Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 28 października 2025 22:22
  • Data zakończenia: 28 października 2025 22:35

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wcześniejszego zweryfikowania efektywności ochrony w instalacji
B. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
C. zasilania ich z gniazd z ochronnym bolcem uziemiającym
D. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
Zasilanie urządzeń elektrycznych klasy 0 z gniazd wyposażonych w ochronny bolec uziemiający jest podejściem błędnym, ponieważ sama obecność bolca nie zapewnia ochrony przed porażeniem, gdyż urządzenia te nie posiadają żadnej formy ochrony izolacyjnej. Klasa 0 oznacza, że urządzenie nie ma dodatkowej izolacji ani zabezpieczeń, co czyni je narażonym na porażenie elektryczne w przypadku uszkodzenia. Zastosowanie nadzoru technicznego ze strony dostawcy energii elektrycznej również nie gwarantuje bezpieczeństwa, ponieważ jest to odpowiedzialność użytkownika, aby zapewnić odpowiednie warunki eksploatacyjne. Ponadto wcześniejsze sprawdzenie skuteczności ochrony w instalacji nie ma zastosowania, jeśli urządzenia nie są zaprojektowane z myślą o ochronie przed porażeniem. Stosunek do wymagań zawartych w polskich normach budowlanych oraz wytycznych dotyczących użytkowania urządzeń elektrycznych jest kluczowy - błędne założenia mogą prowadzić do poważnych wypadków. Dlatego istotne jest, aby przed użyciem urządzeń klasy 0, bardzo dokładnie ocenić ich stan oraz warunki użytkowania, a nie polegać na nieadekwatnych metodach ochrony.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. DC-4
B. AC-3
C. DC-2
D. AC-1
Wybór stycznika DC-2 oraz DC-4 jest nieodpowiedni w kontekście modernizacji szafy sterowniczej z silnikami indukcyjnymi klatkowym. Styki oznaczone jako DC-2 są przeznaczone głównie do obwodów prądowych o charakterze niewielkich obciążeń i nie są przystosowane do rozruchu silników asynchronicznych, które wymagają znacznie większej mocy i wytrzymałości mechanicznej. Z kolei styczniki DC-4, które są przeznaczone do zastosowań z silnikami prądu stałego, nie mogą efektywnie obsługiwać prądów rozruchowych silników indukcyjnych. Styki w tych stycznikach nie są przystosowane do radzenia sobie z dużymi skokami prądu, które występują w momentach załączania silników indukcyjnych, co może prowadzić do ich uszkodzenia oraz zmniejszenia efektywności całego systemu. Błędem jest również założenie, że silniki indukcyjne mogą być kontrolowane przez styczniki DC bez uwzględnienia ich charakterystyki pracy. W rzeczywistości zastosowanie niewłaściwego typu stycznika grozi nie tylko awarią sprzętu, ale również stwarza poważne zagrożenie dla bezpieczeństwa operacji. W takich przypadkach, kluczowe jest, aby zrozumieć różnice między stycznikami przeznaczonymi do prądu zmiennego a tymi dla prądu stałego, a także konsekwencje niewłaściwego doboru komponentów w systemach automatyki.

Pytanie 6

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika
B. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
C. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
D. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
W analizowanych stwierdzeniach, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących podstawowych zasad działania silników bocznikowych prądu stałego. Prąd w obwodzie wzbudzenia nie powinien być mniejszy niż w obwodzie twornika, ponieważ może to sugerować niedostateczne wzbudzenie, co prowadzi do zmniejszenia momentu obrotowego i osłabienia pracy silnika. Prędkość obrotowa wirnika wzrasta przy osłabieniu wzbudzenia, co jest zjawiskiem typowym dla silników prądu stałego, ale nie powinno być to mylone z normalnym działaniem. W rzeczywistości, obniżenie wzbudzenia prowadzi do zwiększenia prędkości obrotowej, ale również może prowadzić do niestabilności w pracy silnika i zwiększonego ryzyka przegrzania. Jednocześnie prędkość obrotowa na biegu jałowym nie powinna przekraczać prędkości znamionowej, ponieważ może to skutkować niewłaściwym działaniem silnika i potencjalnym uszkodzeniem komponentów. Kluczowe jest, aby operatorzy silników elektrycznych zrozumieli te zależności oraz systematycznie monitorowali parametry silnika, aby unikać sytuacji mogących prowadzić do awarii. Zrozumienie tych zasad jest niezbędne dla uzyskania efektywności oraz długowieczności systemów napędowych.

