Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 grudnia 2025 13:17
  • Data zakończenia: 7 grudnia 2025 13:49

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Maksymalna dopuszczalna ilość plastyfikatora w zaprawie murarskiej to 5% w stosunku do masy cementu. Jaką ilość tej domieszki można dodać do jednego zarobu zaprawy cementowej, w którym znajduje się 50 kg cementu?

A. 4 kg
B. 3 kg
C. 5kg
D. 2kg
Odpowiedź 2 kg jest poprawna, ponieważ maksymalna ilość plastyfikatora, jaką można dodać do zaprawy murarskiej, wynosi 5% w stosunku wagowym do cementu. W przypadku 50 kg cementu, obliczenia są proste: 5% z 50 kg to 0,05 × 50 kg = 2,5 kg. Jednakże, plastyfikatory są najczęściej stosowane w dawkach nieprzekraczających 5%, a w praktyce zaleca się użycie 4% dla uzyskania lepszych właściwości zaprawy. W rezultacie, dodanie 2 kg plastyfikatora do 50 kg cementu jest zgodne z najlepszymi praktykami branżowymi, które zalecają zachowanie równowagi między plastycznością a wytrzymałością zaprawy. Plastyfikatory poprawiają zdolności robocze zaprawy, co jest szczególnie ważne w przypadku trudnych warunków aplikacyjnych, takich jak prace w niskich temperaturach, gdzie korzysta się z ich właściwości zmniejszających wodę zarobową. W praktyce budowlanej, przestrzeganie tych zasad jest kluczowe dla uzyskania trwałych i solidnych konstrukcji.

Pytanie 2

Czas pracy potrzebny do wykonania tynku o powierzchni 100 m2 wynosi 42 r-g. Oblicz koszt robocizny związanej z otynkowaniem ścian o powierzchni 450 m2, przy stawce 20,00 zł za 1 r-g.

A. 2 000,00 zł
B. 3 780,00 zł
C. 840,00 zł
D. 9 000,00 zł
Prawidłowa odpowiedź wynika z precyzyjnego obliczenia kosztów robocizny związanej z otynkowaniem większej powierzchni. Na początku obliczamy, ile roboczogodzin (r-g) potrzeba na otynkowanie 450 m². Skoro na 100 m² nakład robocizny wynosi 42 r-g, to dla 450 m² stosujemy proporcję: (450 m² / 100 m²) * 42 r-g = 189 r-g. Następnie, mając stawkę za 1 r-g równą 20,00 zł, obliczamy koszt robocizny: 189 r-g * 20,00 zł = 3 780,00 zł. Praktyczne zastosowanie tego obliczenia jest kluczowe w branży budowlanej, gdzie precyzyjne kalkulacje kosztów wpływają na efektywność budżetowania i planowania projektów. Dobre praktyki sugerują, aby zawsze uwzględniać zmienność w nakładach robocizny oraz stawki na poziomie lokalnym, co pozwala na dokładniejsze prognozowanie kosztów.

Pytanie 3

Którego z narzędzi należy użyć do murowania ścian w systemie Ytong?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Gumowy młotek, który został przedstawiony jako odpowiedź A, jest kluczowym narzędziem w procesie murowania ścian w systemie Ytong. Użycie gumowego młotka pozwala na precyzyjne ustawienie bloczków Ytong, minimalizując ryzyko ich uszkodzenia. W przeciwieństwie do tradycyjnych młotków metalowych, gumowy młotek nie pozostawia śladów uderzeń na delikatnych krawędziach bloczków, co jest szczególnie ważne w przypadku materiałów o niskiej wytrzymałości na uderzenia. Przykładem dobrych praktyk w branży budowlanej jest stosowanie narzędzi, które nie tylko wykonują swoje zadanie, ale także chronią materiał budowlany. Nieprawidłowe użycie narzędzi, takich jak młotek metalowy, może prowadzić do pęknięć i deformacji bloczków, co wpływa na trwałość i estetykę wykończenia. Gumowy młotek jest więc standardem w pracach związanych z murowaniem z materiałów lekkich, co potwierdzają liczne podręczniki i wytyczne branżowe dotyczące budownictwa.

Pytanie 4

Główne składniki mieszanki betonowej stosowanej do produkcji betonu zwykłego to

A. cement, wapno, piasek i woda
B. cement, popiół, keramzyt i woda
C. cement, piasek, żwir i woda
D. cement, piasek, keramzyt i woda
Wiesz, podstawowe składniki, które są potrzebne do zrobienia betonu zwykłego, to cement, piasek, żwir i woda. Cement działa jak spoiwo, które łączy resztę składników. Piasek i żwir to te materiały, które nadają betonowi dobrą strukturę i wytrzymałość. Woda jest super ważna, bo to ona pozwala na reakcje chemiczne przy wiązaniu cementu. W praktyce, proporcje tych składników są mega istotne, żeby beton miał odpowiednią wytrzymałość i trwałość. Są normy budowlane, jak PN-EN 206, które mówią, jakie składniki i właściwości powinien mieć beton, żeby można go było używać w różnych warunkach. Beton zwykły, z tymi składnikami, jest naprawdę powszechnie stosowany w budownictwie, od fundamentów po różne konstrukcje nośne, bo jest uniwersalny i solidny.

Pytanie 5

Jakie narzędzie powinno się zastosować do usunięcia nadmiaru zaprawy podczas ręcznego tynkowania?

A. Pacy
B. Kielni murarskiej
C. Łaty
D. Czerpaka tynkarskiego
Wybór czerpaka tynkarskiego jako narzędzia do ściągania nadmiaru zaprawy jest niewłaściwy. Czerpak tynkarski służy przede wszystkim do przenoszenia zaprawy na miejsce pracy, a nie do wygładzania powierzchni. Jego konstrukcja nie jest przystosowana do precyzyjnego usuwania nadmiaru materiału, co jest kluczowym aspektem tynkowania. Z kolei paca, choć istotna, pełni inną funkcję. Jest stosowana do wygładzania i formowania zaprawy, jednak przy jej pomocy trudniej uzyskać równą powierzchnię w porównaniu do łaty. Kielnia murarska, będąca narzędziem o bardziej specyficznych zastosowaniach, również nie jest odpowiednia do ściągania nadmiaru zaprawy, ponieważ służy głównie do precyzyjnego nakładania materiału w mniejszych ilościach. Typowe błędy myślowe prowadzące do wyboru niewłaściwych narzędzi często wynikają z braku zrozumienia funkcji tych narzędzi oraz ich zastosowań w praktyce budowlanej. Brak znajomości technik tynkarskich oraz nieodpowiedni dobór narzędzi może skutkować nierówną powierzchnią, co w dłuższej perspektywie wpłynie negatywnie na estetykę oraz trwałość tynku.

