Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 16:38
  • Data zakończenia: 17 grudnia 2025 16:39

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką ilość kg suchej mieszanki trzeba zakupić do realizacji tynku gipsowego o grubości 10 mm na powierzchni 15 m2, jeżeli zużycie wynosi 1 kg na m2 przy grubości 1 cm?

A. 1,5 kg
B. 25,0 kg
C. 2,5 kg
D. 15,0 kg
Aby obliczyć ilość suchej mieszanki potrzebnej do wykonania tynku gipsowego o grubości 10 mm na powierzchni 15 m2, należy zacząć od przeliczenia grubości tynku z milimetrów na centymetry. Grubość 10 mm to 1 cm. Znając zużycie mieszanki, które wynosi 1 kg na m2 przy grubości 1 cm, możemy łatwo obliczyć całkowite zużycie na 15 m2. Wzór jest następujący: 1 kg/m2 * 15 m2 = 15 kg. Takie obliczenie jest zgodne z obowiązującymi standardami budowlanymi i praktyką w zakresie tynkowania. Warto pamiętać, że dokładność w obliczeniach jest kluczowa, aby uniknąć niedoboru materiału, co mogłoby prowadzić do opóźnień w pracy. W praktyce często stosuje się również margines zapasu, zwłaszcza w przypadku większych projektów budowlanych, aby zminimalizować ryzyko przestojów związanych z brakiem materiałów. Dlatego, w tym przypadku, 15,0 kg to optymalna ilość do zakupu.

Pytanie 2

Zanim przystąpimy do otynkowania ściany z dwóch różnych materiałów, miejsce ich połączenia należy

A. pokryć preparatem gruntującym
B. zaszpachlować gipsem
C. wypełnić zaprawą cementową
D. pokryć siatką podtynkową
Pokrycie miejsca styku dwóch różnych materiałów preparatem gruntującym, zaszpachlowanie gipsem czy wypełnienie zaprawą cementową to rozwiązania, które nie są optymalne przed otynkowaniem, gdyż nie zapewniają odpowiedniej elastyczności i stabilności w rejonie styku. Preparat gruntujący ma na celu zwiększenie przyczepności tynku do podłoża, ale nie rozwiązuje problemu naprężeń, które mogą powstawać w wyniku różnic w rozszerzalności cieplnej materiałów. Zastosowanie gruntowania w tym przypadku może prowadzić do pęknięć, gdyż tynk będzie sztywny i podatny na uszkodzenia w miejscach, gdzie materiały różnią się właściwościami. Zaszpachlowanie gipsem, mimo że może poprawić estetykę, nie tworzy strukturalnego wsparcia i nie niweluje naprężeń, co czyni tę metodę niewystarczającą. Z kolei wypełnienie zaprawą cementową, choć solidne, nie jest zalecane, ponieważ może doprowadzić do powstania dwóch różnych stref tynkarskich o różnej kurczliwości, co w efekcie będzie skutkowało pojawieniem się pęknięć w tynku. Typowym błędem jest więc niedocenianie wpływu różnorodności materiałów na zachowanie się tynku, co prowadzi do nieprawidłowych wniosków o konieczności zastosowania innych metod zamiast siatki podtynkowej. Właściwe podejście polega na zastosowaniu odpowiednich technologii, które uwzględniają właściwości różnych materiałów, co jest kluczowe dla długotrwałej trwałości i estetyki wykończenia.

Pytanie 3

Na podstawie danych zawartych w tabeli, określ dopuszczalną odchyłkę od pionu muru spoinowanego, mierzoną na całej wysokości ściany budynku dwukondygnacyjnego.

Tabela. Dopuszczalne odchyłki wymiarów murów (fragment)
Rodzaj odchyłekDopuszczalne odchyłki [mm]
mury spoinowanemury niespoinowane
Zwichrowania i skrzywienia
− na 1 m długości
− na całej powierzchni
3
10
6
20
Odchylenia od pionu
− na wysokości 1 m
− na wysokości kondygnacji
− na całej wysokości ściany
3
6
20
6
10
30
A. 10 mm
B. 6 mm
C. 12 mm
D. 20 mm
Wybór 6 mm, 10 mm czy 12 mm jako dopuszczalnego odchylenia to nietrafiony pomysł. Nie bierze on pod uwagę kluczowych norm budowlanych, które mówią, że dla dwukondygnacyjnych budynków odchylenie musi być co najmniej 20 mm. Dlaczego te odpowiedzi są błędne? Bo wynikają z niezrozumienia wymagań budowlanych i praktycznych aspektów. Choć czasami niewielkie odchylenia mogą być dopuszczalne, w przypadku murów spoinowanych precyzja jest kluczowa, więc te wartości są za małe, żeby zapewnić stabilność na dłużej. Takie myślenie może prowadzić do poważnych problemów w konstrukcji, których naprawa będzie kosztowna. Dlatego każdy, kto pracuje w budownictwie, powinien znać te normy i mieć pojęcie, jak je stosować praktycznie. Większe odchylenia są zgodne z wymaganiami, co pozwala utrzymać jakość budowy. Ważne, żeby zrozumieć te różnice, bo to klucz do dobrze wykonanej pracy.

Pytanie 4

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania trzech ścian grubości 24 cm, długości 12 m i wysokości 4,5 m każda.

Fragment instrukcji producenta
Zużycie bloczków gazobetonowych
Wymiary bloczków
[mm]
Zużycie
[szt./m²]
240×240×5907
120×240×590
A. 2268 sztuk.
B. 756 sztuk.
C. 1134 sztuk.
D. 378 sztuk.
Fajnie, że wybrałeś 1134 bloczki gazobetonowe. To odpowiednia liczba, a żeby do tego dojść, trzeba było dobrze policzyć. Zaczynamy od obliczenia powierzchni jednej ściany. Mamy 12 m na 4,5 m, co daje nam 54 m². Potem bierzemy pod uwagę, że robimy trzy ściany, więc całkowita powierzchnia to 162 m². Aż się prosi, żeby policzyć, ile bloczków potrzeba na każdy metr kwadratowy – w tym przypadku to 7. Przemnażając, dostajemy 1134 bloczki. To bardzo ważna wiedza w budownictwie, bo dokładne obliczenia pozwalają oszacować materiały, co wpływa na koszty i czas budowy. Warto znać takie zasady, bo dobrze przeprowadzona kalkulacja zwiększa efektywność i pozwala lepiej zarządzać zasobami.

Pytanie 5

W remontowanym budynku na poddaszu zamierzono stworzyć lekką ściankę działową, aby oddzielić dwa pokoje mieszkalne. Jakie materiały powinno się zastosować do jej budowy?

A. płyty wiórowe laminowane
B. cegły szamotowe
C. płyty Pro-Monta
D. cegły klinkierowe
Wybór płyty wiórowej laminowanej na ściankę działową może wydawać się spoko, ale w praktyce nie jest najlepszym pomysłem. One nie mają wystarczającej stabilności ani izolacji akustycznej, a to w mieszkaniach jest kluczowe. Może się zdarzyć, że dźwięki będą przenikały między pokojami, co jest trochę irytujące. Z kolei cegły klinkierowe to w ogóle nie jest dobre rozwiązanie, bo są za ciężkie i niepraktyczne w tym kontekście. Mogą obciążać konstrukcję budynku, co na poddaszu jest istotne, gdyż stropy mają swoje ograniczenia. A cegły szamotowe, mimo że mają swoją wartość w wysokich temperaturach, to też nie nadają się na ścianki działowe. Wybierając materiały budowlane, warto zwrócić uwagę na ich funkcjonalność i trwałość, a także na normy budowlane, które mówią, co jest dozwolone w wewnętrznych konstrukcjach.