Pytanie 7

Obwód typu SELV powinien być zasilany z sieci energetycznej poprzez

A. autotransformator
B. rezystor w układzie szeregowym
C. dzielnik napięcia
D. transformator bezpieczeństwa
Dzielnik napięcia nie jest odpowiednim rozwiązaniem do zasilania obwodów SELV, ponieważ jego działanie polega na dzieleniu napięcia zgodnie z określonym stosunkiem rezystancji. W przypadku awarii jednego z elementów, napięcie wyjściowe może wzrosnąć do wartości niebezpiecznych, co zagraża bezpieczeństwu użytkowników. Podobnie autotransformator, który wykorzystuje wspólny uzwojenie do przekształcania napięcia, nie zapewnia wymaganej separacji galwanicznej i może wprowadzać niebezpieczne napięcia do obwodu niskonapięciowego. Rezystor szeregowy, z kolei, służy do ograniczania prądu w obwodzie, ale nie dostarcza izolacji, co jest kluczowe w systemach SELV. W przypadku systemów zasilania niskonapięciowego kluczowe jest zapewnienie, że napięcie nie przekroczy 50 V AC lub 120 V DC, a transformator bezpieczeństwa spełnia te wymagania, zapewniając odpowiednią izolację. Typowe błędy myślowe to mylne przekonanie, że można stosować elementy, które nie spełniają norm bezpieczeństwa, co może prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych.

