Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 5 stycznia 2026 03:29
  • Data zakończenia: 5 stycznia 2026 03:40

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zamiana linii asymetrycznej na linię symetryczną w transmisji sygnałów cyfrowych

A. zwiększa odporność linii na zakłócenia i nie wymaga modyfikacji układów we/wy
B. zmniejsza odporność linii na zakłócenia i wymaga modyfikacji układów we/wy
C. zmniejsza odporność linii na zakłócenia i nie wymaga modyfikacji układów we/wy
D. zwiększa odporność linii na zakłócenia i wymaga modyfikacji układów we/wy
Zastąpienie linii niesymetrycznej linią symetryczną w transmisji sygnałów cyfrowych jest uzasadnione z technicznego punktu widzenia, ponieważ linie symetryczne, do których zaliczają się takie rozwiązania jak różnicowe przesyłanie sygnałów, znacząco zwiększają odporność na zakłócenia. Dzięki równemu rozmieszczeniu potencjałów w przewodach, zakłócenia elektromagnetyczne mają minimalny wpływ na jakość sygnału. Przykładem zastosowania linii symetrycznych jest standard USB, który stosuje różnicowe pary przewodów do przesyłania danych. W kontekście modyfikacji układów we/wy, konieczne jest dostosowanie elektroniki do nowych warunków pracy, w tym implementacja układów różnicowych, co może wpłynąć na wydajność i niezawodność całego systemu. W branży telekomunikacyjnej, użycie linii symetrycznych w takich aplikacjach jak DSL, przyczynia się do zminimalizowania zakłóceń, co jest zgodne z najlepszymi praktykami w projektowaniu systemów komunikacyjnych.

Pytanie 2

Na ekranie oscyloskopu zaobserwowano pokazany na rysunku czasowy przebieg napięcia. Jaka jest szybkość narastania napięcia?

Ilustracja do pytania
A. 4 V
B. 4 mV/s
C. 1 ms
D. 4 V/ms
Szybkość narastania napięcia, określana jako nachylenie wykresu napięcia w funkcji czasu, jest kluczowym parametrem w analizie sygnałów elektrycznych. W tym przypadku, zmiana napięcia o 4V w czasie 1 ms wskazuje na szybkość narastania równą 4 V/ms. Taki pomiar jest istotny w zastosowaniach związanych z elektroniką i inżynierią, gdzie precyzyjne określenie dynamiki sygnałów jest niezbędne dla poprawnego działania obwodów. Na przykład, w układach cyfrowych, szybkość narastania napięcia ma wpływ na czas, w jakim sygnał osiąga próg aktywacji bramek logicznych, co z kolei wpływa na szybkość działania całego systemu. Zgodnie z normami IEEE dotyczących sygnałów elektrycznych, monitorowanie szybkości narastania napięcia pozwala na optymalizację działania komponentów oraz minimalizację zakłóceń. Takie analizy są również używane w diagnostyce usterek, gdzie zmiany w szybkości narastania mogą wskazywać na problemy z komponentami, co czyni tę wiedzę niezwykle wartościową w praktyce inżynierskiej.

Pytanie 3

Która z technologii stosuje światło podczerwone do przesyłania danych?

A. IRDA
B. BLUETOOTH
C. ZIGBEE
D. WIMAX
IRDA, czyli Infrared Data Association, to taki fajny standard do komunikacji bezprzewodowej. Działa na zasadzie światła podczerwonego i jest wykorzystywany do przesyłania danych na krótkich dystansach. Sporo urządzeń korzysta z tej technologii, jak telefony, laptopy czy różne drukarki i skanery. Działa to tak, że urządzenia muszą być blisko siebie, zazwyczaj w odległości maksymalnie 1 metra, a nawet można przesyłać dane z prędkością do 4 Mbps. Przykładowo, można łatwo przesłać kontakty między telefonami, nawet bez kabli. IRDA jest też oszczędna pod względem energii, co czyni ją idealną dla urządzeń na baterie. Dzięki temu standardowi różne urządzenia od różnych producentów mogą ze sobą współpracować, co jest naprawdę ważne w dzisiejszym świecie komunikacji bezprzewodowej.

