Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 16 lutego 2026 17:38
  • Data zakończenia: 16 lutego 2026 17:55

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 254 ÷ 277 V
B. 220 ÷ 240 V
C. 440 ÷ 480 V
D. 380 ÷ 420 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 2

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. NOR
B. Ex-NOR
C. Ex-OR
D. OR
Funkcja Ex-OR, czyli exclusive OR, jest jedną z podstawowych funkcji logicznych używanych w automatyce i elektronice. To, co jest charakterystyczne dla Ex-OR, to jej zdolność do wykrywania różnic między dwoma sygnałami wejściowymi. W praktyce oznacza to, że wyjście będzie aktywne (czyli w stanie wysokim) tylko wtedy, gdy jeden z sygnałów wejściowych jest w stanie wysokim, a drugi w niskim. Taki mechanizm znajduje szerokie zastosowanie w systemach cyfrowych, gdzie konieczne jest porównywanie dwóch sygnałów lub wartości binarnych. W programowalnych sterownikach logicznych (PLC) Ex-OR używa się często do celów diagnostycznych, np. do wykrywania błędów w przesyłanych danych. W standardach przemysłowych, takich jak IEC 61131-3, Ex-OR jest jedną z kluczowych funkcji logicznych, które programiści muszą znać. Z mojego doświadczenia wynika, że opanowanie tej funkcji otwiera drogę do bardziej skomplikowanych aplikacji, gdzie liczy się precyzyjne sterowanie i analiza danych. To właśnie dzięki Ex-OR można tworzyć systemy, które reagują na konkretne różnice między stanami wejściowymi, co jest często wykorzystywane w systemach zabezpieczeń i kontroli jakości.

Pytanie 3

Na podstawie przedstawionego schematu wskaż stany przycisków, przy których lampka sygnalizacyjna świeci.

Ilustracja do pytania
A. S1 nieprzyciśnięty, S2 przyciśnięty.
B. S1 przyciśnięty, S2 nieprzyciśnięty.
C. S1 przyciśnięty, S2 przyciśnięty.
D. S1 nieprzyciśnięty, S2 nieprzyciśnięty.
Aby prawidłowo ocenić, kiedy lampka sygnalizacyjna się zaświeci, trzeba zrozumieć działanie obwodu elektrycznego bazującego na schemacie. W przedstawionym układzie mamy dwa przełączniki S1 i S2 oraz lampkę H1. Kluczową kwestią jest zrozumienie, jak działa otwarty i zamknięty przełącznik. Kiedy S1 jest przyciśnięty, przepuszcza prąd dalej do S2. Jeśli S2 jest nieprzyciśnięty, zamyka obwód i prąd płynie dalej do lampki H1, powodując jej świecenie. To jest typowy przykład połączenia szeregowego, gdzie obwód musi być zamknięty, aby urządzenie działało. W praktyce, taki układ mógłby być stosowany w systemach bezpieczeństwa, gdzie tylko określona kombinacja przycisków aktywuje sygnał. W automatyce przemysłowej, standardem jest używanie takich schematów do kontrolowania procesów. Pamiętaj, że zawsze powinno się projektować układy spełniające normy bezpieczeństwa i efektywności energetycznej. Z mojego doświadczenia, zrozumienie podstaw działania takich układów jest kluczowe w późniejszym projektowaniu bardziej skomplikowanych systemów.

Pytanie 4

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego wyłączenie TOF
B. licznika impulsów zliczającego w dół CTD
C. licznika impulsów zliczającego w górę CTU
D. timera opóźniającego załączenie TON
Wybrałeś prawidłową odpowiedź, a mianowicie licznik impulsów zliczający w dół (CTD). Liczniki impulsów są niezwykle istotne w automatyce przemysłowej, ponieważ pozwalają na kontrolowanie sekwencji zdarzeń w procesach produkcyjnych. Licznik zliczający w dół będzie zmniejszał swoją wartość przy każdym impulsie, co można wykorzystać do odmierzania czasu bądź ilości cykli, aż do osiągnięcia zera. W takim momencie można wyzwolić różne działania, na przykład zatrzymanie maszyny lub przełączenie na inne zadanie. W kontekście PLC, liczniki CTD są często używane w połączeniu z innymi blokami funkcjonalnymi, jak liczniki CTU czy timery, aby tworzyć bardziej złożone układy logiczne. Licznik CTD w diagramie pokazuje proces, gdzie wartość licznika zmniejsza się za każdym razem, gdy otrzymuje impuls CD, co jest typowym działaniem dla tego typu bloków. W praktyce liczniki te są bardzo przydatne w systemach sortowania, pakowania czy nawet w przemyśle spożywczym, gdzie ilość przetwarzanych elementów musi być precyzyjnie kontrolowana.

Pytanie 5

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Przetwornica napięcia 2x24 V DC / 230 V AC
B. Obiektowy separator napięć 24 V DC
C. Przetwornica akumulatorowa 2x24 V / 230 V AC
D. Zasilacz 230 V AC / 24 V DC
Wybierając niepoprawne odpowiedzi, można natknąć się na pewne powszechne nieporozumienia dotyczące różnicy między zasilaczem a przetwornicą. Przetwornica napięcia 2x24 V DC / 230 V AC oraz przetwornica akumulatorowa 2x24 V / 230 V AC służą do przetwarzania napięcia stałego na przemienne, co jest odwrotnością tego, co robi zasilacz. Są używane w miejscach, gdzie potrzebne jest zasilanie urządzeń z sieci prądu przemiennego przy użyciu baterii lub innego źródła prądu stałego. Natomiast obiektowy separator napięć 24 V DC służy do izolacji galwanicznej w celu ochrony przed przepięciami i zakłóceniami, co również różni się od funkcji zasilacza. Często błędne wyobrażenie wynika z mylenia funkcji urządzeń na podstawie podobnych parametrów napięciowych, jednak kluczowe jest zrozumienie, że funkcją zasilacza jest konwersja i stabilizacja napięcia z sieci do urządzeń. Z mojego doświadczenia wynika, że zrozumienie różnicy w tych funkcjach jest kluczowe dla skutecznej pracy z systemami zasilania w przemyśle.