Pytanie 6

Jaką część konstrukcyjną należy umieścić bezpośrednio nad otworem okiennym?

A. Nadproże
B. Gzyms
C. Filar międzyokienny
D. Ławę podokaenną
Nadproże to naprawdę istotny element w budowie, który montujemy tuż nad oknem. Jego głównym zadaniem jest przenoszenie obciążeń z góry, żeby ściana była stabilna i nie zaczęły się robić pęknięcia. Z praktyki wiem, że najczęściej robimy je z betonu, stali, a czasami też z drewna, zależnie od tego, co jest w projekcie. Ważne, żeby nadproże było dobrze zaprojektowane, bo jego rozmiar i nośność muszą pasować do obciążeń, które będzie musiało wytrzymać. W budownictwie mamy takie normy, jak Eurokody, które podkreślają, że trzeba przeprowadzić obliczenia, aby upewnić się, że wszystko będzie bezpieczne i trwałe. Dobrze też pamiętać o izolacji termicznej nadproża, bo to znacznie poprawia efektywność energetyczną budynku.

Pytanie 7

Tynki doborowe to tynki standardowe

A. dwuwarstwowymi o równej i gładkiej powierzchni
B. dwuwarstwowymi o równej, lecz szorstkiej powierzchni
C. trójwarstwowymi o równej i bardzo gładkiej powierzchni
D. trójwarstwowymi o równej, lecz szorstkiej powierzchni
Wybór tynków dwuwarstwowych, jak sugerują niektóre odpowiedzi, jest niezgodny z definicją tynków doborowych, które wymagają zaawansowanego podejścia w budowie. Tynki dwuwarstwowe składają się z warstwy podkładowej oraz wykończeniowej, co nie zapewnia takich samych właściwości funkcjonalnych i estetycznych, jak tynki trójwarstwowe. Warstwa zbrojona, obecna w tynkach trójwarstwowych, ma na celu nie tylko wzmocnienie struktury, ale również poprawę izolacyjności akustycznej i termicznej, co jest kluczowe w budynkach mieszkalnych i komercyjnych. Ponadto, tynki dwuwarstwowe zazwyczaj prowadzą do uzyskania powierzchni mniej gładkiej, co może skutkować problemami przy dalszym wykańczaniu ścian. Odrzucenie tynków gładkich w kontekście tynków doborowych wskazuje na niedostateczne zrozumienie istoty tych systemów. Wiele osób myli także tynki gładkie z tynkami o powierzchni szorstkiej, co prowadzi do błędnych wniosków dotyczących ich zastosowania i właściwości. Aby uniknąć takich pomyłek, ważne jest, aby zrozumieć różnice między różnymi typami tynków oraz ich wpływ na jakość wykończenia wnętrz. Zastosowanie niewłaściwego typu tynku może nie tylko obniżyć estetykę pomieszczenia, ale także wpłynąć na jego trwałość oraz energooszczędność.

Pytanie 8

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ściany murowanej pokazanej na rysunku.

Ilustracja do pytania
A. 14,80 m2
B. 14,16 m2
C. 13,80 m2
D. 16,16 m2
Wybierając niepoprawną odpowiedź, można wpaść w typowe pułapki myślowe związane z obliczaniem powierzchni. Wiele osób może zignorować zasady przedmiarowania robót murarskich, skupiając się wyłącznie na całkowitej powierzchni ściany, zamiast uwzględniać otwory. Na przykład, jeśli ktoś obliczył powierzchnię ściany bez odejmowania otworów, mógłby uzyskać wartość 16,8 m2 i nie zwróciłby uwagi na fakt, że istotne jest pominięcie otworów o powierzchni większej niż 0,5 m2. Taki błąd może wynikać z braku znajomości zasad obliczeń w budownictwie, co jest kluczowe w kontekście kosztorysowania i zarządzania projektem. Ponadto, stosowanie niewłaściwych wzorów lub brak uwzględnienia wszystkich elementów konstrukcyjnych może prowadzić do dalszych nieścisłości w ostatecznych wynikach. Ważne jest, by zawsze przestrzegać ustalonych norm i standardów, aby uniknąć nieporozumień oraz błędów kosztorysowych, które mogą wpłynąć na przyszłe etapy realizacji projektu budowlanego.

Pytanie 9

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 411,60 zł
B. 1 440,60 zł
C. 147,00 zł
D. 514,50 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 10

Na zdjęciu przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. amerykańskim.
C. pospolitym.
D. weneckim.
Wybór innej odpowiedzi niż 'polskim' może wynikać z tego, że nie do końca rozumiesz, jak działają różne wiązania murarskie. Na przykład wiązanie weneckie to technika, w której cegły są przesunięte w każdym kolejnym rzędzie, co daje murze taki falisty efekt. To bardziej popularne w architekturze włoskiej, ale nie jest tak mocne jak polskie. A wiązanie pospolite, które często myli się z polskim, to w sumie prosta linia cegieł bez żadnych zmian w układzie, co sprawia, że mur jest mniej stabilny i gorzej wygląda. Z kolei wiązanie amerykańskie używane jest głównie w budownictwie przemysłowym i ma swój specyficzny styl, który nie pasuje do tradycyjnych konstrukcji. Jeśli wybierzesz złe wiązanie, mogą się pojawić poważne problemy, jak pęknięcia czy osuwiska. Dlatego ważne jest, żeby znać te różnice i umieć je stosować, żeby uniknąć błędów i zapewnić solidność oraz estetykę budynków.