Pytanie 4

Na rysunku przedstawiony jest

Ilustracja do pytania
A. wtórnik napięciowy.
B. wzmacniacz odwracający.
C. wzmacniacz różnicowy.
D. układ całkujący.
Wybór wzmacniacza odwracającego, układu całkującego lub wzmacniacza różnicowego jako odpowiedzi jest wynikiem pewnych nieporozumień dotyczących funkcji i konstrukcji tych układów. Wzmacniacz odwracający, na przykład, charakteryzuje się tym, że sygnał wejściowy jest podawany na jego wejście odwracające, a wyjście generuje sygnał, który jest inwersją sygnału wejściowego. W kontekście rysunku, nie widać dodatkowych rezystorów, które są kluczowe dla ustalenia wzmocnienia tego układu, co wyklucza tę możliwość. Podobnie, układ całkujący wymaga obecności odpowiednich elementów, takich jak kondensatory, aby móc realizować funkcję całkowania sygnału, a brak tych komponentów również dyskwalifikuje tę odpowiedź. Wzmacniacz różnicowy zaś, służy do porównywania dwóch sygnałów wejściowych i generowania wyjścia, które jest różnicą tych sygnałów. Przy braku takich połączeń, można stwierdzić, że układ przedstawiony na rysunku nie spełnia kryteriów dla wzmacniacza różnicowego. Często w takich sytuacjach dochodzi do błędnych analogii z bardziej złożonymi układami, co prowadzi do mylnego wyboru. Zrozumienie podstawowych funkcji tych układów oraz ich budowy jest kluczowe dla poprawnej analizy i rozwiązywania problemów w elektronice.

Pytanie 5

Aby zweryfikować prawidłowość działania generatora funkcyjnego, należy wykorzystać

A. amperomierza
B. omomierza
C. watomierza
D. oscyloskopu
Oscyloskop jest narzędziem niezbędnym do analizy sygnałów elektrycznych, w tym tych generowanych przez generator funkcyjny. Umożliwia wizualizację przebiegów napięcia w funkcji czasu, co pozwala na ocenę kształtu, częstotliwości oraz amplitudy sygnału. W praktyce, podczas testowania generatora funkcyjnego, oscyloskop pozwala na identyfikację zniekształceń sygnału, które mogą wpływać na jego poprawność działania. Na przykład, jeśli sygnał powinien mieć kształt fali sinusoidalnej, oscyloskop pozwala na natychmiastowe zidentyfikowanie ewentualnych zniekształceń, co jest kluczowe w aplikacjach audio oraz telekomunikacyjnych. Stosowanie oscyloskopów zgodnie z normami branżowymi, takimi jak IEC 61010, zapewnia bezpieczeństwo i dokładność pomiarów. Warto również zaznaczyć, że w zaawansowanych zastosowaniach oscyloskop umożliwia analizę sygnałów wielokanałowych, co jest istotne przy testowaniu układów cyfrowych i analogowych w nowoczesnych systemach elektronicznych.

Pytanie 6

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. AVR
B. CISC
C. DSP
D. RISC
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 7

Jeżeli wartość rezystancji potencjometru suwakowego pomiędzy zaciskiem krańcowym a zaciskiem ślizgacza zmienia się proporcjonalnie do położenia ślizgacza, to charakterystyka takiego potencjometru stanowi funkcję

A. logarytmiczną
B. hiperboliczną
C. wykładniczą
D. liniową
Potencjometr suwakowy działa na zasadzie zmiany rezystancji w zależności od położenia ślizgacza. Kiedy mówimy, że wartość rezystancji zmienia się wprost proporcjonalnie do położenia ślizgacza, oznacza to, że zmiana wartości rezystancji jest liniowa w odniesieniu do ruchu ślizgacza. Przykładowo, w przypadku potencjometru suwakowego o całkowitej rezystancji 10 kΩ, jeśli ślizgacz znajduje się w połowie drogi, wartość rezystancji między skrajnym zaciskiem a ślizgaczem wyniesie 5 kΩ. Taki charakterystyka jest niezwykle przydatna w aplikacjach audio, gdzie potencjometry linowe są wykorzystywane do regulacji głośności. W standardach branżowych, takich jak IEC, zaleca się użycie potencjometrów liniowych w sytuacjach, gdzie oczekuje się precyzyjnej i proporcjonalnej regulacji. Zrozumienie tej zasady pozwala na lepsze projektowanie obwodów elektronicznych oraz zrozumienie dynamiki działania różnych komponentów. Praca z potencjometrami liniowymi daje inżynierom szeroki wachlarz możliwości dostosowywania i optymalizacji systemów elektronicznych.