Pytanie 6

Element zabezpieczający silnik, zaznaczony na schemacie linią przerywaną, jest wyzwalany

Ilustracja do pytania
A. podprądowo.
B. ciśnieniowo.
C. cieplnie.
D. nadnapięciowo.
Zabezpieczenia silników mogą być wyzwalane na różne sposoby, ale nie każde z nich jest odpowiednie dla wszystkich sytuacji. Wyzwalanie ciśnieniowe polega na wykorzystaniu zmiany ciśnienia w układzie, co nie ma bezpośredniego związku z działaniem elektrycznym silnika. Tego typu rozwiązania można spotkać w systemach hydraulicznych lub pneumatycznych, ale nie w typowych instalacjach elektrycznych. Podprądowe zabezpieczenie działa na zasadzie detekcji spadku prądu poniżej wartości nominalnej. Jest to stosowane w sytuacjach, gdzie brak prądu oznacza problem, jak na przykład w systemach awaryjnych. W kontekście silników elektrycznych, kluczowe jest zabezpieczenie przed nadprądem, a nie podprądem. Nadnapięciowe zabezpieczenia z kolei reagują na przekroczenie dopuszczalnego napięcia w obwodzie. Chociaż są ważne w ochronie przed przepięciami, to jednak nie chronią przed przegrzaniem silnika, co jest najczęstszą przyczyną awarii. Często błędne założenie, że wszystkie problemy z silnikiem można rozwiązać jednym typem zabezpieczenia, prowadzi do stosowania niewłaściwych rozwiązań. Dlatego tak ważna jest znajomość specyfiki danej aplikacji oraz właściwy dobór zabezpieczeń zgodnie z normami i najlepszymi praktykami inżynierskimi.

Pytanie 7

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
B. Ta instalacja nie może być eksploatowana.
C. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
D. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
Taka instalacja nie może być eksploatowana. Nacięty przewód z uszkodzoną izolacją, nawet jeśli dotyczy tylko żyły neutralnej N, stanowi poważne zagrożenie porażeniowe oraz pożarowe. Zgodnie z normą PN-HD 60364-4-41 oraz zasadami eksploatacji urządzeń elektrycznych każda uszkodzona izolacja przewodów musi zostać natychmiast naprawiona lub wymieniona, ponieważ nie gwarantuje odpowiedniej ochrony przed dotykiem pośrednim. W miejscu przecięcia może dojść do przebicia lub łuku elektrycznego, szczególnie w wilgotnym otoczeniu, takim jak pomieszczenia z hydroforem. Moim zdaniem w praktyce najlepiej wymienić cały odcinek przewodu – prowizoryczne naprawy taśmą izolacyjną nie spełniają wymagań bezpieczeństwa. W zakładach przemysłowych i gospodarstwach domowych obowiązuje zasada: przewód z uszkodzoną izolacją natychmiast wycofuje się z użytkowania, aż do momentu przeprowadzenia kontroli i naprawy przez osobę z uprawnieniami SEP. To prosta zasada, ale ratuje życie.

Pytanie 8

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 2,2 m
B. 6,4 m
C. 4,2 m
D. 8,5 m
Dobrze to rozgryzłeś. Wysokość podnoszenia cieczy przy prędkości obrotowej n = 1850 1/min i wydajności 550 m³/h to 4,2 m. Z wykresu widać, że dla tej wartości obrotów, krzywa charakterystyczna pompy przecina się w okolicach 4,2 m na osi wysokości podnoszenia. Takie oszacowanie jest zgodne z zasadami projektowania i doboru pomp w praktyce inżynierskiej. Ważne jest, aby zrozumieć, jak parametry takie jak prędkość obrotowa i wydajność wpływają na działanie pompy. W przypadku pomp, ich charakterystyki są kluczowym elementem pozwalającym określić, jak będą działały w różnych warunkach. Znajomość tej zależności jest istotna podczas projektowania systemów pompowych, gdzie należy dążyć do pracy w optymalnym punkcie charakterystyki. Dobrze dobrana pompa zapewnia nie tylko efektywne działanie, ale także mniejsze zużycie energii, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i oszczędności energii w przemyśle.

Pytanie 9

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na ilustracji to

Ilustracja do pytania
A. USB
B. RS-232
C. OBD II
D. ETHERNET
Sterownik PLC przedstawiony na ilustracji korzysta z interfejsu ETHERNET, co jest powszechnym standardem w nowoczesnych systemach automatyki przemysłowej. Ethernet umożliwia szybkie przesyłanie danych i łatwą integrację z siecią lokalną oraz Internetem. Dzięki temu możemy zdalnie monitorować i kontrolować pracę systemów, co znacznie zwiększa ich elastyczność i efektywność. W praktyce oznacza to, że można na przykład zdalnie wgrywać nowe programy, aktualizować oprogramowanie, a także diagnozować ewentualne problemy bez potrzeby fizycznego dostępu do urządzenia. Z mojego doświadczenia, Ethernet w PLC to właściwie standard. Jest też niezwykle pomocny w integracji z innymi systemami, jak SCADA, co pozwala na kompleksowe zarządzanie procesami produkcyjnymi. Warto też wspomnieć, że Ethernet w sterownikach PLC wspiera protokoły takie jak Modbus TCP/IP czy Profinet, co dodatkowo ułatwia komunikację między różnymi urządzeniami w sieci.