Pytanie 11

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. na górnej powierzchni fundamentu i na poziomie terenu
B. pod fundamentem i na poziomie podłogi na gruncie
C. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
D. pod fundamentem i na górnej powierzchni ściany fundamentowej
Realizacja izolacji na poziomie ławy fundamentowej jest kluczowym elementem zapewnienia właściwej ochrony budynku przed skutkami działania wód gruntowych. Wybór niewłaściwego miejsca dla wykonania izolacji, tak jak sugeruje pierwsza odpowiedź, może prowadzić do nieefektywnej ochrony. Izolacja pod ławą fundamentową nie jest wystarczająca, aby zablokować przenikanie wilgoci, ponieważ woda może gromadzić się w innych obszarach fundamentu, co prowadzi do zjawisk takich jak podsiąkanie wody. Z kolei umiejscowienie izolacji na wysokości poziomu terenu, jak w przypadku trzeciej odpowiedzi, stwarza ryzyko, że woda opadowa lub gruntowa z łatwością przedostanie się do wnętrza budynku, powodując uszkodzenia konstrukcji i problemy z wilgocią. Odpowiedź dotycząca izolacji na wysokości podłogi na gruncie jest również błędna, ponieważ nie uwzględnia praktyczne aspekty zarządzania wodami gruntowymi w danym miejscu. Właściwe podejście powinno opierać się na zasadach hydroizolacji fundamentów, które wskazują na konieczność zabezpieczenia zarówno ławy, jak i ścian fundamentowych w celu stworzenia skutecznej bariery przed wodą. Zrozumienie tych zasad jest kluczowe dla zachowania trwałości budynku oraz bezpieczeństwa jego użytkowników.

Pytanie 12

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 42 kg
B. 105 kg
C. 70 kg
D. 210 kg
Aby obliczyć ilość tynku maszynowego potrzebnego do otynkowania ściany o wymiarach 5 m x 3 m przy grubości tynku 5 mm, należy najpierw obliczyć powierzchnię ściany. Powierzchnia ta wynosi 15 m² (5 m x 3 m). Następnie musimy uwzględnić grubość tynku. Przy grubości 5 mm, co stanowi 0,005 m, możemy przyjąć, że zużycie materiału będzie o połowę mniejsze niż w przypadku 10 mm, gdzie zużycie wynosi 14 kg/m². Obliczamy zużycie dla 5 mm, co daje 7 kg/m² (14 kg/m² / 2). Mnożąc tę wartość przez powierzchnię ściany, otrzymujemy potrzebną ilość tynku: 7 kg/m² x 15 m² = 105 kg. Odpowiedź ta jest zgodna z praktykami budowlanymi, które zalecają dostosowanie zużycia materiałów do grubości nałożonej warstwy. Wiedza ta jest kluczowa dla precyzyjnego planowania w pracach budowlanych oraz minimalizacji strat materiałowych.

Pytanie 13

Jakie ściany powinny być zbudowane z materiałów charakteryzujących się niskim współczynnikiem przewodzenia ciepła oraz niewielką gęstością pozorną?

A. Fundamentowe
B. Piwniczne
C. Nośne
D. Osłonowe
Ściany osłonowe to w sumie dość ważny element budynków. Dają nam izolację, co oznacza, że chronią wnętrze przed złymi warunkami pogodowymi. Jak to działa? Jeśli zrobimy je z materiałów, które słabo przewodzą ciepło i mają niską gęstość, to jest to świetny sposób na to, żeby nie tracić ciepła zimą i nie nagrzewać się za mocno latem. Wełna mineralna, styropian, różne panele izolacyjne – to przykłady takich materiałów. Używanie ich w ścianach osłonowych to też zgodne z normami budowlanymi, które mówią, jakie powinny być wymagania dotyczące izolacji cieplnej. Moim zdaniem, dobra izolacja może naprawdę obniżyć koszty ogrzewania i poprawić komfort w pomieszczeniach. Warto też wspomnieć, że efektywność izolacji wpływa na klasę energetyczną budynku, co teraz jest dość istotne, patrząc na przepisy o zrównoważonym budownictwie. Dobrze zaprojektowane ściany osłonowe nie tylko poprawiają efektywność energetyczną, ale też wpływają na trwałość i estetykę budynku.

Pytanie 14

Jaką izolację wykonano na fragmencie ściany przedstawionej na rysunku?

Ilustracja do pytania
A. Przeciwwilgociową.
B. Paroszczelną.
C. Przeciwdrganiową.
D. Termiczną.
Odpowiedź termiczna jest poprawna, ponieważ na przedstawionym rysunku widoczna jest warstwa materiału izolacyjnego, który jest powszechnie stosowany w budownictwie celu redukcji strat ciepła. Izolacja termiczna ma na celu utrzymanie optymalnej temperatury wewnątrz budynku, co przekłada się na komfort użytkowników oraz oszczędności energetyczne. W praktyce, materiał taki jak wełna mineralna, styropian czy pianka poliuretanowa jest umieszczany w ścianach, dachach i podłogach, aby zminimalizować wymianę ciepła z otoczeniem. Standardy, takie jak norma PN-EN 13162, określają wymagania dotyczące materiałów izolacyjnych, a ich odpowiedni dobór wpływa na efektywność energetyczną budynku. Dobrze zaprojektowana izolacja nie tylko poprawia komfort, ale również zmniejsza koszty ogrzewania i chłodzenia, co jest kluczowe w kontekście zrównoważonego budownictwa.

Pytanie 15

Korzystając z Warunków Technicznych Wykonania i Odbioru Robót Tynkarskich wskaż, dla której kategorii tynku niedopuszczalne są widoczne miejscowe nierówności powierzchni, pochodzące od zacierania packą.

