieczeń nadprądowych przyjmuje się, że obciążenie jest czysto omowe, bez istotnych prądów rozruchowych jak w świetlówkach czy oprawach wyładowczych. W oświetleniu technicznym halogeny były (i nadal czasem są) stosowane w reflektorach punktowych, w oświetleniu sceny, w lampach warsztatowych, w oświetleniu zewnętrznym przed wejściem czy nad bramą garażową, zwłaszcza tam gdzie wymagana była dobra oddawalność barw i skupiony snop światła. Moim zdaniem warto też pamiętać, że według aktualnych trendów i wymagań efektywności energetycznej halogeny są coraz częściej zastępowane przez LED-y, ale klasyfikacja fizyczna pozostaje ta sama: to dalej źródło żarowe, a nie wyładowcze ani indukcyjne.