Pytanie 10

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. LY-w
B. DG-w
C. DS-w
D. DY-w

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 11

Aby sprawdzić ciągłość połączeń elektrycznych, należy podłączyć przewody pomiarowe do zacisków

Ilustracja do pytania
A. 10A i COM i ustawić pokrętło w pozycji Ω
B. mA i COM i ustawić pokrętło w pozycji A
C. VΩ i COM i ustawić pokrętło w pozycji Ω
D. VΩ i COM i ustawić pokrętło w pozycji V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie ciągłości połączeń elektrycznych za pomocą multimetru to podstawowa umiejętność w elektronice i elektrotechnice. Aby to zrobić poprawnie, musisz podłączyć przewody pomiarowe do zacisków VΩ i COM, a pokrętło ustawić w pozycji Ω. Dlaczego? Ponieważ tryb omomierza (Ω) pozwala na pomiar rezystancji. W trybie ciągłości miernik wysyła niewielki prąd przez obwód i mierzy, czy jest on zamknięty, co oznacza, że rezystancja powinna być bliska zeru. Jest to szczególnie użyteczne przy szukaniu przerw w przewodach, sprawdzaniu bezpieczników czy diagnozowaniu połączeń lutowanych. W praktyce, dobrym zwyczajem jest także upewnienie się, że przewody pomiarowe są nieuszkodzone, a styki czyste, by uzyskać wiarygodny odczyt. Multimetry cyfrowe często emitują sygnał dźwiękowy, gdy połączenie jest ciągłe. Pamiętanie o tych zasadach nie tylko zwiększa bezpieczeństwo, ale także skuteczność pracy z urządzeniami elektronicznymi. Z mojego doświadczenia wynika, że wielu początkujących zapomina o odpowiednim ustawieniu pokrętła, co prowadzi do błędnych odczytów.

Pytanie 12

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. panel operatorski.
B. zasilacz impulsowy.
C. koncentrator sieciowy.
D. sterownik PLC.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To urządzenie to sterownik PLC, czyli programowalny sterownik logiczny. Jest ono kluczowym elementem w automatyce przemysłowej, używane do sterowania procesami produkcyjnymi i maszynami. PLC mogą być programowane w językach takich jak ladder logic, co pozwala na elastyczne dostosowanie działania do konkretnych potrzeb. Przykładowo, w fabrykach używa się ich do sterowania liniami montażowymi czy systemami pakowania. Warto zauważyć, że PLC są zaprojektowane tak, aby mogły pracować w trudnych warunkach, są odporne na zakłócenia elektromagnetyczne i wibracje. Dzięki temu, są niezawodne i cenione w przemyśle. Standardy takie jak IEC 61131 określają, jak powinny być programowane i stosowane, co zapewnia ich unifikację i możliwość współpracy z różnymi systemami. W praktyce, dobry technik czy inżynier automatyki powinien umieć nie tylko programować PLC, ale też diagnozować ewentualne problemy i optymalizować działanie całych systemów. Także, świetnie, że rozpoznałeś to urządzenie!

Pytanie 13

Do pomiaru wilgotności powietrza stosuje się

A. manometr.
B. termometr.
C. barometr.
D. higrometr.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Higrometr to urządzenie, które jest niezastąpione w wielu dziedzinach technicznych i naukowych. Dzięki niemu możemy precyzyjnie zmierzyć wilgotność powietrza, co ma kluczowe znaczenie w różnych branżach. Na przykład, w przemyśle tekstylnym wilgotność wpływa na właściwości materiałów, a w elektronicznym na funkcjonowanie urządzeń. W rolnictwie kontrola wilgotności jest istotna dla zdrowia roślin i plonów. Warto też wiedzieć, że higrometry mogą działać na różne sposoby, np. wykorzystując włosie, które zmienia długość pod wpływem wilgoci, czy też za pomocą technologii elektronicznej, jak czujniki pojemnościowe. Z mojego doświadczenia, w laboratoriach często spotyka się higrometry psychrometryczne, które używają dwóch termometrów - suchego i mokrego. W praktyce, dobrze skalibrowany higrometr to podstawa w miejscach, gdzie warunki atmosferyczne mogą wpływać na procesy produkcyjne czy zdrowie pracowników. Dlatego w wielu normach ISO znajdziemy wytyczne dotyczące precyzyjnego pomiaru wilgotności, co podkreśla znaczenie tego urządzenia w utrzymaniu jakości i bezpieczeństwa.

Pytanie 14

Który z czujników należy zamontować w układzie sterowania wyłączarką, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz odporność na wibracje i zmiany temperatury 0 ÷ 90°C?

Ilustracja do pytania
A. HPD1202-NK
B. HPD1406-NK
C. HPD1204-PK
D. HPD1408-PK

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór czujnika HPD1202-NK jest trafny, ponieważ spełnia on wymagania dotyczące zasięgu oraz odporności na zmiany temperatury. Czujnik ten działa w zakresie od 0 do 1,6 mm, co pokrywa się z wymaganiem 0,8 ÷ 0,9 mm. Jest to istotne, gdyż precyzyjne określenie zasięgu czujnika ma kluczowe znaczenie w precyzyjnych aplikacjach jak np. sterowanie wyłączarką. Dodatkowo, HPD1202-NK może pracować w temperaturach od -20 do 110°C, co daje duży margines bezpieczeństwa i pozwala na pracę w trudnych warunkach środowiskowych. Warto też zwrócić uwagę na klasę ochrony IP67, która zabezpiecza czujnik przed pyłem i krótkotrwałym zanurzeniem w wodzie, co jest często niezbędne w aplikacjach przemysłowych. Z doświadczenia wiem, że wybór odpowiedniego czujnika to nie tylko kwestia parametrów, ale też niezawodności i odporności na warunki pracy. W praktyce, taki czujnik sprawdzi się w aplikacjach, gdzie wymagana jest nie tylko precyzja, ale i wytrzymałość.

Pytanie 15

Który przyrząd pomiarowy należy wykorzystać do przygotowania korytek montażowych o wskazanej długości?

A. Przymiar kreskowy.
B. Mikrometr.
C. Czujnik zegarowy.
D. Średnicówkę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przymiar kreskowy, często zwany też miarą lub linijką, jest podstawowym narzędziem pomiarowym używanym do mierzenia długości na płaskich powierzchniach. To precyzyjne narzędzie, które pozwala na dokładne odmierzanie korytek montażowych, co jest kluczowe podczas prac konstrukcyjnych i montażowych. Przymiar kreskowy jest wykonany z metalu lub tworzywa sztucznego i ma naniesione podziałki, zazwyczaj w milimetrach i centymetrach. Dzięki swojej prostej konstrukcji i łatwości w użyciu, jest niezastąpiony w warsztatach i na budowach. W praktyce, przy produkcji korytek montażowych, ważne jest, aby długość była dokładnie taka, jaka została zaplanowana, aby uniknąć problemów z montażem. Przymiar kreskowy to narzędzie, które daje pewność, że wszystko jest mierzone precyzyjnie i zgodnie z projektem. W branży budowlanej i mechanicznej, dokładne wymiary są kluczowe dla trwałości i niezawodności konstrukcji, dlatego przymiar kreskowy jest tak powszechnie stosowany. Dodatkowo, jego kompaktowy rozmiar i łatwość w przechowywaniu sprawiają, że jest to narzędzie pierwszego wyboru, gdy mówimy o podstawowych narzędziach pomiarowych. Warto też wspomnieć, że w standardowych praktykach przemysłowych, użycie przymiaru kreskowego jest preferowane ze względu na jego dostępność i niską cenę, co czyni go idealnym dla małych i dużych projektów.