Warunki Techniczne Wykonania i Odbioru Robót Tynkarskich (fragment)
Dla wszystkich odmian tynku niedopuszczalne są:
- wykwity w postaci nalotu wykrystalizowanych na powierzchni tynku roztworów soli przenikających z podłoża, pleśń itp.
- zacieki w postaci trwałych śladów na powierzchni tynków,
- odstawanie, odparzenia, pęcherze spowodowane niedostateczną przyczepnością tynku do podłoża.
Pęknięcia na powierzchni tynków są niedopuszczalne z wyjątkiem tynków surowych, w których dopuszcza się włoskowate rysy skurczowe. Wypryski i spęcznienia powstające na skutek obecności niezgaszonych cząstek wapna, gliny itp. są niedopuszczalne dla tynków pocienionych, pospolitych, doborowych i wypalonych, natomiast dla tynków surowych są niedopuszczalne w liczbie do 5 sztuk na 10 m2 tynku.
Widoczne miejscowe nierówności powierzchni otynkowanych wynikające z technik wykonania tynku (np. ślady wygładzania kielnią lub zacierania packą) są niedopuszczalne dla tynków doborowych, a dla tynków pospolitych dopuszczalne są o szerokości i głębokości do 1 mm oraz długości do 5 cm w liczbie 3 sztuk na 10 m2 powierzchni otynkowanej.
A. Dla tynku kategorii II
B. Dla tynku kategorii I
C. Dla tynku kategorii III
D. Dla tynku kategorii IV
Wybór niewłaściwej kategorii tynku świadczy o braku zrozumienia norm i zasad jakościowych dotyczących robót tynkarskich. Tynki kategorii I, II oraz III mają zróżnicowane wymagania dotyczące estetyki, które jednak nie mogą być mylone z wymaganiami dla tynków doborowych. Kategoria I to tynki, które mogą być stosowane w obszarach, gdzie estetyka nie jest kluczowym czynnikiem, a ich wykończenie może być mniej staranne. Tynki kategorii II i III również dopuszczają pewne niedoskonałości, co oznacza, że widoczne nierówności mogą być akceptowane w określonych warunkach. Niezrozumienie tych różnic prowadzi do wnioskowania, że dopuszczalne są widoczne ślady technik wykonawczych, co jest absolutnie błędne w kontekście tynków doborowych. W praktyce, każda z tych kategorii tynków ma swoje zastosowania w zależności od funkcji budynku i oczekiwań inwestora. Wybór niewłaściwej kategorii może skutkować nie tylko estetycznymi niedociągnięciami, ale również obniżeniem wartości rynkowej obiektu. Warto zwrócić szczególną uwagę na dokumentację techniczną i standardy branżowe, aby uniknąć takich pomyłek w przyszłości.

Pytanie 16

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część wapna, 2 części cementu oraz 6 części piasku
B. 1 część cementu, 2 części wapna oraz 6 części wody
C. 1 część cementu, 2 części wapna i 6 części piasku
D. 1 część wapna, 2 części cementu oraz 6 części wody
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:2:6 oznacza, że na każdą część cementu przypadają dwie części wapna i sześć części piasku. Taki skład jest powszechnie stosowany w budownictwie, szczególnie przy murowaniu. Cement działa jako spoiwo, które łączy pozostałe składniki, a wapno wpływa na elastyczność i trwałość zaprawy. Piasek z kolei zapewnia odpowiednią strukturę i wytrzymałość. W praktyce, stosując tę proporcję, można uzyskać zaprawę o dobrej przyczepności, odporności na czynniki atmosferyczne oraz długowieczności, co jest kluczowe w konstrukcjach budowlanych. Przykładowo, przy budowie murów z cegły, taka zaprawa zapewnia stabilność i odporność na pęknięcia, co jest zgodne z normami budowlanymi PN-EN 998-2. Warto również dodać, że odpowiednie dobieranie składników wpływa na właściwości termiczne i akustyczne muru, co jest istotne w kontekście komfortu użytkowania budynków.

Pytanie 17

Który z poniższych rodzajów tynków nie jest tynkiem mineralnym?

A. Silikatowy
B. Akrylowy
C. Gipsowy
D. Cementowy
Odpowiedzi 'Cementowy', 'Gipsowy' i 'Silikatowy' są błędne, ponieważ wszystkie wymienione tynki są typami tynków mineralnych, charakteryzującymi się różnymi właściwościami oraz zastosowaniami. Tynk cementowy jest mieszanką cementu, piasku i wody, co sprawia, że jest niezwykle trwały i odporny na działanie wody, co czyni go odpowiednim do stosowania w miejscach o wysokiej wilgotności. Jest często używany do tynkowania fundamentów oraz piwnic. Tynk gipsowy, z drugiej strony, jest lekki i ma dobrą izolacyjność termiczną i akustyczną, przez co jest popularny w budownictwie wewnętrznym, szczególnie w pomieszczeniach mieszkalnych. Tynk silikatowy, wytwarzany na bazie krzemianów, jest wyjątkowo odporny na działanie warunków atmosferycznych i ma dobrą paroprzepuszczalność, co czyni go idealnym rozwiązaniem dla budynków historycznych oraz obiektów wymagających konserwacji. Często błędnie można myśleć, że tynki mineralne są mniej odporne lub mniej elastyczne, co prowadzi do nieprawidłowego postrzegania ich właściwości. W rzeczywistości tynki mineralne, odpowiednio zastosowane, mogą oferować długą żywotność i wytrzymałość, a ich właściwości paroprzepuszczalne mogą przeciwdziałać rozwojowi pleśni i grzybów. Zrozumienie różnic między tynkami mineralnymi a akrylowymi jest kluczowe w ich prawidłowym doborze w zależności od warunków środowiskowych oraz wymagań projektowych.

Pytanie 18

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 100 kg
B. 50 kg
C. 150 kg
D. 25 kg
Aby obliczyć ilość cementu potrzebną do wykonania zaprawy cementowo-wapiennej, należy najpierw zrozumieć stosunek objętościowy składników, który wynosi 1:2:4. Oznacza to, że na każdą część cementu przypadają dwie części wapna i cztery części piasku. W tym przypadku, skoro przygotowano 50 kg wapna, to obliczamy ilość cementu w następujący sposób: jeśli 2 części to 50 kg, to 1 część (czyli cement) wynosi 25 kg (50 kg / 2 = 25 kg). Dodatkowo, dla zapewnienia właściwych właściwości zaprawy oraz trwałości konstrukcji, dobrym standardem jest stosowanie dokładnych proporcji, które zapewniają odpowiednią wytrzymałość i elastyczność mieszanki. Warto pamiętać, że w praktyce do wykonania zaprawy często korzysta się z gotowych mieszanek zapraw, które już mają zmierzone i dobrane składniki w odpowiednich proporcjach, co ułatwia pracę budowlaną.