Pytanie 8

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. zwiększa się
B. wynosi 0
C. zmniejsza się
D. pozostaje takie samo
W przypadku rozważania wpływu sprzędzenia zwrotnego na wzmocnienie układu, niektóre odpowiedzi mogą być mylące. Utrzymywanie wzmocnienia bez zmian jest błędnym założeniem, gdyż ujemne sprzężenie zwrotne ma jasno określony wpływ na obniżenie wzmocnienia. W rzeczywistości, analogowe układy wzmacniające, takie jak wzmacniacze operacyjne, zawsze podlegają wpływowi sprzężenia zwrotnego, co jest kluczowe dla ich poprawnego działania. Dalsze zwiększanie wzmocnienia w kontekście ujemnego sprzężenia zwrotnego jest niemożliwe, ponieważ mechanizm ten działa zgodnie z zasadą redukcji wzmocnienia, co skutkuje stabilizacją. W odpowiedzi sugerującej, że wzmocnienie jest równe zeru, występuje znaczący błąd rozumienia natury sprzężenia zwrotnego. Owszem, wzmocnienie może dążyć do zera w niektórych ekstremalnych przypadkach, ale nie jest to normą w zastosowaniach praktycznych. Takie podejście zniekształca zrozumienie funkcjonalności wzmacniaczy i ich zdolności do pracy w różnych warunkach. Dlatego, interpretując ujemne sprzężenie zwrotne, kluczowe jest zrozumienie jego roli w stabilizacji wzmocnienia oraz w poprawie jakości sygnału, co jest fundamentalnym aspektem inżynierii elektronicznej.

Pytanie 9

W jakim układzie pracują tranzystory przedstawione na rysunku?

Ilustracja do pytania
A. Przeciwsobnym.
B. Wspólnego emitera.
C. Różnicowym.
D. Darlingtona.
Układ Darlingtona, w którym pracują tranzystory przedstawione na rysunku, to szczególna konfiguracja, która łączy dwa tranzystory w taki sposób, aby ich wzmocnienie prądowe było sumowane. Dzięki takiemu połączeniu zyskujemy znaczne zwiększenie wzmocnienia, co czyni ten układ idealnym do zastosowań wymagających małych sygnałów wejściowych, które muszą być wzmocnione do poziomów wyjściowych. W praktyce, układy Darlingtona znajdują szerokie zastosowanie w automatyce, wzmacniaczach audio oraz jako elementy wyjściowe w mikroprocesorach, gdzie konieczne jest sterowanie dużymi odbiornikami, takimi jak silniki czy przekaźniki. Przykładem może być stosowanie tranzystorów Darlingtona w układach zasilania, gdzie niski prąd na wejściu może kontrolować znacznie większe prądy na wyjściu, co jest zgodne z zasadami pracy w systemach elektronicznych, gdzie efektywność i oszczędność energii odgrywają kluczową rolę. Obserwując schematy elektroniczne, warto zwrócić uwagę na odpowiednie oznaczenia i połączenia, które jednoznacznie wskazują na zastosowanie tego typu układów.

Pytanie 10

Na podstawie oscylogramów przedstawionych na rysunku można stwierdzić, że w badanym układzie prostowniczym

Ilustracja do pytania
A. nastąpiło zwarcie diody Dl i D3
B. nastąpiła przerwa w obwodzie Dl, R, D3
C. nastąpiło zwarcie diody D2 i D4
D. nastąpiła przerwa w obwodzie D2, R, D4
Poprawna odpowiedź wskazuje na przerwę w obwodzie D2, R, D4. Analizując oscylogramy, zauważamy, że napięcie wyjściowe Uwy wykazuje charakterystykę połówkowego prostowania, co oznacza, że tylko jedna para diod (D1 i D3) przewodzi prąd. W prawidłowym działaniu mostka Graetza, powinno występować pełno-okresowe prostowanie, co jest standardem w układach prostowniczych. Przerwa w obwodzie D2 i D4 skutkuje brakiem przewodzenia prądu przez te diody, co wyklucza możliwość pełno-okresowego prostowania. W praktyce, takie sytuacje mogą prowadzić do zmniejszenia efektywności zasilania w układach elektronicznych, a także do uszkodzeń komponentów, jeśli nie zostaną szybko zidentyfikowane. W kontekście standardów branżowych, należy pamiętać o regularnym monitorowaniu i diagnozowaniu układów prostowniczych, aby zapewnić ich niezawodne działanie oraz minimalizować ryzyko awarii.

Pytanie 11

Stopniowo zmniejszający się zasięg działania bezprzewodowych urządzeń do zdalnego sterowania pracujących w paśmie 433 MHz może świadczyć o

A. pogarszających się warunkach atmosferycznych
B. usterce w obwodzie anteny nadajników
C. niewystarczającym napięciu zasilającym odbiornik
D. utonie pojemności baterii zasilającej nadajniki
Utrata pojemności baterii zasilającej nadajniki jest najczęstszym powodem zmniejszenia zasięgu bezprzewodowych urządzeń zdalnego sterowania, szczególnie w przypadku pracy w paśmie 433 MHz. Baterie z czasem tracą swoją wydajność, co prowadzi do obniżenia napięcia zasilającego nadajniki. W rezultacie, moc sygnału emitowanego przez nadajnik maleje, co skutkuje zmniejszeniem zasięgu, a w skrajnych przypadkach, utratą łączności z odbiornikiem. Przykładem zastosowania tej wiedzy może być regularne monitorowanie poziomu naładowania baterii urządzeń zdalnego sterowania, co pozwala na wcześniejsze wykrycie problemów z zasięgiem i wymianę baterii zanim dojdzie do całkowitej utraty funkcjonalności. Zgodnie z dobrymi praktykami branżowymi, zaleca się używanie wysokiej jakości baterii oraz regularne przeprowadzanie przeglądów urządzeń zdalnego sterowania, co może znacznie zwiększyć ich niezawodność oraz wydajność w dłuższej perspektywie.

