Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 grudnia 2025 05:39
  • Data zakończenia: 16 grudnia 2025 05:43

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. stanu szczotek
B. poziomu drgań
C. wskazań aparatury kontrolno-pomiarowej
D. stanu osłon części wirujących
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 2

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Przepalony bezpiecznik topikowy w jednej z faz
B. Zwarcie w obwodzie wirnika
C. Zadziałanie przekaźnika termicznego
D. Zbyt wysoka temperatura uzwojeń
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 3

W instalacji domowej 230/400 V obwód zasilający elektryczną kuchnię o grzaniu rezystancyjnym jest chroniony przez wyłącznik nadprądowy typu S 194 B20. Jaką największą moc może mieć kuchnia podłączona do tego obwodu?

A. 8,0 kW
B. 13,8 kW
C. 6,6 kW
D. 24,0 kW
Wybór mocy kuchni elektrycznej na poziomie 8,0 kW, 24,0 kW lub 6,6 kW nie jest właściwy z uwagi na sposób obliczania moc elektrycznych w instalacjach domowych. Przyjmując, że obwód jest zabezpieczony wyłącznikiem nadprądowym 20 A, wartość ta determinuje maksymalne natężenie prądu, które może płynąć przez obwód bez ryzyka jego przeciążenia. Obliczenia mocy dla jednostkowych urządzeń elektrycznych opierają się na napięciu zasilania oraz dopuszczalnym prądzie. Wartości 8,0 kW i 6,6 kW sugerują, że obliczenia nie uwzględniają pełnego potencjału obwodu. Natomiast 24,0 kW jest znacząco wyższe niż maksymalne obciążenie, które może być realizowane przez wyłącznik 20 A. W przypadku zasilania trójfazowego, prawidłowe obliczenia mocy powinny uwzględniać także mnożnik √3, który jest kluczowy dla prawidłowego przeliczenia z jednego systemu na drugi. Ostatecznie, wszystkie te niepoprawne odpowiedzi demonstrują brak zrozumienia zasad obliczania mocy w kontekście napięcia i prądu w instalacjach elektrycznych. Ważne jest, aby znać i rozumieć standardy instalacji elektrycznych, co pozwala na uniknięcie poważnych problemów związanych z bezpieczeństwem oraz prawidłowym działaniem urządzeń.

Pytanie 4

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 35
B. 50
C. 12
D. 9

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 9 jest właściwa, ponieważ zgodnie z dokumentacją techniczno-ruchową, wirnik szlifierki oznaczony jest właśnie tym numerem. Znajomość oznaczeń w dokumentacji jest kluczowa dla efektywnego przeprowadzania konserwacji oraz napraw urządzeń. Na przykład, w przypadku wymiany uszkodzonego wirnika, technik powinien korzystać z dokumentacji, aby zidentyfikować odpowiednią część zamienną. Oznaczenia w dokumentacji są często zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie dokumentacji w zarządzaniu jakością. Używanie właściwych numerów oznaczeń pozwala na przyspieszenie procesu naprawy i minimalizację przestojów w pracy. Również, dla techników i inżynierów, umiejętność szybkiego lokalizowania i identyfikowania części przy pomocy oznaczeń jest niezbędna w codziennej pracy, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 5

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 2,3 Ω
C. 4,6 Ω
D. 8,0 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 6

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Używanie sprzętu izolacyjnego
B. Przyłączenie wyłączonej linii do uziemienia
C. Ogrodzenie terenu, na którym prowadzone są prace
D. Realizowanie pracy w zespole

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 7

Jakim przewodem powinno się przeprowadzić instalację oświetlenia natynkowego na uchwytach w piwnicy budynku wielorodzinnego?