Pytanie 6

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 14,0 litrów
B. 10,5 litra
C. 7,0 litrów
D. 3,5 litra
Wybierając jedną z niepoprawnych odpowiedzi, można było napotkać typowe błędy w obliczeniach, które są powszechne w przypadku takich zadań. Niektórzy mogą sądzić, że wystarczy podzielić ilość wody potrzebną na jedno opakowanie przez liczbę opakowań, co prowadzi do błędnych danych. Na przykład, w przypadku odpowiedzi 10,5 litra, mogło to wynikać z mylącego założenia, że 3,5 litra wody należy podzielić przez cztery, co jest absolutnie błędne. Inne odpowiedzi, takie jak 7,0 litrów, mogą wynikać ze zrozumienia, że przy dwóch opakowaniach potrzeba byłoby 7 litrów, co także nie odpowiada zasadom matematycznym związanym z mnożeniem potrzebnym dla czterech jednostek. Proces przygotowania zaprawy w budownictwie opiera się na precyzyjnych proporcjach, które mają kluczowe znaczenie dla właściwego funkcjonowania zaprawy. Zastosowanie niewłaściwej ilości wody może prowadzić do nieodpowiednich właściwości mechanicznych zaprawy, takich jak niska wytrzymałość na ściskanie czy zwiększona podatność na pęknięcia. W praktyce budowlanej, zarówno nadmiar jak i niedobór wody mogą zniweczyć efekty pracy, dlatego tak istotne jest zrozumienie i stosowanie odpowiednich proporcji w każdej zaprawie murarskiej. Właściwe obliczenia są więc podstawą sukcesu w każdym projekcie budowlanym.

Pytanie 7

Korzystając z danych zawartych w tablicy 0102 z KNR 4-04, oblicz czas przewidziany na rozebranie 4 słupów wolnostojących o przekroju 40 x 40 cm i wysokości 5 m wykonanych z cegły na zaprawie cementowej.

Ilustracja do pytania
A. 4,99 r-g
B. 10,40 r-g
C. 7,23 r-g
D. 10,66 r-g
Wybór innej odpowiedzi niż 10,40 r-g wskazuje na zrozumienie błędnych koncepcji związanych z obliczaniem nakładów pracy w kontekście rozbiórki słupów. Wiele osób może popełniać błąd, nie uwzględniając właściwego przelicznika dla objętości materiałów budowlanych. Przykładowo, podanie czasu równego 7,23 r-g lub 4,99 r-g może wynikać z nieprawidłowego obliczenia objętości lub zastosowania niewłaściwych wartości z tabel. Często zdarza się, że osoby wykonujące takie obliczenia nie zwracają uwagi na specyfikacje materiałowe i standardy pracy, co prowadzi do niedoszacowania lub przeszacowania nakładów. Kolejnym błędnym podejściem jest nieprawidłowe zrozumienie jednostek miary. Łatwo jest pomylić różne jednostki lub przeliczniki, co może skutkować bardzo różnymi wynikami. Ważne jest, aby każdy wykonawca budowlany znał procedury związane z obliczaniem czasów pracy, ponieważ wpływają one na harmonogramy i budżety projektów budowlanych. Rekomenduje się dokładne przestudiowanie tabel KNR przed przystąpieniem do takich obliczeń, aby zminimalizować ryzyko błędnych oszacowań.

Pytanie 8

Na fotografii przedstawiono materiał izolacyjny przeznaczony do wykonywania izolacji

Ilustracja do pytania
A. akustycznej i przeciwwodnej.
B. przeciwwodnej i przeciwwilgociowej.
C. termicznej i akustycznej.
D. przeciwwilgociowej i paroprzepuszczalnej.
Niepoprawne odpowiedzi opierają się na błędnych założeniach dotyczących właściwości izolacyjnych wełny mineralnej. Odpowiedzi związane z izolacją przeciwwodną oraz przeciwwilgociową są mylne, ponieważ wełna mineralna nie jest materiałem przeznaczonym do zabezpieczania przed wodą i wilgocią. Chociaż wełna mineralna może wykazywać pewien stopień odporności na wilgoć, nie jest w stanie chronić przed bezpośrednim działaniem wody. Dlatego stosowanie jej jako jedynego materiału w kontekście izolacji przeciwwodnej jest niewłaściwe. Ponadto, termin 'paroprzepuszczalność' odnosi się do zdolności materiału do przepuszczania pary wodnej, co w przypadku wełny mineralnej nie jest jej główną funkcją, zwłaszcza gdy jest stosowana w połączeniu z folią paroizolacyjną. Często błędnie zakłada się, że materiały izolacyjne muszą spełniać wszystkie funkcje jednocześnie, co prowadzi do nieporozumień. W praktyce ważne jest, aby dobierać materiały zgodnie z ich przeznaczeniem i właściwościami, co jest kluczowe dla zachowania efektywności energetycznej budynku oraz zapewnienia odpowiednich warunków wewnętrznych.

Pytanie 9

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ściany murowanej pokazanej na rysunku.

Ilustracja do pytania
A. 16,16 m2
B. 14,80 m2
C. 13,80 m2
D. 14,16 m2
Wybierając niepoprawną odpowiedź, można wpaść w typowe pułapki myślowe związane z obliczaniem powierzchni. Wiele osób może zignorować zasady przedmiarowania robót murarskich, skupiając się wyłącznie na całkowitej powierzchni ściany, zamiast uwzględniać otwory. Na przykład, jeśli ktoś obliczył powierzchnię ściany bez odejmowania otworów, mógłby uzyskać wartość 16,8 m2 i nie zwróciłby uwagi na fakt, że istotne jest pominięcie otworów o powierzchni większej niż 0,5 m2. Taki błąd może wynikać z braku znajomości zasad obliczeń w budownictwie, co jest kluczowe w kontekście kosztorysowania i zarządzania projektem. Ponadto, stosowanie niewłaściwych wzorów lub brak uwzględnienia wszystkich elementów konstrukcyjnych może prowadzić do dalszych nieścisłości w ostatecznych wynikach. Ważne jest, by zawsze przestrzegać ustalonych norm i standardów, aby uniknąć nieporozumień oraz błędów kosztorysowych, które mogą wpłynąć na przyszłe etapy realizacji projektu budowlanego.

Pytanie 10

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 1092,00 zł
B. 546,00 zł
C. 1386,00 zł
D. 945,00 zł
Aby obliczyć koszt całkowity wykonania tynku maszynowego gipsowego, należy najpierw ustalić powierzchnię ściany, która ma być pokryta tynkiem. Ściana o wymiarach 7 m na 3 m ma powierzchnię wynoszącą 21 m². Ponieważ tynk ma być wykonany po obu stronach, całkowita powierzchnia do pokrycia wynosi 21 m² x 2 = 42 m². Następnie obliczamy koszty robocizny i materiałów. Koszt jednostkowy robocizny wynosi 19,00 zł/m², co daje 42 m² x 19,00 zł/m² = 798,00 zł. Koszt materiałów wynosi 7,00 zł/m², co daje 42 m² x 7,00 zł/m² = 294,00 zł. Suma kosztów robocizny i materiałów wynosi 798,00 zł + 294,00 zł = 1092,00 zł. Taki sposób obliczeń jest zgodny z standardami branżowymi, gdzie uwzględnia się zarówno koszty pracy, jak i koszty materiałów, co jest kluczowe w procesie przygotowania kosztorysu budowlanego. Praktyczne zastosowanie tej wiedzy pozwala na dokładne zaplanowanie budżetu na prace budowlane i remontowe.