Pytanie 16

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. NAND
B. OR
C. NOR
D. XOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Program przedstawiony na rysunku realizuje funkcję logiczną NOR, co jest skrótem od „NOT OR”. W logice oznacza to, że wyjście będzie aktywne tylko wtedy, gdy wszystkie wejścia są nieaktywne. W przypadku sterowników PLC, funkcja NOR jest często używana w sytuacjach, gdy chcemy, aby określone wyjście działało tylko wtedy, gdy żaden z czujników lub przełączników nie jest aktywowany. Na rysunku widzimy dwie szeregowo połączone cewki, co oznacza, że wyjście zostanie aktywowane tylko wtedy, gdy oba wejścia są w stanie niskim (czyli logiczne 0). To typowe w aplikacjach bezpieczeństwa, gdzie z różnych powodów potrzebujemy gwarancji, że coś się nie wydarzy, dopóki wszystkie warunki nie są spełnione. Moim zdaniem, zastosowanie funkcji NOR jest niezwykle praktyczne, szczególnie w automatyce przemysłowej, gdzie niezawodność jest kluczowa. Warto pamiętać, że użycie tej funkcji jest zgodne z normami IEC dotyczących projektowania systemów sterowania, co gwarantuje wysoką jakość i bezpieczeństwo działania systemu.

Pytanie 17

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 6,00 V
B. 1,50 V
C. 15,00 V
D. 0,15 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wskaźnik zatrzymał się na wartości 30% pełnego zakresu, a ponieważ zakres maksymalny Umax wynosi 5 V, obliczenie jest proste: 30% × 5 V = 1,5 V. Oznacza to, że woltomierz wskazuje napięcie 1,50 V. Takie urządzenia działają liniowo, więc skala jest proporcjonalna – każdy podział odpowiada tej samej części zakresu pomiarowego. W praktyce, przy pomiarach napięcia stałego (DC), należy zawsze ustawić zakres nieco wyższy niż przewidywane napięcie, żeby nie przeciążyć miernika. Z mojego doświadczenia: analogowe woltomierze są świetne do obserwacji zmian napięcia w czasie – wskazówka reaguje płynnie, co pozwala wychwycić wahania, czego nie widać na miernikach cyfrowych. W laboratoriach i warsztatach często stosuje się przeliczanie proporcjonalne właśnie w taki sposób – np. jeśli zakres to 10 V, a wskazanie wynosi 25%, to napięcie to 2,5 V. Drobna uwaga praktyczna – wskazanie powinno być odczytywane dokładnie na wprost, aby uniknąć błędu paralaksy.

Pytanie 18

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację obrotów.
B. ruch ciągły.
C. multiplikację przełożenia.
D. ruch przerywany.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mechanizm przedstawiony na rysunku to mechanizm genewski, który zapewnia ruch przerywany. To znany mechanizm w automatyce i mechanice, który przekształca ruch obrotowy w przerywany. Kluczowym elementem jest tutaj krzywka z wycięciami, która okresowo wchodzi w interakcję z czerwonym elementem, nadając mu ruch na krótkie odcinki. Tego rodzaju mechanizmy można znaleźć w zegarach mechanicznych albo maszynach pakujących, gdzie potrzebna jest precyzyjna kontrola czasowa ruchu. Dzięki przerywanemu ruchowi można uzyskać kontrolowane, cykliczne przemieszczenia, co jest kluczowe w wielu zastosowaniach przemysłowych. Mechanizm genewski to doskonały przykład zastosowania prostych zasad mechaniki do rozwiązywania skomplikowanych problemów inżynieryjnych. Z mojego doświadczenia wiem, że jest to też świetne wprowadzenie do nauki o ruchach przerywanych dla studentów technikum.

Pytanie 19

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 4.
B. Tabliczka 2.
C. Tabliczka 3.
D. Tabliczka 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik opisany na tabliczce 1 jest przeznaczony do pracy ciągłej, co oznacza, że jest zaprojektowany do pracy przez długi czas bez przerw. Informację tę można znaleźć w oznaczeniu 'S1', które w standardach międzynarodowych, takich jak IEC 60034, wskazuje na ciągłą pracę. Tego typu silniki są często stosowane w aplikacjach, gdzie wymagana jest stabilność i niezawodność przez dłuższe okresy, na przykład w taśmociągach czy pompowaniu wody. Charakteryzują się dobrą sprawnością energetyczną oraz trwałością, co jest kluczowe w zastosowaniach przemysłowych. Standardy takie jak IEC 60034 definiują klasy ochrony IP, które w przypadku tego silnika wynoszą IP54, co oznacza ochronę przed pyłem oraz rozpryskami wody. To istotne w wielu środowiskach przemysłowych. Moim zdaniem, wybór silnika do pracy ciągłej powinien uwzględniać również czynniki takie jak koszty eksploatacji i konserwacji, co w dłuższej perspektywie przekłada się na oszczędności i wydajność operacyjną.