A. DYd
B. YDY
C. YDYt
D. LgY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDY jest prawidłowa, ponieważ przewód YDY to przewód jednożyłowy, który jest odpowiedni do instalacji oświetleniowych w obiektach budowlanych, w tym w piwnicach. Charakteryzuje się on trwałą izolacją z PVC, co zapewnia odporność na wilgoć oraz różnorodne chemikalia, które mogą występować w piwnicach. Przewód YDY jest elastyczny, co ułatwia jego montaż na uchwytach, a także jest zgodny z obowiązującymi normami, co czyni go odpowiednim do tego typu zastosowań. W praktyce, podczas montażu instalacji oświetleniowej w piwnicy, ważne jest, aby przewody były dobrze zabezpieczone przed uszkodzeniami mechanicznymi i wilgocią, co przewód YDY spełnia. Ponadto, ze względu na swoje właściwości, przewód YDY jest szeroko stosowany w różnych instalacjach elektrycznych, takich jak zasilanie oświetlenia w pomieszczeniach mieszkalnych oraz użytkowych. Zgodnie z normą PN-EN 60502-1, przewody te mogą być stosowane w instalacjach w pomieszczeniach narażonych na działanie wody, co podkreśla ich przydatność w kontekście instalacji w piwnicach.

Pytanie 8

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach
B. w lokalach mieszkalnych tylko w zamkniętych szafkach
C. na strychu w otwartych skrzynkach
D. w piwnicach w otwartych skrzynkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 9

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
B. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
C. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
D. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 10

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zwiększenie prędkości obrotowej wirnika silnika
B. Uszkodzenie wirnika silnika
C. Nawrót wirnika silnika
D. Zmniejszenie prędkości obrotowej wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 11

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. dostosować rozrusznik obwodu wirnika
B. przetoczyć pierścienie ślizgowe wirnika
C. zmienić kolejność faz w stojanie
D. zwiększyć obciążenie na wale

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 12

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. przekładnik napięciowy
B. pirometr
C. induktor
D. prądnicę tachometryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 13

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. odczytów aparatury kontrolno-pomiarowej
B. konfiguracji zabezpieczeń
C. intensywności drgań
D. stanu szczotek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 14

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Zabrudzony komutator
B. Przerwa w obwodzie twornika
C. Nieodpowiednio dobrane szczotki
D. Wystająca izolacja między działkami komutatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w obwodzie twornika jest najpoważniejszym problemem, który może prowadzić do braku reakcji silnika na załączenie napięcia zasilania. W silniku szeregowym prądu stałego, twornik jest kluczowym elementem, który przekształca energię elektryczną w energię mechaniczną. Przerwa w obwodzie twornika oznacza, że prąd nie ma możliwości przepływu przez uzwojenie, co skutkuje brakiem momentu obrotowego i zatrzymaniem silnika. Taki stan może być spowodowany różnymi czynnikami, takimi jak uszkodzenie izolacji, korozja styków, czy mechaniczne uszkodzenia przewodów. W praktyce, aby zapobiegać takim problemom, zaleca się regularne przeglądy silników, zwłaszcza w zastosowaniach dorywczych, gdzie silnik może być narażony na dłuższe okresy bezczynności. W przypadku wykrycia przerwy, należy przeprowadzić diagnostykę, aby zidentyfikować miejsce usterki i podjąć odpowiednie kroki naprawcze, zgodne z branżowymi standardami serwisowymi, aby zapewnić długoterminowe i niezawodne działanie urządzenia. Dodatkowo, znajomość zasad działania silników prądu stałego oraz ich budowy, pozwala na szybsze rozwiązywanie problemów i podejmowanie skutecznych działań prewencyjnych.

Pytanie 15

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 50 V AC
B. 110 V DC
C. 230 V AC
D. 12 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 16

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. AC-1
B. DC-4
C. AC-3
D. DC-2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.

Pytanie 17

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 25 V
B. 12 V
C. 50 V
D. 60 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 18

Do zabezpieczenia nadprądowego których z wymienionych urządzeń przeznaczony jest element przedstawiony na ilustracji?