Pytanie 12

Jaka powinna być wartość rezystancji R2, aby w układzie pokazanym na rysunku uzyskać wzmocnienie napięciowe równe -10 V/V, jeżeli wartość rezystancji R1 = 2 kΩ?

Ilustracja do pytania
A. 0,2 Ω
B. 20 Ω
C. 0,2 kΩ
D. 20 kΩ
Wartości 0,2 Ω, 20 Ω oraz 0,2 kΩ są błędne, ponieważ nie spełniają warunku wzmocnienia napięciowego równego -10 V/V w rozważanym układzie. W przypadku 0,2 Ω, odpowiedź ta nie tylko nie spełnia wymagań dotyczących wzmocnienia, ale również jest znacznie niższa od wymaganej rezystancji, co prowadziłoby do minimalnego wzmocnienia, a nawet do nieprawidłowego działania układu. Kolejna wartość, 20 Ω, również nie jest wystarczająca, aby uzyskać wzmocnienie napięciowe -10 V/V, ponieważ stosunek rezystancji nie odpowiada wymaganym proporcjom. Wartość 0,2 kΩ, czyli 200 Ω, jest z kolei za niska, biorąc pod uwagę, że R2 musi być przynajmniej dziesięciokrotnie większa niż R1. W praktyce, błędne wybieranie wartości rezystorów w układach wzmacniaczy często prowadzi do nieefektywności w przetwarzaniu sygnałów, co może skutkować utratą jakości dźwięku, zwiększeniem szumów oraz niewłaściwymi wynikami pomiarów. Zrozumienie zasad działania wzmacniaczy, a zwłaszcza relacji pomiędzy rezystancjami i wzmocnieniem, jest kluczowe w projektowaniu obwodów elektronicznych, aby uniknąć nieprawidłowości i zapewnić ich poprawne funkcjonowanie.

Pytanie 13

Jaką ilość energii wykorzystało urządzenie o mocy 150 W, działające przez 12 godzin?

A. 1,8 kWh
B. 0,18 kWh
C. 0,6 kWh
D. 1,2 kWh
Żeby obliczyć, ile energii zużywa jakieś urządzenie, trzeba użyć wzoru: energia (w kWh) to moc (w kW) razy czas (w h). Weźmy na przykład sprzęt o mocy 150 W. Najpierw musimy tę moc przeliczyć na kilowaty, co wychodzi nam 0,15 kW. Potem, gdy pomnożymy to przez czas pracy, czyli 12 godzin, mamy 0,15 kW razy 12 h, co daje 1,8 kWh. To ważne, bo takie obliczenia pomagają nam oszczędzać energię i lepiej zarządzać wydatkami na prąd. Jak dobrze rozumiemy, jak to wszystko działa, łatwiej planować, ile wydamy na rachunki oraz podejmować mądre decyzje, jeśli chodzi o kupno energooszczędnych sprzętów. W praktyce, te wszystkie liczby są też podstawą etykiet energetycznych, które pokazują, jak efektywne są urządzenia. Warto więc regularnie patrzeć na to, ile energii zużywamy, bo to nie tylko pomoże zaoszczędzić pieniądze, ale też zmniejszyć nasz wpływ na środowisko.

Pytanie 14

Aby zweryfikować prawidłowe funkcjonowanie piezoelektrycznego przetwornika tensometrycznego w wadze elektronicznej, należy zastosować

A. omomierz
B. galwanometr
C. watomierz
D. amperomierz
Wykorzystanie watomierza, omomierza czy amperomierza do testowania piezoelektrycznego przetwornika tensometrycznego jest nieodpowiednie z kilku powodów. Watomierz służy do pomiaru mocy elektrycznej, co nie jest związane z bezpośrednim pomiarem prądu generowanego przez przetwornik w odpowiedzi na działanie siły. Zastosowanie watomierza do oceny działania tensometru jest mylące, ponieważ moc nie oddaje informacji o precyzyjności czy odpowiedzi przetwornika na zmiany obciążenia. Omomierz z kolei mierzy opór elektryczny, co także nie jest adekwatne do oceny działania piezoelektrycznego przetwornika. Opór nie wskazuje na zdolność przetwornika do generowania prądu w odpowiedzi na obciążenia mechaniczne. Amperomierz, choć mógłby wydawać się przydatny, również nie jest odpowiedni, ponieważ mierzy on natężenie prądu w obwodzie, a nie specyfikę odpowiedzi przetwornika na mechaniczne oddziaływania. W praktyce, błędem jest zakładanie, że każdy przyrząd pomiarowy może być użyty zamiennie. Kluczowe jest zrozumienie, że odpowiednie narzędzie powinno odpowiadać specyfice badanego zjawiska, a w przypadku piezoelektrycznych przetworników tensometrycznych, galwanometr jest jedynym właściwym rozwiązaniem, które pozwala na dokładną analizę ich działania.