Pytanie 8

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Wyłącznik różnicowoprądowy
B. Bezpiecznik
C. Odłącznik
D. Przekaźnik termiczny
Bezpiecznik to kluczowe urządzenie w instalacjach elektrycznych, które chroni obwody przed skutkami zwarć oraz przepięć. Jego główną funkcją jest przerwanie obwodu w momencie, gdy natężenie prądu przekroczy ustaloną wartość, co zapobiega uszkodzeniu urządzeń oraz minimalizuje ryzyko pożaru. W praktyce, bezpieczniki są szeroko stosowane w domowych i przemysłowych instalacjach elektrycznych oraz są zgodne z normami, takimi jak PN-EN 60947-2. Standardowe zastosowanie bezpiecznika polega na jego instalacji w rozdzielniach elektrycznych, gdzie zapewnia on ochronę dla poszczególnych obwodów. Warto również zwrócić uwagę na różne typy bezpieczników, w tym bezpieczniki topikowe i automatyczne, które mają różne zastosowania w zależności od charakterystyki obciążenia. Dobre praktyki obejmują regularne kontrole i wymianę bezpieczników, aby zagwarantować ich skuteczność oraz niezawodność działania w sytuacjach awaryjnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Sonometr
B. Waromierz
C. Pirometr
D. Megaomomierz
Pirometr nie jest odpowiednim narzędziem do pomiaru rezystancji izolacji. Jego głównym zastosowaniem jest pomiar temperatury, a nie parametrów elektrycznych. Użytkownicy mogą mylić pirometr z innymi instrumentami pomiarowymi, jednak kluczowym jest zrozumienie, że temperatura nie ma bezpośredniego związku z rezystancją izolacji. Sonometr również nie jest właściwym urządzeniem do tego celu; jest to przyrząd służący do pomiaru poziomu dźwięku. Pomiar rezystancji wymaga specjalistycznych narzędzi, które potrafią generować odpowiednie napięcia oraz analizować wyniki w kontekście izolacji elektrycznej. Waromierz, z kolei, jest wykorzystywany do pomiaru ciśnienia, co również odbiega od tematyki pomiaru rezystancji. Błędem jest mylenie różnych typów przyrządów pomiarowych, co może prowadzić do niewłaściwego doboru narzędzi w sytuacjach, które mogą być niebezpieczne. Zrozumienie podstawowych funkcji każdego z tych urządzeń oraz ich zastosowań w praktyce jest kluczowe dla właściwego podejścia do pomiarów elektrycznych. Dlatego też, korzystając z niewłaściwego narzędzia, można nie tylko nie uzyskać potrzebnych informacji, ale także narażać siebie i innych na ryzyko związane z nieprawidłowym działaniem instalacji elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
B. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
C. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
D. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
Wszystkie pozostałe działania, takie jak zwiększenie częstotliwości przeglądów maszyn elektrycznych, podnoszenie kwalifikacji pracowników czy uzyskiwanie większego przydziału mocy w Zakładzie Energetycznym, nie prowadzą bezpośrednio do poprawy współczynnika mocy, co może prowadzić do błędnych wniosków w zakresie zarządzania energetycznego. Zwiększenie częstotliwości przeglądów maszyn elektrycznych, chociaż istotne dla utrzymania ich sprawności i wydajności, nie wpływa na współczynnik mocy sam w sobie. Główne korzyści związane z przeglądami dotyczą zapobiegania awariom i przedłużenia żywotności sprzętu, a nie bezpośredniej poprawy PF. Podnoszenie kwalifikacji pracowników jest z pewnością korzystne dla ogólnej efektywności operacyjnej zakładu, jednak nie jest to działanie, które bezpośrednio wpłynie na poprawę współczynnika mocy. Natomiast uzyskanie większego przydziału mocy w Zakładzie Energetycznym może wręcz prowadzić do zwiększenia obciążeń, co często skutkuje pogorszeniem współczynnika mocy. Właściwa strategia zarządzania mocą powinna koncentrować się na optymalizacji istniejącego sprzętu oraz eliminacji nieefektywnych operacji, zamiast na zwiększaniu przydziału mocy, co może prowadzić do niepotrzebnych kosztów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. prądowego po stronie pierwotnej
B. prądowego po stronie wtórnej
C. napięciowego po stronie pierwotnej
D. napięciowego po stronie wtórnej
Wybór bezpieczników w obwodzie przekładników prądowych po stronie pierwotnej, wtórnej czy napięciowej jest problematyczny i oparty na kilku błędnych założeniach. Przykładowo, stosowanie bezpieczników po stronie wtórnej może wydawać się rozsądne, jednak niesie ono ryzyko uszkodzenia izolacji uzwojeń. Działanie bezpiecznika w sytuacji zwarcia prowadzi do nagłego wzrostu napięcia w obwodzie wtórnym, co może uszkodzić izolację oraz wpłynąć na dokładność pomiarów. Podobnie, umieszczanie bezpieczników na stronie pierwotnej, w kontekście przekładników napięciowych, również stwarza niebezpieczeństwo dla urządzeń zabezpieczających, ponieważ naraża je na nadmierne napięcia i przepięcia. Warto zauważyć, że przekładniki prądowe i napięciowe są projektowane z myślą o zachowaniu wysokiej niezawodności w transporcie informacji o prądzie i napięciu do systemów pomiarowych. Bezpieczniki w istocie mogą zakłócać ten proces, wprowadzając dodatkowe ryzyko i zmniejszając niezawodność całego systemu. W praktyce, należy stosować odpowiednie metody zabezpieczeń i monitorowania, które są zgodne z normami branżowymi, aby uniknąć tych problemów. Normy te, jak IEC 61850, podkreślają znaczenie prawidłowego doboru zabezpieczeń oraz ich integracji z systemami monitorującymi, co jest kluczowe dla utrzymania bezpieczeństwa i efektywności w instalacjach elektrycznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H07RR-F 5G2,5
B. H07VV-U 5G2,5
C. H03V2V2-F 3G2,5
D. H03V2V2H2-F 2X2,5
Odpowiedzi H07VV-U 5G2,5, H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 nie są odpowiednie do zastąpienia uszkodzonego przewodu OW 4×2,5 mm² w przypadku silnika indukcyjnego trójfazowego. Przewód H07VV-U 5G2,5 jest przewodem typu płaskiego, przeznaczonym głównie do instalacji stałych, co nie jest idealnym rozwiązaniem w warunkach warsztatowych, gdzie elastyczność przewodu jest kluczowa. Zastosowanie przewodu, który nie jest odporny na uszkodzenia mechaniczne, może prowadzić do jego uszkodzenia, a w konsekwencji do awarii silnika. Z kolei przewody H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 charakteryzują się mniejszą liczbą żył oraz niższymi parametrami elektrycznymi, co czyni je niewystarczającymi do zasilania silników o większej mocy, które wymagają solidnych połączeń trójfazowych. Wybierając przewody, istotne jest, aby zwracać uwagę na ich klasyfikację zgodnie z europejskimi normami, a także na zastosowanie w konkretnych warunkach. Ignorowanie tych aspektów prowadzi do niewłaściwego doboru materiałów oraz potencjalnych zagrożeń dla zdrowia i bezpieczeństwa w miejscu pracy.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
B. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
C. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
Wybór niepoprawnych warunków do pomiaru rezystancji izolacji często wynika z braku zrozumienia podstawowych zasad bezpieczeństwa i metodologii pomiarowej. W scenarios, gdzie odbiorniki pozostają włączone do gniazd wtyczkowych, istnieje realne ryzyko zwarcia oraz uszkodzenia sprzętu. Takie podejście zaprzecza podstawowym zasadom ochrony przeciwporażeniowej, które mówią o konieczności całkowitego odłączenia zasilania przed przystąpieniem do jakichkolwiek działań pomiarowych. Obecność zamontowanych źródeł światła również stwarza zagrożenie, ponieważ może prowadzić do fałszywych odczytów wyników, które nie odzwierciedlają rzeczywistej sytuacji stanu izolacji instalacji. Ponadto, włączone łączniki oświetleniowe, mimo że mogą wydawać się korzystne, mogą w rzeczywistości wprowadzać dodatkowe obciążenie do obwodu, co prowadzi do nieprecyzyjnych pomiarów. Zgodnie z normami, takimi jak PN-EN 61557, kluczowe jest, aby wszystkie potencjalne obciążenia były usunięte przed przystąpieniem do pomiarów. Tego typu błędne podejścia mogą prowadzić do poważnych konsekwencji, w tym do uszkodzenia instalacji, urządzeń oraz, co najważniejsze, mogą zagrażać zdrowiu i życiu osób pracujących z instalacjami elektrycznymi.