Pytanie 20

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji żył L1, L2, L3.
B. Sumy rezystancji żył L1, L2, L3 oraz PEN.
C. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
D. Rezystancji izolacji między przewodami L1 i L2 i L3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 21

W sterowniku PLC wejścia analogowe oznaczane są symbolem literowym

A. AQ
B. AI
C. Q
D. I

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W sterownikach PLC wejścia analogowe oznacza się symbolem AI, co jest skrótem od 'Analog Input'. To standard w branży, który ułatwia jednoznaczną identyfikację typu sygnału na wejściu. Wejścia analogowe są niezwykle ważne, ponieważ umożliwiają przetwarzanie sygnałów zmieniających się w czasie – na przykład sygnałów z czujników temperatury, ciśnienia czy poziomu cieczy. W praktyce spotkasz się z różnymi typami wejść, które mogą odbierać sygnały prądowe (np. 4-20 mA) lub napięciowe (np. 0-10 V), co daje dużą elastyczność w łączeniu różnych urządzeń pomiarowych. Branża automatyki przemysłowej często wykorzystuje te standardy, aby uprościć integrację systemów od różnych producentów. Ważne jest, aby prawidłowo skonfigurować wejścia analogowe, biorąc pod uwagę parametry sygnału i jego źródło, co pozwala uniknąć błędów w odczycie danych. Z mojego doświadczenia, dobrze działające wejścia analogowe mogą znacznie poprawić efektywność całego systemu, a co za tym idzie – wpływać na optymalizację procesów produkcyjnych.

Pytanie 22

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 0110
B. input SW1 - 01011010, output SW2 - 1001
C. input SW1 - 10001100, output SW2 - 0000
D. input SW1 - 01001001, output SW2 - 0000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie separatora toru pomiarowego czujnika w zakresie 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA jest kluczowe dla zapewnienia dokładności pomiarów oraz bezawaryjnej pracy urządzenia. Poprawna odpowiedź to ustawienie input SW1 na 01001001 oraz output SW2 na 0000. To ustawienie zapewnia, że sygnał wejściowy w pełni pokrywa zakres 0÷20 mA, co jest zgodne z wymaganiami sterownika PLC. W praktyce, ustawienie to pozwala na pełne odwzorowanie sygnałów z czujnika, eliminując ryzyko błędów pomiarowych. Dobrze dobrany separator sygnału nie tylko optymalizuje działanie systemu, ale także zapewnia jego długotrwałą niezawodność. Ustawienie SW1 na 01001001 oznacza, że aktywowane są odpowiednie przełączniki dla zakresu 0÷20 mA, co jest często wykorzystywane w aplikacjach przemysłowych, gdzie precyzja i stabilność odczytu są kluczowe. To ustawienie jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, co gwarantuje nie tylko poprawność działania, ale również zgodność z normami.

Pytanie 23

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 2 i 4.
B. 1 i 4.
C. 2 i 3.
D. 3 i 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobrze, że zauważyłeś, że piny 2 i 4 są kluczowe w tym układzie. Pin 2 oznaczony jest jako NC (normally closed), a pin 4 jako NO (normally open). To typowe oznaczenia w technice przekaźników i czujników, gdzie NC oznacza, że obwód jest zamknięty w stanie nieaktywnym, a NO że jest otwarty. W praktyce, wiele przetworników, szczególnie w automatyce przemysłowej, wykorzystuje te piny do przesyłania sygnałów do odbiorników. Podłączając piny 2 i 4 do odbiorników, zapewniasz prawidłowe działanie zarówno w trybie normalnie zamkniętym, jak i otwartym, co jest często wymogiem w systemach zabezpieczeń i automatyki. To podejście jest zgodne z wieloma normami, takimi jak IEC 60947 dotyczących aparatury rozdzielczej i sterowniczej. Warto pamiętać, że takie połączenia zwiększają niezawodność systemu i pozwalają na szybką reakcję w przypadku zmiany stanu czujnika.

Pytanie 24

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 4.
Ilustracja do odpowiedzi A
B. Przewód 1.
Ilustracja do odpowiedzi B
C. Przewód 2.
Ilustracja do odpowiedzi C
D. Przewód 3.
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwy wybór to przewód 1. Ten typ przewodu jest przeznaczony do zasilania silników 3-fazowych z przemiennikiem częstotliwości (falownikiem). Ma on ekran z oplotu miedzianego lub aluminiowego, który ogranicza emisję zakłóceń elektromagnetycznych (EMC) oraz chroni przed ich przenikaniem do innych urządzeń. Przewody tego typu są odporne na drgania, wyższe temperatury i impulsy napięciowe generowane przez falownik. Dodatkowo posiadają izolację z materiałów trudnopalnych, często w klasie odporności na promieniowanie UV i oleje, co pozwala stosować je zarówno wewnątrz, jak i na zewnątrz obiektów przemysłowych. Z mojego doświadczenia wynika, że takie przewody – np. typu Ölflex Servo, BiTservo lub Helukabel Topflex – są niezbędne, aby uniknąć problemów z czujnikami, sterownikami PLC i komunikacją sieciową. Standard PN-EN 60204-1 wyraźnie zaleca stosowanie ekranowanych kabli przy połączeniach silników z falownikami właśnie ze względu na ograniczenie zakłóceń harmonicznych.

Pytanie 25

Na schemacie układu sterowania elementy PT1 i PT2 to

Ilustracja do pytania
A. przemienniki częstotliwości.
B. falowniki.
C. prostowniki niesterowane.
D. prostowniki sterowane.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na schemacie widoczne są dwa elementy oznaczone jako PT1 i PT2, które pełnią funkcję prostowników sterowanych. Charakterystycznym symbolem jest tu dioda z ukośną linią przy bramce – oznacza to tyrystor (SCR), który pozwala regulować moment przewodzenia prądu w każdej połówce sinusoidy napięcia przemiennego. Dzięki temu można sterować napięciem wyjściowym i w efekcie prędkością lub momentem silnika prądu stałego (oznaczonego jako M na rysunku). W praktyce takie rozwiązania stosuje się w układach napędowych, gdzie wymagana jest płynna regulacja obrotów. Sterowanie kątem załączenia tyrystora pozwala zmieniać średnią wartość napięcia zasilającego silnik. Moim zdaniem to bardzo elegancki i klasyczny przykład regulacji mocy w systemach DC, jeszcze zanim falowniki stały się powszechne. W przemyśle taki układ był (i nadal bywa) używany np. w dźwignicach, suwnicach czy walcarkach, gdzie liczy się precyzja i niezawodność. W odróżnieniu od prostowników niesterowanych, tutaj sterowanie odbywa się poprzez impuls bramkowy, co daje znacznie większą kontrolę nad procesem.