Pytanie 15

Jakie narzędzie powinno zostać użyte do podłączenia czujnika (zasilanie +12 V oraz masa, styki alarmowe i sabotażowe w konfiguracji NC) do centrali alarmowej?

A. Zaciskarka
B. Lutownica
C. Odsysacz
D. Wkrętak
Wkrętak jest narzędziem niezbędnym do podłączenia czujki do centrali alarmowej, szczególnie gdy chodzi o zapewnienie solidnego i stabilnego połączenia elektrycznego. W przypadku czujek, zasilanie oraz styki alarmowe są często zabezpieczone śrubami, które należy odkręcić lub dokręcić. Użycie wkrętaka pozwala na precyzyjne manipulowanie tymi elementami, co jest kluczowe dla prawidłowego działania systemu alarmowego. Zastosowanie wkrętaka w tym kontekście jest zgodne z najlepszymi praktykami branżowymi, które zalecają nie tylko dbałość o poprawność połączeń, ale także ich bezpieczeństwo. Warto również podkreślić, że prawidłowe połączenie czujki z centralą alarmową ma kluczowe znaczenie dla jej funkcjonowania. Nieprawidłowe połączenia mogą prowadzić do fałszywych alarmów bądź całkowitego braku reakcji systemu na zdarzenia. Dlatego wybór odpowiednich narzędzi, takich jak wkrętak, jest fundamentalny w pracy z systemami zabezpieczeń, w których niezawodność i dokładność są kluczowe. Dobrze przeprowadzone połączenia są podstawą dla stabilności i wydajności całego systemu alarmowego.

Pytanie 16

Podczas konserwacji systemu telewizyjnego trzeba zweryfikować jakość sygnału w gniazdkach abonenckich. W związku z tym, w gniazdku abonenckim należy przeprowadzić pomiar

A. współczynnika zawartości harmonicznych (THD)
B. mocy czynnej (P)
C. współczynnika błędnych bitów (BER)
D. natężenia prądu (I)
Współczynnik błędnych bitów (BER) jest kluczowym wskaźnikiem jakości sygnału w instalacjach telewizyjnych. Pomiar BER pozwala na ocenę, jak wiele danych jest przesyłanych z błędami, co jest niezbędne do zapewnienia wysokiej jakości odbioru sygnału telewizyjnego. W praktyce, dla uzyskania odpowiednich wartości BER, technicy muszą monitorować sygnał i dostosowywać instalację, aby minimalizować zakłócenia. Dobrym standardem jest dążenie do uzyskania wartości BER poniżej 1% w przypadku sygnału cyfrowego, co przekłada się na stabilny i wyraźny obraz. Regularne pomiary BER w gniazdkach abonenckich są również zgodne z najlepszymi praktykami branżowymi, co pozwala na wczesne wykrywanie problemów w instalacji, takich jak uszkodzone kable lub złącza. Analizując wyniki pomiarów, technicy mogą podejmować odpowiednie kroki naprawcze, co wpływa na poprawę jakości usług dostarczanych abonentom.

Pytanie 17

Który z wymienionych scalonych stabilizatorów napięcia powinien być użyty do zasilania systemów zaprojektowanych w technologii TTL?

A. LM7908
B. LM7915
C. LM7812
D. LM7805
Wybór innych stabilizatorów napięcia, takich jak LM7908, LM7812 czy LM7915, na pewno prowadzi do niewłaściwego zasilania układów TTL, z racji ich nieodpowiednich parametrów. LM7908 jest stabilizatorem, który dostarcza napięcie ujemne (-8V), co jest niezgodne z wymaganiami układów TTL, które wykorzystywane są w obwodach zasilanych dodatnim napięciem. Z kolei LM7812 stabilizuje napięcie na poziomie 12V, co również przekracza wymagane napięcie zasilania dla TTL, mogąc prowadzić do uszkodzenia układów. Natomiast LM7915, podobnie jak LM7908, dostarcza napięcie ujemne (-15V). Użycie tych stabilizatorów mogłoby skutkować nie tylko uszkodzeniem układów, ale także nieprawidłowym działaniem całego systemu. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasad działania układów scalonych oraz ich wymagań dotyczących zasilania. W praktyce, stosowanie stabilizatorów o napięciu innym niż 5V dla TTL jest nieopłacalne i stwarza ryzyko, które można łatwo uniknąć, przestrzegając standardów projektowania obwodów elektronicznych. Zrozumienie parametrów komponentów oraz ich zastosowań w kontekście całego systemu to klucz do uniknięcia takich błędów.