Pytanie 26

Jakie oznaczenie ma elektryczny silnik, który jest przeznaczony do pracy cyklicznej w trybie: 4 minuty – działanie, 6 minut – przerwa?

A. S2 40
B. S2 60
C. S3 40%
D. S3 60%
Odpowiedzi wskazujące na S2, zarówno w wersji z 60%, jak i 40%, są mylące, gdyż odnoszą się do zupełnie innego trybu pracy silnika elektrycznego. Oznaczenie S2 dotyczy silników, które są przystosowane do pracy przez określony czas, lecz nie przewidują przerwy w cyklu roboczym. W przypadku S2 silnik może pracować przez krótki czas, a jego zdolność do pracy nie jest dostosowana do częstych cykli przerywanych, co może prowadzić do przegrzania i uszkodzenia urządzenia. Typowe cykle pracy S2 są krótsze i nie przewidują długich okresów przerwy. Oznaczenie S3 natomiast jest dedykowane do pracy przerywanej, co czyni je bardziej odpowiednim w kontekście podanego pytania. Warto również zauważyć, że wybierając niewłaściwe oznaczenia, można wprowadzić w błąd nie tylko w kontekście efektywności energetycznej, ale także w kwestiach bezpieczeństwa operacyjnego. Silniki muszą być odpowiednio dostosowane do zakładanych warunków pracy, aby uniknąć nadmiernego zużycia czy nawet awarii. Typowe błędy myślowe obejmują nieprawidłowe interpretowanie cykli pracy oraz mylenie ich z obciążeniem, co może prowadzić do wyboru niewłaściwego silnika dla danej aplikacji.