Pytanie 11

Oblicz koszt montażu stolarki okiennej i drzwiowej w remontowanym pomieszczeniu, którego rzut przedstawiono na rysunku, jeżeli koszt jednostkowy montażu okna wraz z obróbką otworu wynosi 140,00 zł/m, a drzwi 290,00 zł/szt.

Ilustracja do pytania
A. 1746,00 zł
B. 1074,00 zł
C. 1456,00 zł
D. 962,00 zł
Analizując pozostałe odpowiedzi, można zauważyć, że błędnie oszacowano koszty montażu. Koszt montażu stolarki okiennej i drzwiowej powinien być obliczany na podstawie precyzyjnych danych dotyczących ilości i rodzaju instalacji. Przyjmując, że w projekcie uwzględniono 8 metrów bieżących okien oraz 5 sztuk drzwi, nieprzemyślane podejścia prowadzą do błędnych wyników. Przykładem może być mylne przyjęcie zbyt niskiej jednostkowej stawki za montaż okien, co może skutkować nieprawidłowym oszacowaniem całkowitych kosztów. Ponadto, niektóre odpowiedzi mogą wynikać z pomyłek w obliczeniach, takich jak nieprawidłowe obliczenie całkowitej ilości okien lub drzwi. Typowe błędy myślowe obejmują również niedostateczne uwzględnienie kosztów obróbek otworów, które mogą znacząco wpłynąć na całkowity koszt montażu. W praktyce budowlanej kluczowe jest, aby przed rozpoczęciem prac dokładnie oszacować koszty, a także być świadomym wszelkich dodatkowych wydatków, takich jak materiały eksploatacyjne, które mogą się pojawić w trakcie realizacji projektu. Właściwe podejście do kalkulacji kosztów oraz współpraca z doświadczonymi wykonawcami mogą pomóc uniknąć błędów, które negatywnie wpływają na budżet i harmonogram remontu.

Pytanie 12

Aby uzyskać zaprawę cementowo-wapienną M4, należy użyć składników w proporcjach objętościowych 1 : 1 : 6, co oznacza

A. 1 część cementu : 1 część wapna hydratyzowanego : 6 części wody
B. 1 część wapna hydratyzowanego : 1 część piasku : 6 części cementu
C. 1 część cementu : 1 część piasku : 6 części wapna hydratyzowanego
D. 1 część cementu : 1 część wapna hydratyzowanego : 6 części piasku
W przypadku błędnych odpowiedzi, często występuje nieporozumienie dotyczące rozróżnienia składników zaprawy. Proporcje 1 : 1 : 6 powinny być interpretowane jako 1 część cementu, 1 część wapna hydratyzowanego oraz 6 części piasku, co jest kluczowe dla uzyskania pożądanej jakości zaprawy. Wybór odpowiednich proporcji ma ogromny wpływ na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie, która jest fundamentalna w budownictwie. Nieprawidłowe stosunki, takie jak 1 część cementu, 1 część piasku i 6 części wapna hydratyzowanego, mogą prowadzić do zbyt dużego uwodnienia, co zmniejsza wytrzymałość i trwałość zaprawy. Ponadto, pomijanie piasku lub zbyt niskie jego proporcje skutkują gorszą pracą i adhezją zaprawy. Takie błędy mogą także prowadzić do problemów w dłuższej perspektywie czasowej, takich jak pęknięcia czy odspajanie elementów budowlanych. Warto również zauważyć, że błędne proporcje mogą wynikać z niewłaściwego zrozumienia właściwości materiałów budowlanych i ich interakcji. Dlatego kluczowe jest przestrzeganie standardów i dobrych praktyk w budownictwie, aby zapewnić bezpieczeństwo oraz trwałość konstrukcji.

Pytanie 13

Na rysunku przedstawiono układ 2 warstw cegieł w murze w wiązaniu

Ilustracja do pytania
A. krzyżykowym.
B. pospolitym.
C. polskim.
D. wozówkowym.
Wybór innych typów wiązań, takich jak krzyżykowe, wozówkowe czy polskie, wynika z powszechnego błędnego rozumienia ich charakterystyki oraz zastosowania. Wiązanie krzyżykowe, które polega na układaniu cegieł w układzie krzyżowym, nie zapewnia takiej samej stabilności jak wiązanie pospolite, ponieważ cegły nie są przesunięte w sposób zwiększający ich współpracę strukturalną. Taki układ może być bardziej estetyczny, ale w kontekście trwałości i nośności budowli nie jest zalecany. Wiązanie wozówkowe, z kolei, charakteryzuje się układaniem cegieł wzdłuż i w poprzek, co również nie odpowiada opisowi przedstawionemu w pytaniu. Wiązanie polskie, podobnie jak wozówkowe, nie spełnia kryteriów przesunięcia cegieł, które jest kluczowe dla uzyskania efektu stabilizacji muru. Wybór błędnej odpowiedzi może wynikać z nieprawidłowego zrozumienia zasad budowy murów oraz ich funkcji. Warto zaznaczyć, że każdy typ wiązania ma swoje specyficzne zastosowanie, które powinno być zgodne z wymaganiami budowlanymi oraz normami branżowymi. Dlatego kluczowe jest, by zrozumieć, że nie każdy układ cegieł będzie odpowiedni do każdego typu konstrukcji, a wybór powinien być przemyślany i oparty na solidnych podstawach teoretycznych oraz praktycznych.

Pytanie 14

Jeżeli do wymurowania ścian zaplanowano 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12, to łączny koszt zakupu zapraw, zgodnie z cennikiem, wyniesie

Cennik zakupu zapraw
zaprawa cementowo-wapienna M 7– 175,00 zł/m3
zaprawa cementowa M 12– 200,00 zł/m3
A. 4 600,00 zł
B. 2 975,00 zł
C. 3 400,00 zł
D. 4 450,00 zł
Odpowiedzi błędne często wynikają z nieprawidłowego zrozumienia metody obliczania kosztów materiałów budowlanych. Przy stanie faktycznym, w którym mamy do czynienia z różnymi rodzajami zapraw, nie można po prostu dodać wartości, jakoby były to jednolite koszty. Każdy typ zaprawy ma swoją cenę jednostkową, której pominięcie prowadzi do poważnych błędów w obliczeniach. Często myślenie o kosztach materiałów jako o prostym dodawaniu może wydawać się intuicyjne, jednak w branży budowlanej wymaga to szczegółowego podejścia. Należy również pamiętać, że stosowanie nieaktualnych lub niekompletnych cenników może skutkować fałszywymi szacunkami. Wiele osób zaniedbuje również uwzględnienie różnic w gęstości i właściwościach materiałów budowlanych, co może prowadzić do nieprawidłowego obliczenia ilości potrzebnych zapraw. Zrozumienie zasadnych podstaw kosztów i ich wpływu na projekt budowlany jest kluczowe dla skutecznego zarządzania. Warto także mieć na uwadze, że błędne podejście do budżetowania może prowadzić do przekroczenia kosztów, które będą miały długotrwały wpływ na całość inwestycji.