Ilustracja do pytania
A. Zasilaczy komputerowych.
B. Paneli fotowoltaicznych.
C. Multimetrów przenośnych.
D. Prostowników półprzewodnikowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ element przedstawiony na ilustracji to bezpiecznik przeznaczony do stosowania w systemach zasilania z napięciem stałym (DC) oraz prądem do 350A. Bezpieczniki tego typu są kluczowym komponentem w instalacjach fotowoltaicznych, gdzie wymagane są zabezpieczenia zdolne do pracy z wysokimi napięciami stałymi, często sięgającymi 1500V. W systemach fotowoltaicznych, ochrona przed przeciążeniem i zwarciami jest niezbędna, aby zapewnić bezpieczeństwo zarówno sprzętu, jak i użytkowników. Stosowanie odpowiednich zabezpieczeń nadprądowych jest zgodne z normami branżowymi, takimi jak IEC 60947-3, które regulują kwestie dotyczące urządzeń rozdzielczych. W praktyce, zastosowanie bezpieczników w systemach PV pozwala na minimalizację ryzyka uszkodzeń, co jest niezwykle ważne w kontekście inwestycji w odnawialne źródła energii. Dobrą praktyką jest regularne sprawdzanie i konserwacja zabezpieczeń, co przyczynia się do długowieczności systemu.

Pytanie 19

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Przerwa w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Zwarcie w obwodzie twornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 20

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Ogrodzenie
B. Samoczynne wyłączenie zasilania
C. Obudowa
D. Umieszczenie części czynnych poza zasięgiem ręki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 21

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Bezpiecznik typu aR
C. Wyłącznik nadprądowy typu B
D. Wyłącznik nadprądowy typu Z

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik typu aM jest właściwym wyborem do zabezpieczenia silnika trójfazowego o mocy 5,5 kW i napięciu 400/690 V. Ten typ bezpiecznika został zaprojektowany do ochrony przed przeciążeniem i zwarciem w aplikacjach silnikowych. Charakteryzuje się on wydłużonym czasem reakcji na prąd przeciążeniowy, co pozwala na chwilowe przekroczenie prądu nominalnego bez wyzwolenia, co jest niezbędne w przypadku rozruchu silnika. Dzięki temu zabezpieczenie jest w stanie tolerować wyższe prądy startowe, co jest kluczowe w praktycznych zastosowaniach, takich jak uruchamianie maszyn w zakładach przemysłowych. Dodatkowo, zastosowanie przekaźnika termicznego oraz stycznika umożliwia pełne zabezpieczenie silnika, zapewniając nie tylko ochronę przed zwarciem, ale również przed długotrwałym przeciążeniem. Przykłady poprawnych zastosowań obejmują silniki napędowe w pompach, wentylatorach czy kompresorach, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem. Wysoka jakość wykonania i zgodność z normami IEC 60269 sprawiają, że bezpieczniki typu aM są często preferowane w profesjonalnych instalacjach.

Pytanie 22

Na której fotografii pokazany jest miernik prędkości obrotowej wału silnika elektrycznego?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na zdjęciu C widzimy tachometr, który jest naprawdę ważnym narzędziem do sprawdzania prędkości obrotowej silników elektrycznych. Dzięki niemu można zmierzyć, jak szybko kręci się wał silnika, co jest istotne, żeby maszyna działała prawidłowo i była wydajna. W inżynierii dobre monitorowanie prędkości obrotowej pomaga nam w zauważeniu problemów, jak np. przeciążenie czy zły poziom smarowania, które mogą uszkodzić silnik. W przemyśle tachometry są wykorzystywane do automatyzacji procesów, bo ustawienie odpowiedniej prędkości jest kluczowe dla jakości produktów. Regularne kalibracje tych urządzeń, zgodnie z normami, są niezbędne, żeby utrzymać wysoką wydajność i bezpieczeństwo podczas pracy.

Pytanie 23

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. C.
B. D.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 24

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się czterokrotnie
B. Zmniejszy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się dwukrotnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Zwiększy się dwukrotnie" jest prawidłowa, ponieważ jest zgodna z prawem Ohma oraz zasadami dotyczącymi oporu elektrycznego w elementach grzewczych. Gdy długość spiralę grzejną skracamy o połowę, to zmniejszamy jej opór o połowę, ponieważ opór elektryczny przewodnika jest proporcjonalny do jego długości. Przy zachowaniu stałego napięcia zasilania, zgodnie z prawem Ohma (I = U/R), prąd przepływający przez grzejnik wzrośnie, gdyż opór maleje. W rezultacie moc wydzielająca się w postaci ciepła w grzałce elektrycznej, która jest opisana wzorem P = U * I, wzrośnie. Podstawiając wyrażenia do wzoru, otrzymujemy, że moc wzrasta dwukrotnie przy zmniejszonym oporze. W praktyce, jest to istotne przy projektowaniu urządzeń grzewczych, gdzie zmiana długości elementów grzewczych może wpływać na ich efektywność. Dobrą praktyką jest przeprowadzanie obliczeń związanych z oporem i mocą, aby zapobiec przegrzaniu lub uszkodzeniu grzałek w systemach grzewczych.