Pytanie 18

Które z poniższych urządzeń elektronicznych wymaga zaprogramowania po jego zainstalowaniu, zanim zacznie działać?

A. Domofon cyfrowy
B. Konwerter satelitarny
C. Detektor gazu
D. Telefon analogowy
Telefon analogowy nie wymaga zaprogramowania przed rozpoczęciem pracy, ponieważ jego działanie opiera się na prostym połączeniu z linią telefoniczną. Użytkownik wystarczy podłączyć aparat do gniazdka telefonicznego, aby móc dzwonić i odbierać połączenia. W przypadku detektora gazu jego działanie polega głównie na ciągłym monitorowaniu stężenia gazów w powietrzu, a większość modeli jest fabrycznie przystosowanych do pracy od razu po podłączeniu do zasilania. Nie wymaga on zaawansowanego programowania, lecz podstawowej kalibracji w przypadku niektórych profesjonalnych urządzeń. Konwerter satelitarny, z drugiej strony, służy do dekodowania sygnału satelitarnego i również nie wymaga skomplikowanego zaprogramowania, gdyż zazwyczaj wystarczy podłączyć go do odpowiednich urządzeń i skonfigurować przez prosty interfejs użytkownika. W związku z tym, mylenie tych urządzeń z domofonem cyfrowym może prowadzić do nieporozumień co do ich funkcjonalności i sposobu użycia. Zrozumienie różnic między nimi jest kluczowe dla właściwego korzystania z technologii.

Pytanie 19

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Daje możliwość aktualizacji oprogramowania tunera.
B. Pozwala na podłączenie pamięci zewnętrznej.
C. Funkcjonuje jako czytnik kart dostępu.
D. Służy do łączenia urządzeń audio-video.
Odpowiedzi sugerujące, że moduł CI służy do podłączenia pamięci zewnętrznej, aktualizacji oprogramowania tunera lub podłączenia urządzeń audio-video, są błędne, ponieważ pomijają fundamentalną rolę, jaką odgrywa ten moduł w kontekście dostępu do zaszyfrowanych kanałów. Moduł CI nie jest przeznaczony do obsługi pamięci zewnętrznych; zamiast tego, jego głównym celem jest dekodowanie sygnałów z kart kodowych. Podłączenie pamięci zewnętrznej do tunera może być realizowane za pomocą portów USB, ale nie jest związane z funkcjonalnością modułu CI. Również aktualizacja oprogramowania tunera najczęściej realizowana jest poprzez internet lub zewnętrzne nośniki danych, a nie przez CI, który pełni rolę jedynie w kontekście zarządzania dostępem do treści. Co więcej, podłączenie urządzeń audio-video, takich jak odtwarzacze Blu-ray czy kina domowe, odbywa się zazwyczaj za pomocą HDMI lub innych standardowych złączy, a nie za pośrednictwem modułu CI. W ten sposób można dostrzec, że wiele błędnych odpowiedzi wynika z pomylenia ról różnych komponentów systemu telewizyjnego oraz braku zrozumienia, jakie funkcje pełnią poszczególne elementy w zapewnieniu dostępu do treści multimedialnych.

Pytanie 20

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20
A. termistor.
B. czujnik rezystancyjny.
C. termoparę.
D. czujnik pirometryczny.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 21

Podczas pomiaru napięcia UCE spoczynkowego punktu pracy tranzystora m.cz. woltomierzem analogowym o podziałce 100 działek ustawionym na zakresie 0,3 V wskazówka wskazuje 80 działek. Ile wynosi wartość mierzonego napięcia?

Ilustracja do pytania
A. 180 mV
B. 120 mV
C. 240 mV
D. 60 mV
Wartość mierzonego napięcia U<sub>CE</sub> wynosi 240 mV, co możemy obliczyć na podstawie wskazania woltomierza. Woltomierz analogowy o podziałce 100 działek, ustawiony na zakres 0,3 V, wskazuje 80 działek. Aby obliczyć wartość napięcia, należy najpierw zrozumieć, że 80 działek stanowi 80% z pełnego zakresu 0,3 V. Zatem 0,3 V to 300 mV, a 80% z tej wartości to 0,8 x 300 mV = 240 mV. Tego typu pomiary są powszechnie stosowane w elektronice do oceny punktu pracy tranzystora. Znajomość właściwego pomiaru oraz prawidłowej interpretacji wskazań woltomierza jest kluczowa w projektowaniu oraz diagnozowaniu układów elektronicznych, zwłaszcza w aplikacjach audio czy automatyki. Użycie analogowych woltomierzy, mimo rozwoju technologii cyfrowej, wciąż znajduje zastosowanie w wielu obszarach, gdyż umożliwiają one szybkie i intuicyjne odczyty napięcia, a także mogą być pomocne w sytuacjach, gdzie cyfrowe urządzenia mogą zawodzić.