Pytanie 15

Tynk zwykły w trzech warstwach, którego powierzchnia jest gładka, równomierna i ma połysk w ciemnym odcieniu, klasyfikuje się jako tynk kategorii

A. IV f
B. IV
C. III
D. IV w
Wybór tynku kategorii IV f, III lub IV jako odpowiedzi na to pytanie wskazuje na niezrozumienie klasyfikacji tynków oraz ich właściwości. Tynk IV f różni się od IV w głównie teksturą i wykończeniem. Tynki tej klasy są zazwyczaj bardziej chropowate i nie oferują tego samego poziomu gładkości ani połysku, co może nie spełniać oczekiwań dotyczących wykończenia powierzchni. Wybór tynku III również jest błędny, ponieważ ta klasa tynków przeznaczona jest głównie do zastosowań, gdzie nie wymaga się aż takiego poziomu estetyki, co w przypadku tynków IV w. Typowym błędem w myśleniu jest założenie, że wszystkie tynki w kategorii IV są sobie równe. W rzeczywistości różnice w wykończeniu, połysku i teksturze mają ogromne znaczenie dla finalnego efektu i zastosowania tynku. Kluczowe jest zrozumienie, że wybór odpowiedniej kategorii tynku powinien być uzależniony od wymaganych standardów estetycznych i funkcjonalnych, które są ściśle określone w dokumentacji technicznej oraz normach budowlanych. Niezrozumienie tych aspektów prowadzi do podejmowania błędnych decyzji w zakresie materiałów budowlanych, co może skutkować nieodpowiednim wyglądem wykończenia oraz większymi kosztami związanymi z ewentualnymi poprawkami.

Pytanie 16

Zaprawy murarskie ogólnego zastosowania, produkowane na małych budowach, przygotowuje się w sposób

A. agregatu tynkarskiego
B. wiertarki z mieszadłem
C. węzła betoniarskiego
D. betoniarki wolnospadowej
Wykorzystanie wiertarki z mieszadłem do sporządzania zapraw murarskich na małej budowie nie jest optymalnym rozwiązaniem. Tego typu narzędzia są przeznaczone głównie do mieszania mniejszych ilości materiałów, co może prowadzić do niedostatecznej jednorodności mieszanki. Mieszadła w wiertarkach mają ograniczone możliwości, a ich konstrukcja nie zapewnia tak efektywnego mieszania jak betoniarka. Mieszanie dużych ilości składników przy użyciu wiertarki jest czasochłonne i wymaga dużej precyzji, co w praktyce jest trudne do osiągnięcia. Agregat tynkarski, chociaż użyteczny w pracach tynkarskich, nie jest dedykowany do produkcji zapraw murarskich. Jego funkcje skupiają się na aplikacji tynku, a nie na mieszaniu zapraw. Węzeł betoniarski, z kolei, to urządzenie przeznaczone do produkcji betonu w dużych ilościach, co przekracza potrzeby małych budów, gdzie zazwyczaj wymagana jest niewielka ilość zaprawy. Dlatego korzystanie z tych narzędzi może prowadzić do niedostatecznej jakości zaprawy, co wpłynie na trwałość i stabilność konstrukcji. Optymalne podejście to wybór betoniarki wolnospadowej, która gwarantuje odpowiednią jakość i wydajność mieszania, zgodnie z branżowymi standardami.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który rodzaj wiązania dwuwarstwowego przedstawiony jest na rzutach dwóch warstw fragmentu narożnika muru?

Ilustracja do pytania
A. Pierścieniowe.
B. Gotyckie.
C. Pospolite.
D. Krzyżykowe.
Wybór krzyżykowego wiązania, choć popularny w niektórych konstrukcjach, nie jest odpowiedni dla tego rodzaju narożnika muru. Wiązanie krzyżykowe polega na układaniu cegieł w sposób, który nie przewiduje naprzemiennego ułożenia warstw, co prowadzi do osłabienia struktury oraz zwiększa ryzyko pęknięć. Z kolei odpowiedź dotycząca wiązania gotyckiego, które charakteryzuje się bardziej ozdobnym niż funkcjonalnym ułożeniem cegieł, nie jest zastosowaniem standardowym w murach dwuwarstwowych. Wiązanie gotyckie jest typowe dla architektury sakralnej i nie odpowiada oczekiwaniom stawianym przed murami o solidnej nośności. Odpowiedź dotycząca wiązania pierścieniowego, które zapewnia zamknięcie konstrukcji, również nie odnosi się do tematu, ponieważ tego typu wiązanie stosowane jest głównie w budowach cylindrycznych lub okrągłych. Przy wyborze odpowiedzi warto zwrócić uwagę na podstawowe zasady konstrukcyjne i funkcjonalne, a także na kontekst aplikacji poszczególnych technik murarskich. Zrozumienie zastosowania każdego z typów wiązań w praktyce budowlanej jest kluczowe dla poprawnego rozpoznawania ich właściwości oraz funkcji.

Pytanie 19

Warstwa styropianu umieszczona w wieńcach oraz nadprożach ścian zewnętrznych ma za zadanie izolację

A. paroszczelnej
B. ciepłochronnej
C. akustyczną
D. wodoszczelnej
Nieprawidłowe odpowiedzi dotyczące funkcji akustycznej, paroszczelnej i wodoszczelnej warstwy styropianu w wieńcach i nadprożach ścian zewnętrznych wynikają z niepełnego zrozumienia właściwości materiału i jego zastosowania w budownictwie. Styropian, będący materiałem sztucznym, charakteryzuje się przede wszystkim niską przewodnością cieplną, co czyni go idealnym izolatorem termicznym, a nie akustycznym. Choć może nieco tłumić dźwięki, jego właściwości akustyczne nie są wystarczające, aby skutecznie izolować hałas, dlatego w takich zastosowaniach konieczne są specjalistyczne materiały akustyczne. Ponadto, w kontekście paroszczelności, choć styropian może działać jako bariera dla pary wodnej, nie jest to jego główna funkcja. W budownictwie stosuje się również inne materiały, takie jak folia paroszczelna, które są bardziej efektywne w zapobieganiu migracji pary wodnej w strukturze budynku. Zastosowanie styropianu w kontekście wodoszczelności również jest nieadekwatne; nie jest on materiałem wodoodpornym, więc w przypadku zastosowań, gdzie wymagana jest pełna wodoszczelność, potrzebne są dodatkowe warstwy ochronne. Zrozumienie tych właściwości jest kluczowe dla prawidłowego projektowania i budowy, aby uniknąć problemów związanych z niewłaściwą izolacją, które mogą prowadzić do kondensacji, powstawania pleśni oraz innych problemów zdrowotnych i eksploatacyjnych w budynkach.

Pytanie 20

Na podstawie zapotrzebowania do budowy ścian obiektu potrzeba 500 sztuk bloczków gazobetonowych. Cena jednej palety tych bloczków wynosi 1200,00 zł. Jakie będą całkowite koszty zakupu, jeśli w każdej palecie jest 24 bloczki, a sprzedaż odbywa się tylko w pełnych paletach?

A. 25 000,00 zł
B. 24 200,00 zł
C. 25 200,00 zł
D. 24 000,00 zł
W analizie błędnych odpowiedzi, kluczowe jest zrozumienie, dlaczego błędne podejścia prowadzą do niewłaściwych wyników. Wiele osób może błędnie obliczyć liczbę potrzebnych palet, co jest najczęstszą pułapką. Na przykład, wybierając odpowiadające liczby, takie jak 24 000,00 zł, można mylnie przyjąć, że wystarczy 20 palet, przy założeniu, że 20 palet * 1200 zł = 24 000 zł. Jednakże, takie podejście zignoruje rzeczywiste zapotrzebowanie na bloczki, które w tym przypadku wynosi 21 palet. Inne odpowiedzi, takie jak 24 200,00 zł czy 25 000,00 zł, mogą wynikać z podobnych błędów obliczeniowych lub zaokrągleń, które nie są zgodne z rzeczywistą logiką tej decyzji zakupowej. W praktyce, niepełne palety nie są sprzedawane, co wymusza na kupującym konieczność zakupu pełnej palety nawet, jeśli w danym przypadku potrzebna jest mniejsza ilość bloczków. Takie błędne kalkulacje są często wynikiem nieprecyzyjnego podejścia do liczenia jednostek oraz nieuwzględnienia zasadności zakupu hurtowego. Aby uniknąć tego rodzaju błędów, należy stosować systematyczne metody obliczeniowe oraz dokładnie analizować specyfikację materiałową i wymagania projektu.