Pytanie 25

Jakie są maksymalne dopuszczalne odchylenia napięcia zasilającego dla elektrycznych urządzeń napędowych?

A. 5,0% Un
B. 7,5% Un
C. 2,5% Un
D. 10,0% Un

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalne dopuszczalne odchylenia napięcia zasilającego elektryczne urządzenia napędowe wynoszą 5,0% Un, zgodnie z obowiązującymi normami i standardami branżowymi, takimi jak IEC 60038. Utrzymanie napięcia w tym zakresie jest istotne dla zapewnienia prawidłowego działania urządzeń, ich wydajności oraz bezpieczeństwa. Przykładowo, w przypadku silników elektrycznych, zbyt duże odchylenie napięcia może prowadzić do ich przegrzewania, spadku momentu obrotowego oraz obniżenia żywotności. Dopuszczalne odchylenie 5,0% jest uznawane za optymalne, ponieważ zapewnia równocześnie elastyczność w przyłączeniach do różnych źródeł zasilania oraz minimalizuje ryzyko uszkodzeń i awarii. W praktyce, na przykład w dużych zakładach przemysłowych, kontrolowanie napięcia zasilającego i jego odchyleń jest kluczowe dla zapewnienia ciągłości produkcji oraz efektywności energetycznej. Zastosowanie odpowiednich zabezpieczeń oraz monitorowanie parametrów zasilania pozwala na uniknięcie niekorzystnych skutków, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 26

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. pół roku
B. pięć lat
C. jeden rok
D. dwa lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 27

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. przerwę w uzwojeniu U1 – U2
B. zwarcie międzyzwojowe w uzwojeniu W1 – W2
C. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
D. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 28

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Podczęstotliwościowego.
B. Podnapięciowego.
C. Nadprądowego.
D. Nadnapięciowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przekaźnika podnapięciowego jest istotnym elementem w projektowaniu systemów elektrycznych i automatyki. Oznaczenie "U" wewnątrz prostokąta wskazuje, że przekaźnik działa w odpowiedzi na spadek napięcia poniżej ustalonego poziomu. Przekaźniki podnapięciowe są używane do ochrony urządzeń przed niewłaściwym działaniem spowodowanym niskim napięciem, co może prowadzić do uszkodzenia elementów elektronicznych lub niestabilnej pracy systemu. Przykłady zastosowania obejmują systemy zasilania, w których kluczowe jest utrzymanie napięcia w odpowiednich granicach, na przykład w zasilaczach UPS, gdzie przekaźnik może odłączyć obciążenie w przypadku spadku napięcia. Zgodnie z normą IEC 60947-5-1, przekaźniki te powinny być używane w odpowiednich warunkach, aby zapewnić bezpieczeństwo i niezawodność działania. Zrozumienie symboliki i działania przekaźników podnapięciowych jest fundamentem w dziedzinie elektrotechniki i automatyki, co podkreśla ich znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 29

W którym z poniższych miejsc, podczas pracy z urządzeniami elektrycznymi, nie jest dopuszczalne stosowanie izolacji stanowiska jako środków ochrony przed dotykiem pośrednim?

A. Pracowni edukacyjnej
B. Laboratorium
C. Warsztacie sprzętu RTV
D. Placu budowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'plac budowy' to strzał w dziesiątkę! Na budowie mamy do czynienia z różnymi trudnymi warunkami, które utrudniają stosowanie izolacji jako formy ochrony przed dotykiem pośrednim. Często jest tam wilgoć, pyły i materiały budowlane wokół, co zwiększa ryzyko porażenia prądem. Z normami BHP się nie żartuje, bo w takich warunkach izolacja może być niewystarczająca. Wyobraź sobie, że coś się popsuje i pracownicy mogą mieć kontakt z przewodami pod napięciem! Dlatego na budowach zaleca się dodatkowe środki ochrony, jak odpowiednia odzież robocza, systemy ochrony różnicowoprądowej i różne osłony. Regularne szkolenia i audyty sprzętu to też kluczowe elementy utrzymania bezpieczeństwa elektrycznego w takim miejscu.