Pytanie 22

Użytkownik systemu komputerowego zgłosił brak łączności z internetem. Jest on połączony z siecią domową za pomocą bezprzewodowego połączenia z routerem Wi-Fi. Próby zresetowania routera oraz karty Wi-Fi nie przyniosły efektów. Użytkownik nie ma problemów z dostępem do internetu w innych sieciach. Wskaż możliwą usterkę.

A. Funkcjonowanie routera na tym samym kanale co sąsiednia sieć
B. Uszkodzona karta Wi-Fi
C. Przerwa w kablu dostarczającym sygnał WAN do routera
D. Zbyt niskie napięcie zasilania routera
Z tego, co widzę, przerwa w kablu, który prowadzi sygnał WAN do routera, to najczęstsza przyczyna tego, że nie masz dostępu do internetu w tej sytuacji. Jeśli już próbowałeś zresetować router i kartę Wi-Fi, a to nie pomogło, to znaczy, że problem może tkwić w kablu, który dostarcza sygnał do twojego sprzętu. Jakikolwiek uszkodzony kabel, niezależnie od tego, czy to Ethernet, czy ten do dostawcy internetu, może skutkować brakiem połączenia. Warto regularnie sprawdzać, jak wyglądają kable oraz gniazda, a także używać narzędzi diagnostycznych typu ping czy traceroute, żeby ustalić, gdzie leży problem. Nie zapominaj, żeby korzystać z kabli, które są w dobrym standardzie (na przykład Cat5e lub Cat6), bo to wpływa na jakość sygnału. Dbanie o sprzęt i jego systematyczne sprawdzanie może pomóc uniknąć różnych problemów z łącznością.

Pytanie 23

Do podwajacza napięcia podłączono napięcie sinusoidalne u(t) o wartości skutecznej URMS = 10 V. Jaka będzie wartość maksymalna napięcia UX w tym układzie?

Ilustracja do pytania
A. Około 14 V
B. Około 20 V
C. Około 40 V
D. Około 28 V
Wybór innych wartości maksymalnych napięcia wskazuje na pewne nieporozumienia dotyczące zasad działania podwajacza napięcia oraz sposobu przeliczania wartości skutecznych na wartość szczytową. Często mylone są pojęcia napięcia skutecznego i szczytowego. Napięcie skuteczne to wartość, która odpowiada napięciu stałemu, które dostarcza tę samą moc do obciążenia, co napięcie przemienne. Przy napięciu sinusoidalnym wartość szczytowa jest wyższa niż wartość skuteczna - dla napięcia 10 V RMS wartość szczytowa wynosi około 14,14 V. Niektóre odpowiedzi sugerują, że napięcie na wyjściu podwajacza może wynosić 20 V, 40 V lub inne wartości, co może wynikać z błędnego założenia, że podwajacz działa inaczej lub że wartości są dodawane zamiast mnożone. To zrozumienie jest kluczowe w inżynierii elektrycznej, gdzie stosowanie podwajaczy napięcia jest powszechne w różnych aplikacjach, a błędne obliczenia mogą prowadzić do niewłaściwego doboru komponentów lub błędów w projektowaniu układów. Zrozumienie, jak przeliczać wartości napięć i jak działają podwajacze, jest niezbędne dla prawidłowego projektowania systemów zasilania i elektroniki użytkowej.

Pytanie 24

Która z opcji odbiornika TV pozwala na oglądanie programów za pomocą streamingu?

A. Smart
B. Telegazeta
C. Timeshift
D. Multi PIP
Odpowiedź 'Smart' jest prawidłowa, ponieważ funkcja ta umożliwia korzystanie z aplikacji i platform streamingowych, co stało się standardem w nowoczesnych odbiornikach telewizyjnych. Telewizory z funkcją Smart posiadają dostęp do Internetu, co pozwala na oglądanie audycji na żądanie z takich serwisów jak Netflix, YouTube czy HBO Max. W praktyce, użytkownicy mogą korzystać z tych aplikacji, aby oglądać filmy, seriale i programy, które nie są dostępne w tradycyjnej telewizji. Smart TV wspiera również technologie takie jak AirPlay i Chromecast, co umożliwia strumieniowanie z urządzeń mobilnych. W kontekście dobrych praktyk branżowych, producenci telewizorów inwestują w rozwój interfejsów użytkownika oraz optymalizację aplikacji, aby zapewnić jak najlepsze doświadczenia wizualne i dźwiękowe, co znacząco podnosi komfort oglądania.