Pytanie 27

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. dwa lata
B. jeden rok
C. pół roku
D. pięć lat
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. przerywanej
B. nieokresowej
C. dorywczej
D. ciągłej
Oznaczenie S1 na tabliczce znamionowej silnika trójfazowego mówi nam, że ten silnik jest stworzony do pracy ciągłej. To znaczy, że powinien działać bez przerwy i w pełnym obciążeniu przez dłuższy czas. Takie silniki są projektowane według normy IEC 60034-1, która określa różne klasy i tryby pracy silników elektrycznych. Silniki oznaczone jako S1 są często używane w różnych branżach przemysłowych, jak pompy, wentylatory czy kompresory. Tutaj stała, niezawodna praca jest bardzo ważna. Na przykład, w systemach HVAC wentylatory muszą działać non-stop, żeby utrzymać dobrą cyrkulację powietrza. Silniki S1 to także gwarancja dłuższej żywotności i lepszej efektywności energetycznej, co jak najbardziej wpisuje się w dobre praktyki inżynieryjne i normy ochrony środowiska. Co więcej, zazwyczaj są objęte gwarancją, co jeszcze bardziej podkreśla ich niezawodność w zastosowaniach wymagających ciągłej pracy.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia zwarciowego
B. Zabezpieczenia przeciążeniowego
C. Zabezpieczenia nadnapięciowego
D. Zabezpieczenia podnapięciowego
Zastosowanie zabezpieczeń przeciążeniowych, zwarciowych, czy nadnapięciowych w kontekście rozruchu silników indukcyjnych pierścieniowych nie jest może najlepszym rozwiązaniem, bo jak rozruch się odbywa bez odpowiednich urządzeń, to może być kłopot. Zabezpieczenie przeciążeniowe niby chroni silnik przed przeciążeniem, no ale nie radzi sobie z problemem za niskiego napięcia. Z kolei zabezpieczenia zwarciowe mają na celu ochronę przed krótkimi spięciami, ale nie zapobiegają uruchomieniu przy niskim napięciu, co może prowadzić do uszkodzenia. Producenci sprzętu elektrycznego i dostawcy energii czasem zalecają stosowanie zabezpieczeń podnapięciowych jako ważny element w systemie ochrony silników, aby uniknąć złego rozruchu. Nadnapięcie to inny temat, jest groźne dla silnika, ale w kontekście rozruchu ważne jest to, żeby napięcie nie było za niskie, bo wtedy silnik nie ruszy, albo jeszcze gorzej – działa źle. Warto pomyśleć o tym, że wybór złego zabezpieczenia może prowadzić do dużych problemów i wyższych kosztów, co pokazuje, jak ważne jest, aby stosować odpowiednie rozwiązania według norm i dobrych praktyk inżynieryjnych.

Pytanie 33

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. spisu terminów oraz zakresów prób i pomiarów kontrolnych
B. specyfikacji technicznej instalacji
C. opisu doboru urządzeń zabezpieczających
D. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
Wszystkie pozostałe odpowiedzi odnoszą się do kluczowych aspektów, które powinny być uwzględnione w instrukcji eksploatacji instalacji elektrycznych. Wykaz terminów oraz zakresów prób i pomiarów kontrolnych jest niezbędny, ponieważ regularne kontrole są podstawą utrzymania bezpieczeństwa i niezawodności instalacji. Dzięki nim można monitorować stan techniczny systemów i wykrywać potencjalne usterki. Charakterystyka techniczna instalacji również ma kluczowe znaczenie; zawiera informacje o parametrach pracy oraz specyfikacji zastosowanych elementów, co jest istotne dla personelu wykonującego prace eksploatacyjne. Zasady bezpieczeństwa przy wykonywaniu prac eksploatacyjnych są fundamentalne dla ochrony osób pracujących z instalacjami elektrycznymi. Zawierają one informacje o środkach ochrony osobistej oraz procedurach, które mają na celu zminimalizowanie ryzyka wystąpienia wypadków. Ignorowanie tych elementów w instrukcji eksploatacji może prowadzić do poważnych konsekwencji, w tym wypadków przy pracy. Warto podkreślić, że każdy z tych elementów jest zgodny z normami branżowymi, które nakładają obowiązek zapewnienia odpowiednich zabezpieczeń i procedur operacyjnych. Niezrozumienie ich znaczenia może prowadzić do błędnych wniosków oraz niedopatrzeń w procesie eksploatacji instalacji elektrycznych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Obciążenia znamionowego
B. Zwarcia pomiarowego
C. Biegu jałowego
D. Zwarcia awaryjnego
W stanie biegu jałowego silnik asynchroniczny pracuje bez obciążenia, co prowadzi do niskiego współczynnika mocy. W tym trybie, silnik zużywa moc bierną, co skutkuje niską efektywnością energetyczną. W rzeczywistości, współczynnik mocy może wynosić zaledwie 0,1 do 0,2, co oznacza, że tylko niewielka część energii elektrycznej jest przekształcana w moc użyteczną. Zastosowanie tego trybu jest ograniczone, ale w niektórych sytuacjach, jak w przypadku urządzeń uruchamianych w warunkach niskiego obciążenia, mogą występować momenty pracy w biegu jałowym. W praktyce, dla poprawy efektywności energetycznej, często stosuje się kondensatory, które kompensują moc bierną, co pozwala zwiększyć współczynnik mocy do bardziej akceptowalnych wartości. Ponadto, znajomość tego zjawiska jest kluczowa przy projektowaniu układów zasilania oraz przy wyborze odpowiednich urządzeń i komponentów w systemach elektronicznych i elektrycznych, co jest zgodne z normami takimi jak IEC 60034 dotyczące maszyn elektrycznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie oznaczenia powinien posiadać wyłącznik różnicowoprądowy RCD przeznaczony do ochrony obwodu gniazd jednofazowych w pracowni komputerowej, gdzie używane są 15 zestawy komputerowe?