Pytanie 21

Izolację przeciwwilgociową, gdy wykonujemy podłogę na gruncie, należy umieścić na

A. gruntowym podłożu
B. chudym betonie
C. podkładzie posadzki
D. izolacji cieplnej
Izolacja przeciwwilgociowa jest potrzebna, żeby budynki nie miały problemów z wilgocią, ale ważne jest gdzie ją umieścimy, bo to wpływa na to, jak dobrze działa. Ułożenie jej na podkładzie pod posadzką, na gruncie albo na izolacji termicznej to błędy. Jak położysz izolację na podkładzie pod posadzką, to ona może się uszkodzić przez obciążenia i nie będzie dobrze działać. Na podłożu gruntowym to też kiepski pomysł, bo grunt to właśnie jest źródło wilgoci, więc nie ochroni nas przed nią. Poza tym, może to prowadzić do kondensacji pary wodnej, co sprzyja pleśni i grzybom. Izolacja termiczna, mimo że jest ważna dla oszczędności energii, nie chroni przed wilgocią z gruntu i jej stosowanie w takim kontekście może być mylące. Duży błąd to nieodróżnienie różnych rodzajów izolacji i ich przeznaczenia, co potem prowadzi do źle zaplanowanych rozwiązań budowlanych i w konsekwencji do wysokich kosztów napraw.

Pytanie 22

Maksymalna dopuszczalna ilość plastyfikatora w zaprawie murarskiej to 5% w stosunku do masy cementu. Jaką ilość tej domieszki można dodać do jednego zarobu zaprawy cementowej, w którym znajduje się 50 kg cementu?

A. 3 kg
B. 5kg
C. 4 kg
D. 2kg
Odpowiedzi 4 kg, 5 kg i 3 kg opierają się na nieprawidłowych założeniach dotyczących maksymalnej ilości plastyfikatora w zaprawie murarskiej. W przypadku dodania 4 kg, 5 kg lub 3 kg plastyfikatora do 50 kg cementu, przekracza się dozwoloną dawkę 5%. Tego rodzaju błędy mogą wynikać z mylenia pojęć dotyczących proporcji składników w zaprawach. W branży budowlanej, istotne jest, aby znać ograniczenia dotyczące stosowania dodatków, ponieważ ich nadmiar może prowadzić do osłabienia struktury zaprawy, zmniejszenia jej wytrzymałości na ściskanie oraz zwiększenia podatności na pęknięcia. Typowym błędem jest także niewłaściwe założenie, że więcej plastyfikatora zawsze oznacza lepszą jakość zaprawy. W rzeczywistości, każdy dodatek powinien być stosowany zgodnie z zaleceniami producenta oraz potrzebami konkretnego projektu budowlanego. Kiedy proporcje są nieprawidłowe, może to prowadzić do problemów podczas aplikacji, takich jak trudności w rozprowadzaniu zaprawy lub jej zbyt szybkie wysychanie. Dlatego kluczowe jest, aby pamiętać o właściwych proporcjach i ich wpływie na właściwości zaprawy, co w dłuższej perspektywie przekłada się na jakość i trwałość realizowanych projektów budowlanych.

Pytanie 23

W murze niespoinowanym z pustaków ceramicznych zostały wykonane otwory okienne o zaprojektowanych wymiarach 120 x 150 cm (szer. x wys.). Który z rzeczywistych wymiarów szerokości otworu spełnia warunki techniczne wykonania i odbioru robót murarskich podanych w tabeli?

Ilustracja do pytania
A. 130 cm
B. 121 cm
C. 115 cm
D. 119 cm
Wybór 115 cm, 119 cm i 130 cm zdecydowanie nie pasuje do technicznych wymagań dla otworów w murze niespoinowanym. Po pierwsze, 115 cm jest za małe i nie mieści się w tolerancjach, co zdecydowanie może prowadzić do kłopotów przy montażu okien. W ogóle wymiary te mogą wymusić jakieś szpachlowanie albo poprawki, a to przecież wydłuża czas realizacji projektu i podnosi koszty. Odpowiedź 119 cm jest blisko, ale też nie spełnia norm. Natomiast 130 cm to już sporo powyżej akceptowalnych tolerancji, co naraża na ryzyko błędnego wykonania otworów, a to w efekcie może osłabić całą konstrukcję. W praktyce projektanci muszą zawsze zwracać uwagę na precyzyjne pomiary i tolerancje, żeby uniknąć takich problemów. Zanim podejmiesz decyzję o wymiarach, dobrze jest sprawdzić aktualne normy i rekomendacje. To kluczowe, żeby zapewnić dobrą jakość wykonania i nie wpaść w niepotrzebne kłopoty podczas budowy.

Pytanie 24

Jakim narzędziem należy oceniać konsystencję zapraw budowlanych?

A. młotkiem Szmidta
B. stożkiem pomiarowym
C. czerpakiem murarskim
D. aparatem Vicata
Wykorzystanie młotka Szmidta do pomiaru konsystencji zapraw budowlanych jest nieadekwatne, ponieważ jego głównym celem jest ocena twardości powierzchni betonu. Młotek ten działa na zasadzie odbicia, co pozwala na określenie stopnia utwardzenia materiału, ale nie dostarcza informacji o konsystencji świeżej zaprawy. Podobnie, aparat Vicata, który mierzy czas wiązania zaprawy, również nie jest narzędziem do oceny jej konsystencji. W kontekście oceny zapraw budowlanych, istotne jest zrozumienie, że konsystencja odnosi się do zdolności zaprawy do wypełniania formy, a nie do jej twardości czy czasu wiązania. Z kolei czerpak murarski, pomimo że może być używany do rozprowadzania zaprawy, nie służy do precyzyjnego pomiaru jej konsystencji. W praktyce, błędne zastosowanie tych narzędzi może prowadzić do nieodpowiednich decyzji w procesie budowlanym, takich jak użycie zaprawy o niewłaściwej płynności, co może wpłynąć na jakość konstrukcji oraz jej trwałość. Dlatego kluczowe jest posługiwanie się odpowiednimi narzędziami do oceny właściwości materiałów budowlanych, co zapewnia zgodność z normami branżowymi oraz wysoką jakość wykonania.

Pytanie 25

Całkowita powierzchnia dwóch ścian o rozmiarach 4,0 x 2,5 x 0,25 m, wykonanych z cegły ceramicznej pełnej na zaprawie cementowej, jest równa

A. 5,0 m2
B. 10,0 m2
C. 20,0 m2
D. 2,5 m2
Często pojawia się błąd, który może prowadzić do złych wyników, a mianowicie niewłaściwe zrozumienie tego, co to jest powierzchnia. Niektórzy użytkownicy mylą jednostki miary albo po prostu się gubią w obliczeniach, przez co wychodzą im nieprawidłowe wartości. Przykładowo odpowiedzi, które mówią, że łączna powierzchnia to 5,0 m2, 2,5 m2 czy 10,0 m2, mogą wynikać z błędów, jak np. liczenie tylko jednej ściany albo używanie złych wymiarów. Kiedy chcemy obliczyć całkowitą powierzchnię dwóch ścian, ważne jest, żeby pamiętać, że każda z nich ma swoje wymiary, które trzeba pomnożyć, a potem zsumować. Niektórzy mogą też nie zdawać sobie sprawy, że powierzchnie ścian liczymy w metrach kwadratowych, a nie w metrach, co prowadzi do pomyłek przy konwersji jednostek. Dodatkowo, warto mieć na uwadze kontekst, w jakim używamy tych obliczeń, bo w budownictwie precyzyjne wyliczenia są naprawdę istotne dla dalszego przebiegu projektu, jak dobór materiałów czy wycena kosztów budowy. Dlatego uczestnicy szkoleń i testów powinni szczególnie zwracać uwagę na praktyczne zastosowanie wzorów oraz na skutki błędnych obliczeń w całym procesie budowlanym.