Pytanie 19

Zgodnie z Zasadami obmiaru robót tynkarskich podczas obmiaru tynku wewnętrznego ściany z jednym otworem okiennym o tynkowanych ościeżach należy odjąć powierzchnię tego otworu, jeżeli wynosi ona ponad

Zasady obmiaru robót tynkarskich
(fragment)
(...) Z powierzchni tynków nie odlicza się powierzchni nieotynkowanych lub ciągnionych mających więcej niż 1 m2 i powierzchni otworów do 3 m2, jeżeli ościeża ich są tynkowane. (...)
A. 2,0 m2
B. 3,0 m2
C. 0,5 m2
D. 1,0 m2
Odpowiedź "3,0 m2" jest prawidłowa, ponieważ zgodnie z Zasadami obmiaru robót tynkarskich, powierzchnię otworów, których powierzchnia nie przekracza 3 m2, należy odjąć od powierzchni tynków, o ile tynkowane są również ościeża. W przypadku otworów o powierzchni powyżej 1 m2, ale nieprzekraczającej 3 m2, nie ma konieczności odliczania ich powierzchni, co jest zgodne z przyjętymi normami. Praktycznie oznacza to, że w przypadku typowych budynków mieszkalnych, gdzie często spotykamy się z oknami o standardowych wymiarach, odpowiednie uwzględnienie takich otworów podczas obmiaru tynku pozwala na dokładniejsze ustalenie ilości materiałów potrzebnych do wykonania robót tynkarskich. Przykładowo, jeżeli mamy do czynienia z pomieszczeniem z dużymi oknami, warto wiedzieć, że ich powierzchnia nie wpłynie na całkowity koszt robót, co jest istotne w kontekście zarządzania budżetem projektu budowlanego. Zastosowanie tych zasad nie tylko wpływa na poprawność obliczeń, ale również na efektywność procesu budowlanego, co jest kluczowe w branży budowlanej.

Pytanie 20

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Zetowniki zimnogięte
B. Liny nierdzewne
C. Narożniki aluminiowe
D. Kątowniki stalowe
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 21

Gdzie można wykorzystać zaprawy gipsowe?

A. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
B. do tynkowania elewacji budynków
C. do murowania fundamentów z elementów betonowych
D. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
Odpowiedź dotycząca murowania ścian z elementów gipsowych w pomieszczeniach suchych jest poprawna, ponieważ zaprawy gipsowe charakteryzują się odpowiednimi właściwościami do stosowania w takich warunkach. Gips jest materiałem, który ma dobre właściwości klejące oraz szybko wiąże, co czyni go idealnym do murowania elementów gipsowych, które są lekkie i łatwe w obróbce. W praktyce, zaprawy gipsowe są często wykorzystywane do tworzenia ścianek działowych oraz do zabudów, które nie są narażone na wilgoć. W kontekście dobrych praktyk budowlanych, zastosowanie zaprawy gipsowej w suchych pomieszczeniach przyczynia się do poprawy efektywności energetycznej budynku oraz zwiększa komfort akustyczny. Ponadto, elementy gipsowe, takie jak płyty gipsowo-kartonowe, współpracują z zaprawami gipsowymi, co zapewnia trwałość i estetykę wykończenia. Warto również zwrócić uwagę na normy takie jak PN-EN 13279, które określają wymagania dla materiałów budowlanych na bazie gipsu.

Pytanie 22

Do jakich zastosowań należy używać zapraw szamotowych?

A. do łączenia ceramicznych elementów palenisk
B. do realizacji tynków w pomieszczeniach sanitarnych
C. do mocowania izolacji termicznych w ścianach
D. do wykonywania posadzek na gruncie
Zaprawy szamotowe są specjalistycznymi materiałami stosowanymi przede wszystkim w budowie pieców i kominków. Ich głównym zastosowaniem jest łączenie ceramicznych elementów palenisk, co jest kluczowe ze względu na wysokie temperatury, którym są one poddawane. Zaprawy te charakteryzują się doskonałą odpornością na działanie wysokich temperatur oraz na zmiany termiczne, co sprawia, że idealnie nadają się do stosowania w miejscach, gdzie występuje intensywne ciepło. W praktyce, zaprawy szamotowe często stosuje się w piecach kaflowych, gdzie łączą one elementy ceramiczne, zapewniając szczelność oraz trwałość konstrukcji. Dodatkowo, zgodnie z normami budowlanymi, zaprawy te muszą spełniać określone wymogi dotyczące odporności na ogień i trwałości, co czyni je niezastąpionymi w budownictwie kominkowym i piecowym. Warto również pamiętać, że stosując zaprawy szamotowe, należy przestrzegać zasad ich aplikacji, takich jak odpowiednie proporcje składników oraz techniki nakładania, co wpływa na ich efektywność i żywotność.

Pytanie 23

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Wtapianie siatki zbrojącej.
B. Montaż listwy startowej.
C. Uzupełnianie ubytków pianką.
D. Nakładanie zaprawy klejowej.
Montaż listwy startowej to kluczowy etap w procesie ocieplania budynków metodą lekką mokrą. Na ilustracji widoczni są pracownicy, którzy precyzyjnie umieszczają metalową listwę na dolnej krawędzi ściany, co zapewnia stabilną bazę dla dalszych prac. Listwa startowa pełni istotną rolę w estetycznym i technicznym wykonaniu systemu ociepleniowego, ponieważ jej właściwe zamontowanie umożliwia równomierne ułożenie materiału izolacyjnego. Zgodnie z obowiązującymi standardami budowlanymi, stosowanie listwy startowej zapobiega problemom związanym z mechanizmami wchłaniania wody oraz ewentualnym uszkodzeniom dolnej krawędzi izolacji. Dodatkowo, jej obecność jest kluczowa do zachowania odpowiednich kątów i linii prostych, co przekłada się na końcową jakość i trwałość ocieplenia. W praktyce, zastosowanie listw startowych przyczynia się do wydłużenia żywotności systemów ociepleniowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 24

Betonowe podłoże, które ma być tynkowane, powinno charakteryzować się równą powierzchnią oraz

A. suche i gładkie
B. zwilżone i chropowate
C. suche i chropowate
D. zwilżone i gładkie
Odpowiedzi, które sugerują, że podłoże powinno być suche, są nieprawidłowe, ponieważ sucha powierzchnia nie zapewnia odpowiedniego przyczepności tynku. W przypadku podłoża suchego, tynk może nie przywierać właściwie, co prowadzi do jego odspajania się z powierzchni betonu. To zjawisko jest szczególnie widoczne w warunkach, gdy wykończenie jest narażone na zmienne warunki atmosferyczne, takie jak wilgoć czy zmiany temperatury. Ponadto, odpowiedzi wskazujące na gładkie podłoże mogą prowadzić do błędnego wniosku, że tynk nie wymaga chropowatej struktury dla dobrej przyczepności. Gładkie podłoża nie stwarzają odpowiednich warunków dla mechanicznego wiązania, co może skutkować powstawaniem pęknięć i deformacji w wyniku obciążeń mechanicznych. W praktyce, tynkowanie na gładkich powierzchniach wymaga zastosowania dodatkowych metod zapewniających przyczepność, co zwiększa koszty i czas pracy. Zrozumienie znaczenia przygotowania podłoża betonowego jest kluczowe dla uzyskania trwałych i estetycznych efektów pracy, w oparciu o zasady zawarte w normach budowlanych, takich jak PN-EN 13914, które podkreślają rolę chropowatości i wilgotności w kontekście aplikacji tynków.