Pytanie 26

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. PNP NO
C. NPN NO
D. NPN NC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik przedstawiony na schemacie działa w konfiguracji NPN NC, co oznacza, że jego wyjście jest normalnie zamknięte i otwiera się, gdy sygnał jest wykryty. W układzie NPN tranzystor działa jako przełącznik między wyjściem a masą (0 V), co jest typowe w aplikacjach, gdzie urządzenie zasilane jest dodatnim napięciem. W praktyce, takie rozwiązanie jest powszechnie wykorzystywane w przemyśle automatyki, gdzie wymagana jest wysoka niezawodność i precyzja. Czujniki NPN są często stosowane w połączeniu z systemami PLC, które są zaprojektowane do pracy z sygnałami niskiego poziomu. Warto również wspomnieć, że konfiguracja NC (normally closed) jest używana w aplikacjach, gdzie bezpieczeństwo jest kluczowe, ponieważ ewentualne uszkodzenie przewodu prowadzi do otwarcia obwodu, co łatwo można wykryć. Standardy branżowe, takie jak IEC 60947-5-2, określają zasady dla czujników zbliżeniowych, zapewniając zgodność i bezpieczeństwo w różnorodnych aplikacjach.

Pytanie 27

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. dwa razy mniejszym polu przekroju.
B. cztery razy większym polu przekroju.
C. dwa razy większym polu przekroju.
D. cztery razy mniejszym polu przekroju.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasadę stałego spadku napięcia stosujemy, aby uniknąć nadmiernych strat energii w przewodach, co jest istotne w instalacjach elektrycznych. Spadek napięcia jest proporcjonalny do długości przewodu i odwrotnie proporcjonalny do jego przekroju, co wynika z prawa Ohma i wzoru na rezystancję. Gdy zwiększamy długość przewodu dwukrotnie, spadek napięcia również się podwoi, chyba że zrekompensujemy to większym przekrojem przewodnika. Dlatego, aby utrzymać ten sam spadek napięcia, powinniśmy zwiększyć pole przekroju przewodu dwa razy. To podejście jest zgodne z dobrymi praktykami projektowania instalacji elektrycznych, które dążą do minimalizacji strat energetycznych i zapewnienia bezpiecznej pracy systemu. Praktycznie, w różnych zastosowaniach przemysłowych i budowlanych, inżynierowie często muszą brać pod uwagę te zmiany, aby zapewnić efektywność energetyczną i zgodność z normami, takimi jak PN-EN 60204 dotycząca bezpieczeństwa maszyn i instalacji elektrycznych.

Pytanie 28

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. magnetyczny.
B. indukcyjny.
C. ultradźwiękowy.
D. pojemnościowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetny wybór! Czujnik magnetyczny to idealne rozwiązanie do sygnalizacji położenia tłoka w siłownikach pneumatycznych. Tłok w siłowniku często jest wyposażony w magnes, co pozwala na bezdotykowe wykrywanie jego położenia za pomocą czujników magnetycznych. Jest to niezawodne i ekonomiczne podejście. W praktyce czujniki te są montowane na zewnątrz korpusu siłownika i są w stanie dokładnie zlokalizować położenie tłoka w różnych punktach jego drogi. Rozwiązanie to jest powszechnie stosowane w automatyce przemysłowej, gdzie precyzyjne sterowanie położeniem jest kluczowe. Czujniki magnetyczne są odporne na warunki środowiskowe i działają skutecznie nawet w obecności zanieczyszczeń czy wilgoci, co czyni je niezastąpionymi w trudnych warunkach pracy. Dodatkowo, takie czujniki często mają regulowaną czułość i zasięg, co umożliwia ich adaptację do różnych zastosowań. Warto dodać, że w branży stosowanie czujników magnetycznych jest standardem ze względu na ich trwałość i niskie koszty eksploatacji.

Pytanie 29

Którą funkcję logiczną realizuje element przedstawiony na rysunku?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na rysunku mamy do czynienia z zaworem logicznym OR. Funkcja OR w logice polega na tym, że wyjście jest wysokie (1), jeśli przynajmniej jedno z wejść jest wysokie. W przypadku zaworu pneumatycznego, który realizuje tę funkcję, mamy przepływ powietrza na wyjściu, jeśli choć jedno z wejść jest zasilane. Tego typu zawory są często używane w systemach automatyki, gdzie potrzebne jest łączenie sygnałów sterujących z różnych źródeł. Przykładowo, w fabryce może być potrzeba uruchomienia maszyny, jeśli zostanie wciśnięty którykolwiek z dwóch przycisków bezpieczeństwa, co zabezpiecza system na wypadek awarii jednego z nich. Moim zdaniem, zrozumienie działania takich układów to podstawa w automatyce przemysłowej. Tego typu rozwiązania są zgodne z normami ISO dotyczącymi systemów pneumatycznych, które kładą nacisk na niezawodność i bezpieczeństwo działania. Warto mieć w głowie, jak takie rozwiązania mogą być pomocne w projektowaniu systemów logicznych.

Pytanie 30

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. AI
B. Q
C. I
D. AQ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W sterownikach PLC wejścia cyfrowe oznaczane są symbolem literowym 'I'. To skrót od angielskiego słowa 'Input', co dosłownie oznacza wejście. Wejścia te są integralną częścią systemu PLC, ponieważ umożliwiają odbieranie sygnałów z różnych czujników i urządzeń zewnętrznych. Przykładami takich czujników mogą być przyciski, czujniki fotoelektryczne czy wyłączniki krańcowe. Dzięki temu sterownik PLC może reagować na zmienne warunki pracy i odpowiednio sterować wyjściami, takimi jak siłowniki czy lampy. Standardy przemysłowe, takie jak IEC 61131-3, od lat utrzymują jednolitość w oznaczaniu elementów systemów automatyki, co ułatwia inżynierom zrozumienie i konserwację systemów bez względu na producenta sterownika. Wejścia cyfrowe są kluczowe w systemach, gdzie potrzebna jest szybka reakcja na zmiany w otoczeniu, a ich właściwe oznaczenie umożliwia precyzyjne projektowanie i programowanie aplikacji przemysłowych. Dobre zrozumienie oznaczeń w PLC jest podstawą efektywnego projektowania systemów automatyki, co w praktyce przekłada się na zwiększenie wydajności i niezawodności procesów produkcyjnych.