Pytanie 30

Która z wymienionych operacji jest związana z obsługą przepływu energii elektrycznej w urządzeniu napędowym klasy IV?

A. Mierzenie napięcia zasilającego to urządzenie
B. Zatrzymanie urządzenia w przypadku awarii
C. Weryfikacja ustawienia zabezpieczenia przed przeciążeniem
D. Zamiana uszkodzonego elementu w urządzeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zatrzymanie urządzenia w trybie awaryjnym to naprawdę ważna sprawa, zwłaszcza gdy mówimy o ruchu elektrycznym napędów. Jak coś wyjdzie nie tak, to trzeba reagować od razu, żeby nie uszkodzić sprzętu czy nie narazić kogoś na niebezpieczeństwo. W przypadku urządzeń napędowych klasy IV, które mają często skomplikowane systemy sterujące, to zatrzymanie w trybie awaryjnym to nie tylko dobra praktyka, ale też wymagane przez normy BHP i standardy automatyki. Na przykład, jeśli silnik zaczyna działać nieprawidłowo, to lepiej jest go od razu zatrzymać. Wiele z tych urządzeń ma różne przyciski awaryjnego zatrzymania oraz systemy, które same to robią, gdy coś jest nie tak. To pokazuje, jak kluczowe to działanie jest, jeśli chodzi o zarządzanie ryzykiem. Tak więc, umiejętność szybkiego zatrzymania urządzenia w sytuacjach awaryjnych to podstawa, żeby zapewnić bezpieczeństwo i ochronić sprzęt.

Pytanie 31

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Autotransformatorem
B. Dzielnikiem napięcia
C. Transformatorem bezpieczeństwa
D. Falownikiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 32

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. uszkodzenie w przewodzie fazowym
B. zwarcie między przewodem fazowym a neutralnym
C. uszkodzenie w grzałce
D. zwarcie przewodu ochronnego z obudową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 33

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Nagle zmniejszone napięcie zasilające
B. Pęknięcie pierścieni zwierających pręty wirnika
C. Nagle zwiększone napięcie zasilające
D. Poluzowanie tabliczki zaciskowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 34

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Ocena stanu szczotek i szczotkotrzymaczy
B. Sprawdzenie poziomu drgań
C. Sprawdzenie połączeń elementów urządzenia
D. Ocena stanu pierścieni ślizgowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 35

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Która z przyczyn może odpowiadać za zwiększoną wartość ZS w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych
zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość Zs:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie jest prawidłowa, ponieważ poluzowanie to prowadzi do wzrostu rezystancji w obwodzie, co z kolei prowadzi do zwiększenia wartości impedancji pętli zwarcia (ZS). W systemach elektrycznych, takich jak TN-S, ciągłość przewodów zasilających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności instalacji. Poluzowany przewód może powodować niestabilne połączenia, co skutkuje nieprawidłowym działaniem urządzeń oraz może stwarzać zagrożenie pożarowe. W praktyce, aby zminimalizować ryzyko, należy regularnie kontrolować i testować wszystkie połączenia elektryczne, zgodnie z normami PN-IEC 60364, które podkreślają znaczenie właściwego montażu oraz konserwacji instalacji elektrycznych. Dobre praktyki obejmują także stosowanie narzędzi do pomiaru impedancji oraz odpowiednich technik diagnostycznych, aby wcześnie wykrywać problemy z połączeniami.