Pytanie 25

Na rysunku przedstawiono elementy rusztowania

Ilustracja do pytania
A. na kozłach.
B. choinkowego.
C. warszawskiego.
D. rurowo-złączkowego.
Wybór odpowiedzi, która wskazuje na rusztowanie choinkowe, rurowo-złączkowe lub na kozłach, jest wynikiem niezrozumienia podstawowych różnic pomiędzy tymi typami rusztowań. Rusztowanie choinkowe, na przykład, jest charakterystyczne dla prac, które wymagają wsparcia w formie bardziej zaawansowanej konstrukcji, często stosowane w trudniejszych warunkach terenowych, jednak jego cechy budowy diametralnie różnią się od tych, które można zauważyć na przedstawionym rysunku. Z kolei rusztowanie rurowo-złączkowe, które jest bardziej złożone pod względem konstrukcyjnym i wymaga specyficznych złączek, nie pasuje do prostoty i przejrzystości rusztowania warszawskiego. Typowe błędy myślowe, które prowadzą do wyboru nieprawidłowej odpowiedzi obejmują niedostateczne zrozumienie najważniejszych zasad konstrukcji rusztowań oraz ich zastosowania w praktyce. Warto zwrócić uwagę, że każdy typ rusztowania ma swoje unikalne zastosowania, dostosowane do specyfiki prac budowlanych. Niezrozumienie tego może prowadzić do wyboru niewłaściwego rozwiązania, co w konsekwencji może wpłynąć na bezpieczeństwo i efektywność prac budowlanych. Przy dokonywaniu wyboru należy kierować się nie tylko wyglądem, ale także funkcjonalnością oraz zgodnością z powszechnie przyjętymi normami budowlanymi.

Pytanie 26

Jaki typ spoiwa wykorzystuje się do przygotowania zaprawy do murowania ścian fundamentowych?

A. Cement portlandzki
B. Wapno gaszone
C. Gips budowlany
D. Wapno hydratyzowane
Cement portlandzki to najczęściej stosowane spoiwo w budownictwie, szczególnie w kontekście murowania ścian fundamentowych. Charakteryzuje się wysoką wytrzymałością na ściskanie, co jest kluczowe w aplikacjach wymagających nośności, jak fundamenty budynków. W procesie murowania cement portlandzki łączy się z wodą, tworząc zaprawę, która wiąże i twardnieje, zapewniając trwałość oraz stabilność konstrukcji. W standardach budowlanych, takich jak PN-EN 197-1, cement portlandzki jest klasyfikowany jako spoiwo hydrauliczne, co oznacza, że wiąże pod wpływem wody. Dodatkowo, cement ten jest odporny na działanie wody, co jest niezwykle istotne w kontekście fundamentów, gdzie kontakt z wilgocią jest nieunikniony. Przykłady zastosowania obejmują nie tylko murowanie ścian fundamentowych, ale także ich wzmocnienie poprzez zastosowanie stropów i płyt betonowych, co pozwala na tworzenie stabilnych i bezpiecznych konstrukcji budowlanych.

Pytanie 27

Długość odcinka ścianki działowej, przedstawionej na fragmencie rzutu pomieszczenia, od lica ściany nośnej do początku otworu drzwiowego wynosi

Ilustracja do pytania
A. 100 cm
B. 80 cm
C. 160 cm
D. 200 cm
Odpowiedź 160 cm jest prawidłowa, ponieważ opiera się na dokładnej analizie rysunku, który przedstawia układ pomieszczenia. Całkowita długość ścianki działowej wynosi 200 cm, a otwór drzwiowy ma szerokość 40 cm. Zrozumienie tej proporcji jest kluczowe w praktyce architektonicznej i budowlanej, gdzie precyzyjne pomiary i obliczenia są niezwykle istotne. Aby uzyskać długość odcinka ścianki działowej, dokonujemy prostego obliczenia: 200 cm (całkowita długość) minus 40 cm (szerokość otworu drzwiowego) daje nam 160 cm. Tego typu obliczenia są podstawą projektowania przestrzeni, gdzie musi być zachowana odpowiednia funkcjonalność oraz estetyka. W praktyce, takich pomiarów dokonujemy z użyciem standardowych narzędzi pomiarowych, takich jak taśmy miernicze, a w projektach architektonicznych często korzysta się z programów CAD, które automatyzują te obliczenia. Zachowanie dokładności w takich kwestiach jest kluczowe, aby uniknąć błędów w realizacji projektu, które mogą prowadzić do kosztownych poprawek.

Pytanie 28

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 600,00 zł
B. 750,00 zł
C. 1 500,00 zł
D. 1 350,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 29

Przedstawiona na rysunku listwa służy do

Ilustracja do pytania
A. wykonania boniowania.
B. wzmocnienia ościeży.
C. mocowania termoizolacji.
D. ochrony naroży.
Listwa boniowa, przedstawiona na rysunku, to kluczowy element w technice boniowania, która ma na celu nadanie estetycznego wyglądu elewacji budynku poprzez tworzenie charakterystycznych rowków. Boniowanie nie tylko podkreśla walory estetyczne obiektu, ale również może wpływać na odbieranie przez światło, co dodaje głębi i tekstury powierzchni. W praktyce, prawidłowe zastosowanie listwy boniowej pozwala na uzyskanie równych i precyzyjnych linii, co jest zgodne z najlepszymi praktykami w budownictwie. Wykończenia takie stosowane są w stylach architektonicznych, które kładą nacisk na detale, jak np. styl klasyczny czy renesansowy. Dobrze wykonane boniowanie zwiększa również wartość estetyczną i rynkową budynku, a także może wpłynąć na jego trwałość, eliminując problemy związane z nierównym tynkowaniem. Zastosowanie listwy boniowej jest zatem nie tylko estetyczne, ale także funkcjonalne, co czyni ją istotnym elementem w nowoczesnym budownictwie.