Pytanie 26

Jakie materiały wykorzystuje się do realizacji izolacji przeciwwilgociowych?

A. płyty pilśniowe i emulsje asfaltowe
B. roztwory asfaltowe oraz włókna celulozowe
C. folie izolacyjne i lepiki asfaltowe
D. pasty asfaltowe i płyty wiórowe
Wybór materiałów do izolacji przeciwwilgociowej ma kluczowe znaczenie dla skuteczności ochrony przed wilgocią. Roztwory asfaltowe i włókna celulozowe, choć mogą być użyte w innych aplikacjach budowlanych, nie są właściwym wyborem do izolacji przeciwwilgociowej. Roztwory asfaltowe mogą mieć ograniczoną przyczepność oraz mogą nie zapewniać długotrwałej ochrony w warunkach wysokiej wilgotności, co prowadzi do ich degradacji w krótkim czasie. Z kolei włókna celulozowe, które są często używane jako materiał izolacyjny w budownictwie, nie mają właściwości wodoodpornych i mogą szybko wchłaniać wilgoć, co tylko pogłębia problem. W przypadku past asfaltowych i płyt wiórowych również występują istotne ograniczenia. Pasty asfaltowe, mimo że mogą oferować pewne właściwości uszczelniające, nie gwarantują trwałej ochrony przed wodą, a płyty wiórowe są wrażliwe na wilgoć i mogą ulegać zniszczeniu, co czyni je niewłaściwym wyborem do miejsc narażonych na działanie wody. Płyty pilśniowe i emulsje asfaltowe również nie spełniają wymagań dotyczących skutecznej izolacji przeciwwilgociowej. Płyty pilśniowe są materiałem organicznym, który łatwo wchłania wilgoć, co prowadzi do ich rozkładu. Emulsje asfaltowe mogą być stosowane jako materiał uszczelniający, jednak ich skuteczność w dłuższym okresie jest wątpliwa, a ponadto wymagają odpowiedniego nałożenia i pielęgnacji. Dlatego istotne jest, aby przy wyborze materiałów do izolacji przeciwwilgociowej kierować się sprawdzonymi praktykami oraz normami branżowymi, które potwierdzają skuteczność i trwałość zastosowanych rozwiązań.

Pytanie 27

Materiał przedstawiony na rysunku jest używany do izolacji

Ilustracja do pytania
A. termicznych fundamentów.
B. przeciwwilgociowych dachów.
C. przeciwwilgociowych fundamentów.
D. termicznych dachów.
Folia fundamentowa, która jest przedstawiona na zdjęciu, jest kluczowym materiałem stosowanym do izolacji przeciwwilgociowej fundamentów budynków. Jej głównym zadaniem jest ochrona konstrukcji przed wilgocią pochodzącą z gruntu, co jest niezbędne dla zapewnienia trwałości i stabilności budynku. Izolacja przeciwwilgociowa fundamentów jest standardem w budownictwie, a dobrym przykładem jej zastosowania jest budowa domów jednorodzinnych na terenach o wysokim poziomie wód gruntowych. Zastosowanie odpowiedniej folii fundamentowej pozwala na uniknięcie problemów z wilgocią, takich jak pleśń czy osłabienie struktury budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, izolacje przeciwwilgociowe powinny być wykonane zgodnie z projektem budowlanym oraz wytycznymi producenta materiałów budowlanych, co zapewnia ich skuteczność i trwałość przez wiele lat.

Pytanie 28

Na którym rysunku przedstawiono oznaczenie graficzne materiałów do izolacji przeciwwilgociowej?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź 'C.' jest poprawna, ponieważ zawiera właściwe oznaczenie graficzne materiałów do izolacji przeciwwilgociowej, które są zgodne z polskimi normami technicznymi, w tym z normą PN-EN 206-1 dotyczącą betonu oraz PN-B-03430 wskazującą na metody stosowania izolacji przeciwwilgociowej. Materiały te odgrywają kluczową rolę w ochronie budynków przed wilgocią, co jest szczególnie istotne w przypadku konstrukcji podziemnych i fundamentów. Izolacja przeciwwilgociowa jest ważnym elementem zapobiegającym przenikaniu wody gruntowej oraz wilgoci, co może prowadzić do poważnych uszkodzeń strukturalnych. Przykładem takiego zastosowania są folie polyethylene, które są powszechnie używane do zabezpieczania fundamentów przed wilgocią. Oprócz materiałów graficznych, ważne jest także zrozumienie, jak odpowiednie oznaczenie materiałów wpływa na proces budowy i późniejsze czynności konserwacyjne. Stosowanie standardowych oznaczeń ułatwia komunikację między projektantami a wykonawcami, co jest kluczowe dla prawidłowego wykonania prac budowlanych.

Pytanie 29

Na którym rysunku przedstawiono kielnię do kształtowania spoin?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybierając odpowiedzi B, C lub D, można wpaść w pułapkę błędnego rozumienia zastosowań narzędzi murarskich. Kielnia do kształtowania spoin, którą można zobaczyć na rysunku A, jest specjalnie zaprojektowana do precyzyjnego formowania spoin, co odróżnia ją od innych narzędzi przedstawionych w pozostałych opcjach. Rysunek B, być może przedstawia kielnię murarską o szerszej głowicy, która jest bardziej odpowiednia do nakładania zaprawy, a nie do formowania spoin. Ponadto narzędzie z rysunku C może być bardziej zaawansowane technologicznie, ale nie jest przeznaczone do kształtowania spoin, lecz do innych zadań związanych z murowaniem, takich jak przenoszenie materiałów. Z kolei rysunek D mógłby przedstawiać narzędzie do czyszczenia lub wygładzania powierzchni, co również nie jest zgodne z funkcją kielni do kształtowania spoin. Takie mylenie narzędzi prowadzi do nieprawidłowego wykonywania prac budowlanych, co może skutkować nie tylko utratą estetyki, ale również obniżeniem trwałości konstrukcji. Warto pamiętać, iż w kontekście budownictwa istnieją jasno określone standardy i normy dotyczące użycia narzędzi, a ich nieprzestrzeganie może prowadzić do poważnych błędów wykonawczych. Wiedza na temat różnic między narzędziami jest niezbędna dla każdego profesjonalisty w branży budowlanej.

Pytanie 30

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. Po finalizacji rozbiórki ścian
B. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
C. W trakcie wykonywania robót rozbiórkowych
D. Przed przystąpieniem do robót rozbiórkowych
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 31

Oblicz powierzchnię ściany przedstawionej na rysunku wiedząc, że zgodnie z zasadami przedmiarowania konstrukcji murowych od powierzchni ścian należy odejmować powierzchnię otworów większych od 0,5 m2.