Pytanie 36

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Maksymalne napięcie zasilania
B. Minimalną temperaturę pracy uzwojeń
C. Minimalne napięcie zasilania
D. Maksymalną temperaturę pracy uzwojeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasa izolacji silnika elektrycznego odnosi się do maksymalnej temperatury, jaką może osiągnąć uzwojenie silnika podczas normalnej pracy, bez ryzyka uszkodzenia izolacji. Klasa B oznacza, że maksymalna temperatura pracy uzwojeń nie powinna przekraczać 130°C. Użycie silnika z odpowiednią klasą izolacji jest kluczowe w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki termiczne. Przykładowo, w przypadku silników pracujących w przemyśle metalurgicznym, gdzie temperatura otoczenia może być wysoka, klasa izolacji B zapewnia, że silnik zachowa swoje właściwości elektryczne i mechaniczne. Ważne jest, aby dobierać silniki zgodnie z wymaganiami aplikacji, a także monitorować ich temperaturę pracy, aby uniknąć przegrzania, które mogłoby prowadzić do awarii. Dobre praktyki branżowe przewidują regularne przeglądy i pomiary temperatury, co przyczynia się do wydłużenia żywotności silników oraz zwiększenia efektywności energetycznej urządzeń.

Pytanie 37

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 0,71 Ω
B. 2,87 Ω
C. 4,79 Ω
D. 1,43 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 38

Jaka powinna być wartość prądu znamionowego bezpiecznika chroniącego uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeżeli przewidziano go do pracy z maksymalnym obciążeniem rezystancyjnym 200 W?

A. 0,8 A
B. 0,4 A
C. 0,5 A
D. 1,0 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość prądu znamionowego bezpiecznika do zabezpieczenia uzwojenia pierwotnego transformatora bezpieczeństwa 230/24 V powinna wynosić 1,0 A. Obliczając wartość prądu, korzystamy ze wzoru: P = U * I, gdzie P to moc (w watach), U to napięcie (w woltach), a I to prąd (w amperach). W przypadku naszego transformatora, przy maksymalnym obciążeniu rezystancyjnym 200 W i napięciu 230 V, obliczamy prąd znamionowy: I = P / U = 200 W / 230 V ≈ 0,87 A. Ze względów bezpieczeństwa oraz dobrych praktyk inżynieryjnych, zaleca się zastosowanie bezpiecznika o wartości minimalnie wyższej niż obliczona, co w tym przypadku daje 1,0 A. Dobrze dobrany bezpiecznik nie tylko chroni transformator, ale także zapobiega potencjalnym zagrożeniom elektrycznym. Istotne jest również, aby bezpiecznik był dostosowany do charakterystyki obciążenia; w przypadku obciążeń rezystancyjnych, jak lampy czy grzejniki, bezpieczniki szybkie są bardziej odpowiednie. Takie podejście zapewnia zgodność z normami bezpieczeństwa, takimi jak PN-EN 60269, która reguluje dobór i zastosowanie elementów zabezpieczających.

Pytanie 39

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 10 A
B. 6 A
C. 16 A
D. 1 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wynosi 1 A, co jest zgodne z wartością prądu znamionowego, jaką powinien mieć bezpiecznik aparaturowy zainstalowany w obwodzie uzwojenia pierwotnego transformatora jednofazowego. Wartość prądu znamionowego bezpiecznika określa maksymalny prąd, jaki może płynąć przez obwód przed wystąpieniem uszkodzenia lub awarii. W przypadku transformatora, który pracuje w charakterze ładowarki do akumulatorów, kluczowe jest, aby dobrać odpowiednią wartość prądu zabezpieczenia. W analizowanej sytuacji, przy napięciu 230 V na uzwojeniu pierwotnym i przewidywanym prądzie obciążenia 15 A na uzwojeniu wtórnym, istotne jest uwzględnienie współczynnika wydajności oraz strat mocy. Zgodnie z normami, przyjmuje się, aby wartość prądu znamionowego bezpiecznika była co najmniej 20-25% wyższa od prądu obciążenia. W praktyce często stosuje się bezpieczniki o wartości 1 A dla obwodów, w których prąd nie przekracza 15 A. Takie podejście ma na celu zapewnienie dodatkowego marginesu bezpieczeństwa oraz ochrony urządzenia. Wartości te są zgodne z normami IEC 60269 oraz IEC 60947, które zalecają dobór odpowiednich zabezpieczeń w zależności od charakterystyki obciążenia.

Pytanie 40

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,1 ∙ In
B. 2,2 ∙ In
C. 1,4 ∙ In
D. 0,8 ∙ In

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.