A. 40/2/030-A
B. 25/4/100-A
C. 16/2/010-A
D. 63/4/300-A
Wybór wyłącznika różnicowoprądowego do zabezpieczenia obwodu gniazd jednofazowych jest kluczowy dla zapewnienia bezpieczeństwa. Odpowiedzi zawierające oznaczenia 25/4/100-A, 63/4/300-A oraz 16/2/010-A są nieodpowiednie z kilku powodów. Oznaczenie 25/4/100-A wskazuje na nominalny prąd różnicowy 25 mA, co jest zbyt niską wartością dla obwodów gniazdowych, szczególnie w pracowni komputerowej, gdzie ryzyko porażenia prądem jest wyższe. Z kolei 63/4/300-A z nominalnym prądem różnicowym 300 mA może nie zapewnić wystarczającego poziomu ochrony, ponieważ tak wysoka wartość prądu różnicowego jest odpowiadająca bardziej obwodom przemysłowym, gdzie ryzyko jest mniejsze. Ostatnie oznaczenie 16/2/010-A, z nominalnym prądem 10 mA, jest niewystarczające dla takiej ilości urządzeń, co stwarza poważne zagrożenie, gdyż zastosowanie zbyt niskiego prądu różnicowego może prowadzić do częstych wyłączeń oraz problemów z użytkowaniem sprzętu komputerowego. Prawidłowy dobór wyłącznika powinien uwzględniać zarówno aspekty techniczne, jak i specyfikę użytkowania w danym środowisku, co jest kluczowe dla zapewnienia funkcjonalności oraz bezpieczeństwa.

Pytanie 38

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
B. Na końcu obudowy w rejonie napędu
C. W centralnej części obudowy blisko skrzynki przyłączeniowej
D. W sąsiedztwie pokrywy wentylatora
Wybór niewłaściwego miejsca do pomiaru temperatury silnika może prowadzić do błędnych wniosków i niskiej efektywności działania urządzenia. Odpowiedzi dotyczące pomiarów w różnych lokalizacjach są wynikiem typowych pomyłek związanych z rozumieniem działania silnika i wpływu otoczenia. Pomiar w pośrodku obudowy w pobliżu skrzynki zaciskowej, choć może wydawać się sensowny, nie oddaje rzeczywistej temperatury roboczej. Skrzynka zaciskowa jest miejscem, gdzie często gromadzą się ciepło i energia, co może prowadzić do zafałszowania wyników. Z kolei pomiar na końcu obudowy od strony napędowej również nie jest idealny, ponieważ w tym miejscu temperatura może być zmieniana przez intensywny ruch powietrza lub obciążenia mechaniczne, co również wpływa na wynik. Zmienne takie jak wentylacja i lokalizacja czujnika mogą tworzyć iluzję normalnego stanu pracy. Tak samo, pomiar na tarczy łożyskowej, choć wydaje się logiczny ze względu na bliskość ruchomych części, może być nieodpowiedni, gdyż nie uwzględnia całej obudowy silnika oraz potencjalnych strat ciepła w wyniku tarcia. Te nieporozumienia zazwyczaj wynikają z braku znajomości zasad działania i specyfikacji technicznych urządzeń w wykonaniu przeciwwybuchowym, co podkreśla znaczenie starannego doboru lokalizacji dla pomiarów temperatury.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. sprawdzić rezystancję przewodu ochronnego
B. ocenić stan szczotek
C. zmierzyć temperaturę uzwojenia stojana
D. zmierzyć rezystancję izolacji kabla zasilającego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.