Ilustracja do pytania
A. 15,95 m2
B. 14,15 m2
C. 13,61 m2
D. 15,41 m2
Błędne odpowiedzi często wynikają z nieprawidłowego podejścia do obliczania powierzchni i pomijania zasadniczych zasad przedmiarowania. Często zdarza się, że osoby wykonujące takie obliczenia skupiają się jedynie na całkowitej powierzchni ściany, bez uwzględnienia otworów, co prowadzi do zawyżenia wyników. Na przykład, odpowiedzi sugerujące 15,95 m2 lub 15,41 m2 nie uwzględniają wpływu otworów na całkowitą powierzchnię, co jest podstawowym błędem w obliczeniach związanych z przedmiarowaniem. Innym typowym błędem jest niepoprawne obliczenie powierzchni otworów. W przypadku drzwi i okna, dokładne pomiary są kluczowe, a ich zignorowanie prowadzi do nieprecyzyjnych wyników. Osoby uczące się przedmiarowania muszą zwrócić szczególną uwagę na zasady dotyczące odejmowania powierzchni otworów większych niż 0,5 m2, ponieważ ich obecność w konstrukcji ma istotny wpływ na zużycie materiałów oraz koszty budowy. Prawidłowe podejście do obliczeń zapewnia nie tylko dokładność, ale również zgodność z obowiązującymi standardami i praktykami w branży budowlanej, co jest kluczowe dla sukcesu każdego projektu budowlanego.

Pytanie 32

Analizę odchylenia tynku oraz jego brzegów od poziomu i pionu wykonuje się w tynkach klasy

A. Ia
B. II
C. 0
D. I
Wybór innych kategorii tynków w kontekście badania odchylenia powierzchni i krawędzi od kierunku poziomego i pionowego może prowadzić do istotnych nieporozumień. Tynki kategorii I oraz 0 mają luźniejsze normy dotyczące tolerancji, co oznacza, że mogą nie spełniać wymagań rynkowych dla bardziej wymagających projektów. Kategoria I, na przykład, jest często stosowana w miejscach, gdzie estetyka nie jest głównym kryterium, takich jak pomieszczenia techniczne czy piwnice. Z kolei tynki kategorii 0 mogą być stosowane w przypadkach tymczasowych lub w budynkach o niskich wymaganiach jakościowych. Wybór tynków Ia zazwyczaj odnosi się do wykończeń, które nie wymagają szczególnej precyzji, co może skutkować nieodpowiednim wykonaniem w kontekście estetyki. Błąd polega na niezrozumieniu, że dla wysokiej klasy wykończeń, takich jak w biurach czy mieszkaniach, istotne jest stosowanie tynków kategorii II, które zapewniają nie tylko funkcjonalność, ale także estetykę. W praktyce często zdarzają się sytuacje, w których ekipy budowlane, nie znając szczegółowych wymagań, stosują niewłaściwe materiały, co prowadzi do kosztownych poprawek oraz niezadowolenia klientów. Zastosowanie odpowiednich kategorii tynków w zależności od specyfiki projektu jest kluczowe dla zachowania jakości i estetyki wykończeń budowlanych.

Pytanie 33

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Wiszącego
B. Na wysuwnicach
C. Ramowego
D. Kozłowego
Wybór rusztowania do prac na wysokości jest kluczowy dla bezpieczeństwa i efektywności prowadzonych działań. W przypadku rusztowania na wysuwnicach, jego konstrukcja umożliwia łatwe dostosowanie do różnych wysokości, co czyni je odpowiednim rozwiązaniem dla prac przy okapie na wysokości 7 metrów. Wysuwane platformy robocze pozwalają na precyzyjne manewrowanie i zapewniają stabilną przestrzeń roboczą, co jest niezbędne podczas napraw tynku, gdzie konieczne może być utrzymanie równowagi i precyzyjnych ruchów. Z kolei rusztowania ramowe, które są powszechnie stosowane w budownictwie, zapewniają solidną konstrukcję, łatwy montaż i demontaż oraz stabilność, co czyni je idealnym narzędziem do wykonywania prac na większych wysokościach. Zastosowanie rusztowania wiszącego, które z kolei może być używane do prac elewacyjnych, również może być korzystne, zwłaszcza gdy dostęp do powierzchni roboczej jest utrudniony przez inne elementy architektoniczne. Wybór rusztowania kozłowego w sytuacji wymagającej pracy na wysokości 7 metrów może prowadzić do poważnych zagrożeń, takich jak niestabilność konstrukcji, brak dostatecznego wsparcia oraz ograniczona możliwość manipulacji narzędziami czy materiałami. Warto zatem zwrócić uwagę na specyfikę i przeznaczenie każdego typu rusztowania, a także na wymagania norm i standardów dotyczących pracy na wysokości, aby uniknąć niebezpieczeństw i zapewnić efektywność prowadzonych prac.

Pytanie 34

Do mineralnych spoiw hydraulicznych zalicza się

A. wapno dolomitowe i pokarbidowe
B. gips szpachlowy i autoklawizowany
C. wapno hydratyzowane i palone
D. cement hutniczy i pucolanowy
Wybór wapna hydratyzowanego i palonego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ te materiały nie mają zdolności do wiązania w obecności wody w takim samym stopniu jak cement hutniczy czy pucolany. Wapno hydratyzowane, po rozpuszczeniu w wodzie, prowadzi do hydratacji, jednak nie tworzy trwałych połączeń w warunkach wilgotnych, co ogranicza jego zastosowanie w konstrukcjach narażonych na działanie wody. Wapno palone, z kolei, wykazuje dużą reaktywność chemiczną, ale podobnie jak wapno hydratyzowane, nie zachowuje właściwości hydraulicznych. Gips szpachlowy i autoklawizowany również nie są klasyfikowane jako spoiwa mineralne hydrauliczne, ponieważ gips wiąże się na drodze procesów gipsowych i nie ma zdolności do wiązania w warunkach mokrych. Wapno dolomitowe i pokarbidowe również nie spełniają kryteriów hydraulicznych, co prowadzi do błędnych wniosków odnośnie ich funkcji w budownictwie. Te materiały są często mylone z cementami hydraulicznymi z powodu ich zastosowania w różnych aspektach budowy, jednak nie wykazują one wymaganych właściwości do efektywnego wiązania w obecności wody, co jest kluczowe dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Należy pamiętać, że zgodność z normami budowlanymi oraz dobrymi praktykami jest istotna dla osiągnięcia optymalnych efektów w użyciu spoiw w budownictwie.

Pytanie 35

Na podstawie danych zawartych w tablicy z KNR oblicz, ile cegieł pełnych należy zamówić do wykonania 30 m2ścianek pełnych o grubości ¼cegły.

Ilustracja do pytania
A. 858 sztuk.
B. 1 458 sztuk.
C. 861 sztuk.
D. 1 443 sztuki.
Poprawna odpowiedź to 858 cegieł, ponieważ do obliczenia liczby cegieł niezbędnych do wykonania 30 m² ścianek pełnych o grubości ¼ cegły, korzystamy z danych zawartych w tabeli KNR 2-02. W tej tabeli ustalono, że do wykonania 1 m² ściany pełnej o grubości ¼ cegły potrzeba 28,60 cegieł. Mnożąc tę wartość przez powierzchnię, którą chcemy pokryć (30 m²), otrzymujemy: 28,60 cegieł/m² × 30 m² = 858 cegieł. Tego rodzaju obliczenia są kluczowe w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie materiałów potrzebnych do realizacji projektu, co z kolei wpływa na koszty oraz czas realizacji. Dobrą praktyką jest również uwzględnianie pewnego zapasu materiałów, aby zminimalizować ryzyko niedoboru w trakcie budowy.