Pytanie 31

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Ciśnienia.
B. Natężenia przepływu.
C. Temperatury.
D. Natlenienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 32

Który z elementów należy zastosować do wykonania rozgałęzienia sygnału/przewodu pneumatycznego w celu podłączenia w układzie manometru?

A. Element 2.
Ilustracja do odpowiedzi A
B. Element 4.
Ilustracja do odpowiedzi B
C. Element 1.
Ilustracja do odpowiedzi C
D. Element 3.
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Do wykonania rozgałęzienia przewodu pneumatycznego stosuje się element typu „trójnik”, czyli ten przedstawiony na zdjęciu numer 2. Trójnik umożliwia podłączenie trzech przewodów – jednego doprowadzającego sygnał i dwóch odprowadzających, co pozwala np. na równoczesne zasilenie siłownika i podłączenie manometru kontrolnego. W układach pneumatycznych takie złącze typu „T” jest podstawowym sposobem tworzenia odgałęzień sygnału ciśnienia lub przepływu powietrza. Moim zdaniem to jedno z najczęściej używanych złączy w praktyce – proste, szczelne i bardzo wygodne w montażu, szczególnie w systemach z przewodami poliuretanowymi. Wystarczy wsunąć przewód aż do oporu, a uszczelnienie zapewnia pierścień zaciskowy. Trójniki występują w wielu wersjach: proste, z gwintem, obrotowe, a nawet z zaworem odcinającym, ale zasada działania zawsze ta sama – jedno wejście, dwa wyjścia. Dzięki temu można łatwo podłączyć manometr do istniejącego przewodu bez przerywania pracy całego układu. W automatyce przemysłowej stosuje się je przy rozdziale powietrza do kilku zaworów lub przy pomiarze ciśnienia w różnych punktach instalacji.

Pytanie 33

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-OFF, 2-OFF, 3-OFF, 4-OFF
B. 1-OFF, 2-ON, 3-OFF, 4-OFF
C. 1-ON, 2-ON, 3-ON, 4-ON
D. 1-ON, 2-OFF, 3-OFF, 4-OFF

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ta odpowiedź jest prawidłowa, ponieważ ustawienie przełącznika przemiennika częstotliwości 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi sterującemu 0-20 mA. W praktyce oznacza to, że przemiennik został skonfigurowany do pracy z urządzeniami, które wysyłają sygnały o natężeniu prądu w tym zakresie. Jest to częsty standard w automatyce przemysłowej, gdzie sygnały 0-20 mA są wykorzystywane do komunikacji pomiędzy czujnikami a urządzeniami wykonawczymi. Dzięki temu można płynnie regulować parametry pracy, jak prędkość obrotową silnika, co jest niezwykle istotne w aplikacjach wymagających precyzyjnego sterowania. Warto też pamiętać, że stosowanie sygnałów prądowych zamiast napięciowych ma tę zaletę, że jest mniej podatne na zakłócenia elektromagnetyczne, co jest szczególnie ważne w środowiskach przemysłowych. Z mojego doświadczenia, dobrze jest pamiętać, aby zawsze sprawdzać specyfikacje urządzeń, z którymi pracujemy, aby uniknąć błędnych konfiguracji, które mogą prowadzić do nieprawidłowej pracy systemu.

Pytanie 34

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
B. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
C. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
D. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź jest poprawna! Podłączenie napięcia zasilania 24 V DC wymaga dużej uwagi co do prawidłowej polaryzacji. Zaciski 3 i 4 są oznaczone jako miejsca do podłączenia tego rodzaju zasilania. W Twoim przypadku, zacisk 3 jest miejscem, gdzie podłączamy ujemny biegun (-), a na zacisk 4 przypada dodatni biegun (+). Zastosowanie prawidłowej polaryzacji jest kluczowe, szczególnie w przypadku urządzeń elektronicznych, które mogą być wrażliwe na niewłaściwe podłączenie. Dokumentacja techniczna zawsze powinna być Twoim głównym źródłem informacji. Dobrym zwyczajem jest oznaczanie przewodów i zacisków, aby uniknąć pomyłek przy podłączaniu. W praktyce, poprawne podłączenie zasilania 24 V DC jest standardem w wielu aplikacjach przemysłowych, gdzie stabilność i niezawodność zasilania są kluczowe. Warto również pamiętać o zastosowaniu zabezpieczeń przeciwprzepięciowych w takich układach.

Pytanie 35

Element przedstawiony na rysunku to

Ilustracja do pytania
A. czujnik rezystancyjny.
B. termometr rtęciowy.
C. pirometr.
D. czujnik pojemnościowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co widzimy na rysunku, to czujnik rezystancyjny, znany również jako termometr rezystancyjny (RTD). Jest szeroko stosowany w przemyśle do pomiaru temperatury dzięki swojej precyzji i stabilności. Czujniki rezystancyjne działają na zasadzie zmiany rezystancji metalu pod wpływem temperatury. Najczęściej spotykanymi materiałami są platyna (Pt-100, Pt-500, Pt-1000), ponieważ oferuje liniową charakterystykę i dobrą powtarzalność pomiarów. Przykładowo, Pt-100 oznacza, że rezystancja czujnika wynosi 100 omów przy 0°C. W praktyce, znajdziesz takie czujniki w systemach HVAC, procesach chemicznych czy nawet w sprzęcie laboratoryjnym. Standardy, takie jak DIN EN 60751, określają ich konstrukcję i precyzję. Dzięki swoim właściwościom, czujniki te są preferowane w aplikacjach, gdzie małe błędy pomiarowe są kluczowe. Moim zdaniem, ich popularność wynika również z dostępności precyzyjnych przetworników, które łatwo integrują się z systemami automatyki.