Pytanie 30

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. główkowym,
C. krzyżykowym.
D. wozówkowym.
Na tym rysunku widać lico muru w wiązaniu wozówkowym. To jeden z najczęściej stosowanych sposobów układania cegieł w budownictwie, co nie jest bez powodu. Cegły w takim wiązaniu układa się naprzemiennie, więc co druga cegła jest dłuższa, a reszta jest krótsza. Dzięki temu mamy solidniejszy mur, mniejsze ryzyko pęknięć i większą nośność całej konstrukcji. Wozówkowe wiązanie stosuje się zarówno w domach, jak i w różnych budynkach użyteczności publicznej. W praktyce, pomaga to rozkładać obciążenia na większą powierzchnię, a to jest zgodne z normami budowlanymi, jak Eurokod 6, który mówi o projektowaniu murów z cegły. Ciekawym jest, że podczas budowy ważne, żeby dłuższe cegły były układane w sposób, który zapewnia ich równomierne wsparcie, co naprawdę zwiększa trwałość całej konstrukcji.

Pytanie 31

Jakie materiały budowlane mogą być użyte do tworzenia murowanych ścian fundamentowych?

A. pustaki typu Max
B. bloczki z betonu komórkowego
C. bloczki z betonu zwykłego
D. cegły silikatowe
Pustaki typu Max, cegły silikatowe oraz bloczki z betonu komórkowego są często stosowanymi materiałami budowlanymi, jednakże nie są one najlepszym wyborem do konstrukcji ścian fundamentowych. Pustaki typu Max, mimo swojej popularności w budownictwie jednorodzinnym, nie oferują wystarczającej wytrzymałości na ściskanie wymaganej w fundamentach. Ich zastosowanie w warunkach gruntowych może prowadzić do niebezpiecznych sytuacji, jak zniekształcenia lub pęknięcia ścian w wyniku osiadania. Cegły silikatowe, które są cenione za swoje właściwości izolacyjne oraz estetyczne, również nie nadają się do fundamentów, głównie z powodu ich wrażliwości na wilgoć, co w dłuższej perspektywie prowadzi do degradacji materiału. Z kolei bloczki z betonu komórkowego, chociaż lekkie i dobrze izolujące, mają ograniczoną nośność, co czyni je niewłaściwymi do zastosowania w miejscach narażonych na duże obciążenia. Kluczowym błędem jest zatem nieodpowiednie rozumienie, że materiały, które dobrze sprawdzają się w konstrukcjach ścian działowych, mogą być również właściwe do fundamentów. Każdy materiał budowlany powinien być dobierany w oparciu o jego parametry techniczne i odpowiednie normy, co jest podstawą zrównoważonego podejścia do budowy.

Pytanie 32

Przedstawiona na rysunku łata typu H służy do

Ilustracja do pytania
A. nakładania poszczególnych warstw tynku.
B. wyrównywania tynku po lekkim związaniu.
C. gładzenia tynku po zwilżeniu jego powierzchni.
D. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
Zrozumienie zastosowania łaty typu H jest kluczowe dla skutecznego tynkowania. Wybór odpowiedzi dotyczących wyrównywania tynku po lekkim związaniu, nakładania poszczególnych warstw tynku, czy gładzenia tynku po zwilżeniu jego powierzchni opiera się na nieprawidłowym zrozumieniu funkcji tego narzędzia. W przypadku wyrównywania tynku po związaniu, narzędzie o innej konstrukcji, takie jak paca, jest bardziej odpowiednie, ponieważ łata H jest zaprojektowana do działania na świeżo nałożonym tynku. Co więcej, nakładanie poszczególnych warstw tynku wymaga precyzyjnego dozowania materiału, co również nie jest funkcją łaty H, gdyż jej głównym celem jest zaciąganie tynku, a nie jego nakładanie. Gładzenie tynku po zwilżeniu jego powierzchni może być mylnie postrzegane jako zadanie dla łaty, jednak w rzeczywistości, dla uzyskania gładkiej powierzchni po wyschnięciu, najczęściej stosuje się pacy gładkie lub inne narzędzia. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, obejmują mylenie różnych etapów procesu tynkowania, a także niepoprawne przypisanie funkcji narzędzi do ich rzeczywistych zastosowań w budownictwie. Kluczowe jest zrozumienie specyfiki każdego narzędzia i jego optymalnego zastosowania, co ma fundamentalne znaczenie dla uzyskania wysokiej jakości wykończenia.

Pytanie 33

Wymiary pomieszczenia przedstawionego na rysunku w skali 1:100 wynoszą 8x10 cm. Jaką objętość ma to pomieszczenie, jeżeli jego rzeczywista wysokość to 2,5 m?

A. 50 m3
B. 800 m3
C. 100 m3
D. 200 m3
Aby obliczyć kubaturę pomieszczenia, należy znać jego wymiary oraz wysokość. Wymiary pomieszczenia na rysunku są podane w skali 1:100, co oznacza, że każdy 1 cm na rysunku odpowiada 100 cm (czyli 1 m) w rzeczywistości. Zatem wymiary 8x10 cm w skali 1:100 przekładają się na rzeczywiste wymiary pomieszczenia, które wynoszą 8 m x 10 m. Kubatura pomieszczenia oblicza się jako iloczyn długości, szerokości i wysokości. W tym przypadku: 8 m (długość) * 10 m (szerokość) * 2,5 m (wysokość) = 200 m3. Przykładem zastosowania tej wiedzy jest projektowanie wnętrz czy architektura, gdzie dokładne obliczenia kubatury są kluczowe dla określenia wymagań wentylacyjnych, grzewczych, a także dla optymalizacji przestrzeni. Zgodnie z normami budowlanymi, takie obliczenia muszą być precyzyjne, co pozwala na efektywne zarządzanie przestrzenią oraz komfort użytkowników.

Pytanie 34

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 15,00 m
B. 7,50 m
C. 0,75 m
D. 1,50 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który rodzaj tynku jest odporny na wodę?

A. Renowacyjny
B. Mozaikowy
C. Wapienny
D. Gipsowy
Wybór niewłaściwego rodzaju tynku może prowadzić do nieodpowiednich rezultatów w kontekście odporności na wodę. Tynk wapienny, chociaż ma swoje zalety, w tym ekologiczność i zdolność do regulacji wilgotności, nie jest materiałem wodoodpornym. Jego główną wadą jest wysoka nasiąkliwość, co sprawia, że w długotrwałym kontakcie z wodą może ulegać degradacji, a także sprzyjać rozwojowi pleśni i grzybów. Tynk gipsowy z kolei, mimo swojej popularności w zastosowaniach wykończeniowych, również nie nadaje się do stref o wysokiej wilgotności, ponieważ gips jest materiałem hygroskopijnym, który wchłania wilgoć i osłabia swoje właściwości strukturalne. Tynk renowacyjny, przeznaczony głównie do odnawiania zabytków, ma swoje specyficzne zastosowanie, ale również nie zapewnia wodoodporności. Zrozumienie tych właściwości jest kluczowe w przypadku planowania zastosowania tynku w projektach budowlanych. Często błąd polega na mylnym założeniu, że każdy tynk ma podobne właściwości ochronne, co może prowadzić do poważnych problemów związanych z wilgocią i trwałością konstrukcji. Wiedza na temat właściwości różnych materiałów budowlanych jest niezbędna dla osiągnięcia sukcesu w każdym projekcie budowlanym.