Pytanie 36

Przedstawioną na ilustracji listwę stosuje się do

Ilustracja do pytania
A. mocowania termoizolacji.
B. wzmocnienia ościeży.
C. ochrony naroży.
D. wykonania boniowania.
Wybrana przez Ciebie odpowiedź nie jest właściwa, bo pokazuje, że coś mogłeś pomieszać jeśli chodzi o zastosowanie tej listwy. Ta listwa nie służy do mocowania termoizolacji. Termoizolacja to już inna sprawa i potrzebne są do niej konkretne materiały oraz techniki, które dobrze przylegają do ścian i minimalizują mostki termiczne. Użycie listwy do tego celu byłoby błędne, bo listwy boniarskie nie mają żadnych właściwości izolacyjnych. Wzmocnienie ościeży to też zupełnie inna funkcja, która nie ma związku z tą listwą. Ościeża w drzwiach i oknach są bardzo ważnymi elementami, a ich wzmocnienie wymaga odpowiednich materiałów budowlanych, które mają wysoką odporność na obciążenia. No i listwy boniarskie do tego się nie nadają, bo nie są do takiej pracy przystosowane. Ochrona naroży to także inna technika, i jest to coś, co trzeba oddzielić od boniowania. Naroża budynków potrzebują specjalnych materiałów jak narożniki metalowe czy plastikowe, żeby je skutecznie chronić przed uszkodzeniami. Tak w ogóle, te błędne odpowiedzi wskazują na brak zrozumienia, jak istotne są listwy boniarskie w architekturze i budownictwie. Zrozumienie ich funkcji jest kluczowe, żeby osiągnąć fajny efekt i trwałość elewacji budynków.

Pytanie 37

Zgodnie z wskazówkami producenta, zużycie gotowej mieszanki tynkarskiej do nałożenia tynku o grubości 15 mm wynosi 19,5 kg/m2. Ile worków po 30 kilogramów tej mieszanki jest potrzebnych do pokrycia powierzchni 150 m2 tym tynkiem?

A. 98 worków
B. 147 worków
C. 225 worków
D. 75 worków
Odpowiedź 98 worków jest poprawna, ponieważ aby obliczyć całkowite zużycie zaprawy tynkarskiej do wykonania tynku na powierzchni 150 m², należy pomnożyć zużycie na metr kwadratowy przez całkowitą powierzchnię. W tym przypadku, zużycie wynosi 19,5 kg/m², co daje 19,5 kg/m² * 150 m² = 2925 kg. Następnie, aby obliczyć liczbę worków zaprawy potrzebnych do zakupu, należy podzielić całkowite zapotrzebowanie na kilogramy przez wagę jednego worka. Przy masie worka wynoszącej 30 kg, obliczenie wygląda następująco: 2925 kg / 30 kg/worek = 97,5 worków. Ostatecznie, zaokrąglając w górę, potrzebujemy 98 worków. Takie obliczenia są istotne w praktyce budowlanej, ponieważ precyzyjne szacowanie materiałów pozwala uniknąć niedoborów oraz nadmiaru, co z kolei przekłada się na efektywność kosztową i terminowość realizacji projektów budowlanych. Wykorzystanie standardów kalkulacyjnych w branży budowlanej, takich jak normy PN-EN, wspiera dokładność tego procesu.

Pytanie 38

Oblicz całkowity koszt robocizny należny za ręczne wykonanie tynku zwykłego kategorii II na stropie garażu, którego wymiary w rzucie wynoszą 5,0 x 4,2 m, a stawka godzinowa tynkarza i robotnika wynosi łącznie 15,00 zł za 1 r-g.

Ilustracja do pytania
A. 951,15 zł
B. 292,95 zł
C. 133,16 zł
D. 199,74 zł
W przypadku niepoprawnych odpowiedzi często występują błędy związane z niewłaściwym przeliczeniem powierzchni lub niewłaściwą interpretacją nakładów pracy. Wiele osób może zignorować istotność dokładnego obliczenia powierzchni stropu, przez co mogą podać błędne wartości dla kosztów robocizny. Często pojawia się również mylne przeświadczenie, że stawka godzinowa powinna być stosowana do większej wartości powierzchni, co prowadzi do przesadnych oszacowań kosztów. Kolejnym typowym błędem jest nieprawidłowe zastosowanie danych z tabel nakładów pracy, co skutkuje niewłaściwym przeliczeniem roboczogodzin. Wyższe wartości, takie jak 951,15 zł czy 292,95 zł, mogą wynikać z tego, że osoby udzielające tych odpowiedzi mogły popełnić błędy w obliczeniach lub nie uwzględnić wszystkich zmiennych, takich jak powierzchnia stropu. Ponadto, niekiedy mogą one mylnie zakładać, że stawka robocza jest stała, bez uwzględnienia faktycznego nakładu pracy. W praktyce budowlanej kluczowe jest zrozumienie, że każde przedsięwzięcie wymaga precyzyjnych obliczeń, co wpływa zarówno na efektywność, jak i na ostateczny koszt inwestycji.

Pytanie 39

Który rodzaj tynku jest odporny na wodę?

A. Renowacyjny
B. Gipsowy
C. Mozaikowy
D. Wapienny
Wybór niewłaściwego rodzaju tynku może prowadzić do nieodpowiednich rezultatów w kontekście odporności na wodę. Tynk wapienny, chociaż ma swoje zalety, w tym ekologiczność i zdolność do regulacji wilgotności, nie jest materiałem wodoodpornym. Jego główną wadą jest wysoka nasiąkliwość, co sprawia, że w długotrwałym kontakcie z wodą może ulegać degradacji, a także sprzyjać rozwojowi pleśni i grzybów. Tynk gipsowy z kolei, mimo swojej popularności w zastosowaniach wykończeniowych, również nie nadaje się do stref o wysokiej wilgotności, ponieważ gips jest materiałem hygroskopijnym, który wchłania wilgoć i osłabia swoje właściwości strukturalne. Tynk renowacyjny, przeznaczony głównie do odnawiania zabytków, ma swoje specyficzne zastosowanie, ale również nie zapewnia wodoodporności. Zrozumienie tych właściwości jest kluczowe w przypadku planowania zastosowania tynku w projektach budowlanych. Często błąd polega na mylnym założeniu, że każdy tynk ma podobne właściwości ochronne, co może prowadzić do poważnych problemów związanych z wilgocią i trwałością konstrukcji. Wiedza na temat właściwości różnych materiałów budowlanych jest niezbędna dla osiągnięcia sukcesu w każdym projekcie budowlanym.

Pytanie 40

Tynk wewnętrzny, który odznacza się twardą i gładką powierzchnią przypominającą polerowany marmur, to

A. sztukateria
B. sztablatura
C. stiuk
D. sgraffito
Sztukateria, będąca jedną z odpowiedzi, odnosi się do dekoracyjnych elementów architektonicznych, takich jak listwy, gzymsy i ornamenty, które są tworzone z gipsu lub innych materiałów. Chociaż sztukateria może być wykonana z twardych materiałów, nie ma ona gładkiej, polerowanej powierzchni stylizowanej na marmur. Z kolei sgraffito to technika dekoracyjna polegająca na drapaniu wierzchniej warstwy tynku, aby odsłonić różne kolory lub tekstury pod spodem, która nie wytwarza efektu gładkiej powierzchni. Z tego względu sgraffito jest stosowane głównie w celu uzyskania efektów wizualnych, a nie w kontekście imitacji marmuru. Odpowiedź dotycząca sztablatury również nie jest właściwa, ponieważ sztablatura to technika związana z wykończeniem ścian, ale nie charakteryzuje się ona podobnymi cechami do stiuku. Zrozumienie tych różnic jest kluczowe dla architektów i dekoratorów wnętrz, którzy dążą do uzyskania precyzyjnych efektów estetycznych zgodnych z zamierzonym stylem. Często błędne wybory w tej dziedzinie wynikają z pomylenia funkcji dekoracyjnych z technikami wykończeniowymi, co może prowadzić do niedopasowania stylu i jakości aranżacji wnętrz.