Pytanie 36

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Obiektowy separator napięć 24 V DC
B. Zasilacz 230 V AC / 24 V DC
C. Przetwornica napięcia 2x24 V DC / 230 V AC
D. Przetwornica akumulatorowa 2x24 V / 230 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetnie, że wybrałeś zasilacz 230 V AC / 24 V DC! Urządzenie pokazane na zdjęciu to typowy zasilacz, który przekształca napięcie przemienne 230 V na napięcie stałe 24 V. To jest kluczowe w wielu zastosowaniach przemysłowych i domowych, gdzie potrzebne jest stabilne napięcie stałe. Zasilacze te znajdują zastosowanie w systemach automatyki, sterowania, a także w urządzeniach telekomunikacyjnych. Są one zgodne z wieloma normami bezpieczeństwa, co zapewnia niezawodność w działaniu. Stosowanie zasilaczy zamiast przetwornic czy separatorów jest uzasadnione, gdy potrzebujemy jedynie obniżyć napięcie i przekształcić je na stałe. Z mojego doświadczenia wynika, że ważne jest również zwrócenie uwagi na parametry takie jak wydajność prądowa - w tym przypadku 6A, co jest odpowiednie dla wielu urządzeń o średnim poborze mocy. Dlatego zawsze warto sprawdzić dokładnie parametry przed zakupem, aby upewnić się, że zasilacz spełnia wszystkie wymagania techniczne.

Pytanie 37

W jakiej kolejności powinno się wykonać czynności związane z wymianą termostatu w zbiorniku ciepłej wody?

  1. Odłączyć zasilanie.
  2. Odłączyć przewody od termostatu.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Dołączyć przewody do termostatu.
  6. Załączyć zasilanie.
  1. Odłączyć przewody od termostatu.
  2. Odłączyć zasilanie.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Dołączyć przewody do termostatu.
  6. Załączyć zasilanie.
Lista 1.Lista 2.
  1. Odłączyć zasilanie.
  2. Odłączyć przewody od termostatu.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Załączyć zasilanie.
  6. Dołączyć przewody do termostatu.
  1. Odłączyć zasilanie.
  2. Zdemontować termostat uszkodzony.
  3. Zamontować nowy termostat.
  4. Dołączyć przewody do termostatu.
  5. Odłączyć przewody od termostatu.
  6. Załączyć zasilanie.
Lista 3.Lista 4.
A. Według listy 3.
B. Według listy 4.
C. Według listy 2.
D. Według listy 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś poprawną kolejność czynności związaną z wymianą termostatu w zbiorniku ciepłej wody. Zacznijmy od początku: odłączanie zasilania to kluczowy pierwszy krok, żeby zapewnić bezpieczeństwo pracy. Prąd jest niebezpieczny, więc zawsze warto sprawdzić, czy zasilanie jest faktycznie odłączone. Następnie odłączamy przewody od starego termostatu, co umożliwia jego bezpieczne zdemontowanie. Kiedy już usuniemy uszkodzony termostat, przystępujemy do montażu nowego. Każdy nowy element mechaniczny musi być prawidłowo zamontowany, aby działał zgodnie z zamierzeniem. Potem podłączamy przewody do nowego termostatu, upewniając się, że są mocno osadzone. Na końcu załączamy zasilanie i sprawdzamy, czy wszystko działa poprawnie. Taka kolejność działań wynika z dobrych praktyk branżowych, które kładą nacisk na bezpieczeństwo i efektywność. Moim zdaniem, zawsze warto kierować się tymi zasadami, aby uniknąć problemów i zapewnić sobie spokój ducha podczas pracy z urządzeniami elektrycznymi.

Pytanie 38

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. interfejsu komunikacyjnego.
B. zasilacza sterownika PLC.
C. modułu wejściowego.
D. modułu wyjściowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 39

Przedstawiony na rysunku przewód sterowniczy, wymieniony w dokumentacji projektowej, może być zastosowany podczas łączenia elementów systemu sterowania, jeżeli napięcie pracy nie przekracza wartości

Ilustracja do pytania
A. 100 V/500 V
B. 200 V/400 V
C. 300 V/500 V
D. 300 V/400 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód widoczny na zdjęciu ma oznaczenie 300/500 V, co oznacza, że jego napięcie znamionowe wynosi 300 V dla układania w izolacji i 500 V dla napięcia roboczego. To jest zgodne z normami europejskimi jak np. VDE, które definiują standardy dla przewodów stosowanych w automatyce przemysłowej. Kiedy mówimy o przewodach sterowniczych, ważne jest, aby napięcie robocze nie przekraczało wskazanych wartości, ponieważ mogłoby to prowadzić do uszkodzenia izolacji i awarii systemu. Przewody o takich parametrach są często stosowane w środowiskach przemysłowych, gdzie wymagana jest wysoka odporność na zakłócenia elektromagnetyczne oraz trwałość mechaniczna. Moim zdaniem, znajomość parametrów przewodów jest kluczowa dla bezpieczeństwa i niezawodności instalacji. W praktyce, takie przewody można spotkać w szafach sterowniczych, gdzie łączą różne elementy systemu automatyki. Dobre praktyki zalecają także regularną kontrolę stanu przewodów, aby zapobiec potencjalnym awariom.

Pytanie 40

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. modułu wejściowego.
B. modułu wyjściowego.
C. zasilacza sterownika PLC.
D. interfejsu komunikacyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie oznaczone jako ADMC-1801 działa jako moduł wejściowy w systemie PLC. W kontekście automatyki przemysłowej, moduły wejściowe mają kluczowe znaczenie, ponieważ umożliwiają sterownikowi PLC odbieranie sygnałów z otoczenia, takich jak temperatury, ciśnienia lub stanów przełączników. W tym przypadku, ADMC-1801 jest połączony z czujnikiem PT100, co wskazuje na pomiar temperatury. Moduły wejściowe przetwarzają sygnały analogowe lub cyfrowe na format, który może być zrozumiany przez PLC. To zgodne z dobrymi praktykami branżowymi, które zalecają użycie dedykowanych modułów do konkretnych typów sygnałów, co optymalizuje dokładność i niezawodność systemu. W praktyce, umiejętne korzystanie z modułów wejściowych pozwala na precyzyjne sterowanie procesami technologicznymi, co z kolei przekłada się na zwiększoną efektywność produkcji i minimalizację błędów. Moim zdaniem, zrozumienie roli takich modułów to podstawa w automatyce, bo pozwala na lepsze projektowanie i implementowanie systemów automatyki, zgodnie z normami takimi jak IEC 61131.