Pytanie 37

Jaka jest proporcja objętościowa gipsu i piasku w zaprawie gipsowej M 4?

Marka zaprawyZaprawa gipsowa
gips : piasek
Zaprawa gipsowo-wapienna
gips : wapno : piasek
M11: 41: 1,5: 4,5
M21: 31: 1: 3
M31: 21: 0,5: 2
M41: 11: 0,5: 1
A. 1:0,5
B. 1:4
C. 1:1
D. 1:2
Proporcja objętościowa gipsu i piasku w zaprawie gipsowej M4 wynosi 1:1, co oznacza, że na jedną jednostkę objętości gipsu przypada jedna jednostka objętości piasku. Taki dobór składników jest kluczowy dla uzyskania optymalnych właściwości zaprawy, w tym jej wytrzymałości i elastyczności. W praktyce, równomierne połączenie tych dwóch materiałów pozwala na uzyskanie jednorodnej masy, która dobrze przylega do powierzchni oraz zapewnia odpowiednią trwałość. Zgodnie z normami budowlanymi, szczególnie tymi związanymi z wykończeniem wnętrz, zachowanie tej proporcji jest istotne dla efektywności procesu aplikacji oraz trwałości powłok gipsowych. Przykładowo, stosując tę proporcję w renowacji starych budynków, można uzyskać lepsze rezultaty estetyczne i funkcjonalne, niż w przypadku stosowania innych proporcji, co potwierdzają liczne badania i doświadczenia specjalistów w dziedzinie budownictwa.

Pytanie 38

Jaką zaprawę wykorzystuje się do budowy elementów konstrukcyjnych budynków, które muszą przenosić duże obciążenia oraz do elementów podatnych na wilgoć, jak na przykład ściany fundamentowe?

A. Wapienna
B. Cementowa
C. Gipsowa
D. Gipsowo-wapienna
Zaprawa cementowa jest odpowiednia do murowania konstrukcji elementów budynku, które przenoszą duże obciążenia oraz są narażone na wilgoć, takich jak ściany fundamentowe. Charakteryzuje się wysoką wytrzymałością na ściskanie oraz niską przepuszczalnością wody, co czyni ją idealnym materiałem w sytuacjach, gdzie trwałość i odporność na czynniki zewnętrzne są kluczowe. Standardy budowlane, takie jak EN 998-2, podkreślają znaczenie stosowania zapraw cementowych w obszarach wymagających większej wytrzymałości oraz ochrony przed wilgocią. Przykładem zastosowania zaprawy cementowej może być fundament budynku, gdzie odpowiednia mieszanka cementu, piasku i wody tworzy mocną strukturę, zdolną wytrzymać ciężar budowli oraz działanie wód gruntowych. Dodatkowo, w przypadkach budownictwa przemysłowego, zaprawy cementowe są często stosowane do murowania ścian nośnych hal produkcyjnych, co podkreśla ich wszechstronność i kluczowe znaczenie w inżynierii budowlanej.

Pytanie 39

Aby wykonać tynk ciągniony, należy zastosować

A. paki oraz profilowane kielnie
B. stalowe listewki kierunkowe
C. profile przesuwane po prowadnicach
D. pneumatyczne urządzenia natryskowe
Użycie profili na prowadnicach to kluczowa sprawa przy robieniu tynku ciągnionego. W tej metodzie chodzi o nałożenie zaprawy tynkarskiej na ścianę za pomocą tych profili, co pozwala równomiernie rozprowadzić materiał. Dzięki profilowanym prowadnicom łatwiej kontrolować grubość tynku i uzyskać gładką powierzchnię. W praktyce najpierw montuje się te profile na ścianie, a potem nakłada się zaprawę i wygładza narzędziami tynkarskimi. Ta technika jest zgodna z normami budowlanymi, które mówią, że tynki muszą być robione w sposób zapewniający trwałość i odpowiednie parametry. No i tynk ciągniony jest często stosowany w budynkach, gdzie estetyka jest bardzo ważna, jak w obiektach publicznych czy domach jednorodzinnych - tam gładkie ściany są pożądane przez inwestorów.

Pytanie 40

Na podstawie zestawienia kosztów robocizny oblicz wynagrodzenie robotnika należne za montaż w remontowanym pomieszczeniu 5 okien o wymiarach 120 × 150 cm i 2 drzwi o wymiarach 90 × 210 cm.

Zestawienie kosztów robocizny
koszt montażu okna – 73,00 zł/m
koszt montażu drzwi – 205,00 zł/szt.
A. 2 091,00 zł
B. 2 381,00 zł
C. 1 971,00 zł
D. 775,00 zł
Aby prawidłowo obliczyć wynagrodzenie robotnika za montaż 5 okien oraz 2 drzwi, należy najpierw określić całkowitą powierzchnię okien i drzwi. Powierzchnia jednego okna wynosi 1,8 m² (120 cm x 150 cm = 0,12 m x 1,5 m = 1,8 m²), co dla 5 okien daje łączną powierzchnię 9 m². Powierzchnia jednych drzwi wynosi 1,89 m² (90 cm x 210 cm = 0,9 m x 2,1 m = 1,89 m²), a zatem dla 2 drzwi to 3,78 m². Całkowita powierzchnia do zamontowania wynosi 12,78 m². Przykładowo, jeśli koszt montażu za metr kwadratowy wynosi 180 zł, całkowity koszt montażu okien wyniesie 1620 zł (9 m² x 180 zł), a montaż drzwi to 680 zł (3,78 m² x 180 zł). Łącznie daje to 2300 zł. Warto jednak pamiętać, że różnice w kosztach mogą wynikać z lokalnych stawek oraz użytych materiałów. Zawsze warto zapoznać się z aktualnymi stawkami w regionie oraz praktykami ustalania kosztów w branży budowlanej.