Pytanie 25

Do jakiego celu wykorzystuje się komparator?

A. wzmacniania sygnału
B. filtrowania napięć
C. porównania dwóch napięć
D. sumowania dwóch sygnałów
Komparator to kluczowe urządzenie elektroniczne używane w wielu aplikacjach inżynieryjnych, które pozwala na precyzyjne porównanie dwóch napięć. Działa on na zasadzie analizy napięcia wejściowego względem napięcia odniesienia, co skutkuje generowaniem sygnału wyjściowego, który informuje o tym, które napięcie jest wyższe. Przykładowe zastosowanie komparatorów obejmuje systemy automatyki, gdzie mogą być używane do detekcji poziomu napięcia w różnych układach zasilania. W praktycznych zastosowaniach, takich jak układy alarmowe czy systemy wykrywania, komparatory działają jako czujniki, które aktywują alarm w odpowiedzi na zmiany w napięciu, co zwiększa bezpieczeństwo. Zgodnie z najlepszymi praktykami branżowymi, komparatory powinny być projektowane z uwzględnieniem parametrów takich jak histereza, aby zapobiegać fałszywym sygnałom wyjściowym w przypadku fluktuacji napięcia. Warto również zaznaczyć, że komparatory są szeroko wykorzystywane w układach analogowych oraz cyfrowych, co czyni je fundamentalnym narzędziem w inżynierii elektronicznej.

Pytanie 26

Który rysunek przedstawia złącze wykorzystywane w interfejsie RS232?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Rysunek B przedstawia złącze DB9, które jest powszechnie stosowane w interfejsie RS232, popularnym standardzie komunikacji szeregowej. Złącze to charakteryzuje się dziewięcioma pinami, które umożliwiają przesyłanie danych oraz sygnałów kontrolnych. Złącze DB9 jest wykorzystywane w wielu urządzeniach, takich jak komputery, modemy, drukarki i różnorodne urządzenia przemysłowe. Dzięki standardowi RS232, urządzenia mogą komunikować się za pomocą prostego interfejsu, co czyni go idealnym do zastosowań, gdzie niezbędna jest stabilna i niezawodna transmisja danych na krótkich dystansach. W branży inżynieryjnej i automatyce, RS232 jest często stosowane w systemach SCADA oraz w interfacingu urządzeń, co sprawia, że znajomość tego złącza jest kluczowa dla inżynierów i techników. Dodatkowo, standard ten pozwala na łatwe diagnozowanie problemów związanych z połączeniem, dzięki wyraźnie zdefiniowanym sygnałom kontrolnym, co zwiększa jego użyteczność w praktyce.

Pytanie 27

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. wynoszący połowę okresu sygnału sterującego
B. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
C. wynoszący pełen okres sygnału sterującego
D. krótszy od pół okresu sygnału sterującego
Wzmacniacze mocy pracujące w klasie A charakteryzują się tym, że element aktywny, zazwyczaj tranzystor, prowadzi prąd przez cały okres sygnału sterującego. Oznacza to, że w każdym cyklu sygnału, niezależnie od jego amplitudy czy kształtu, tranzystor jest aktywny przez pełny okres. To podejście zapewnia wysoką liniowość i małe zniekształcenia, co jest kluczowe w aplikacjach audio, gdzie jakość dźwięku jest priorytetem. W praktyce, wzmacniacze klasy A są często wykorzystywane w drobnych systemach audio, gdzie wymagane jest odtwarzanie sygnałów o wysokiej wierności. Przykładem mogą być wzmacniacze lampowe, które zyskały popularność wśród audiofilów właśnie dzięki jakości dźwięku. Wzmacniacze te są również stosowane w systemach RF (radio-frequency), gdzie ich stabilność i linearność są kluczowe. Znajomość działania wzmacniaczy klasy A jest niezbędna dla inżynierów pracujących w branży audio oraz telekomunikacyjnej, co czyni tę wiedzę niezwykle istotną w kontekście standardów branżowych.

Pytanie 28

Na podstawie wskazania watomierza określ moc czynną na obciążeniu zasilacza.

Ilustracja do pytania
A. 12 W
B. 120 W
C. 60 W
D. 6 W
Wybór odpowiedzi 120 W jest na pewno trafny, bo moc czynna pokazana przez watomierz to to, co naprawdę zużywa energia przez obciążenie. W tej sytuacji, nawet jeśli na początku watomierz pokazał 60 W, to przy zasilaczu, gdzie mamy 100 V i 2 A, moc czynna powinna wynosić 200 W, zakładając idealny współczynnik mocy (czyli cos(φ) = 1). Ale pamiętaj, żeby zawsze polegać na samym watomierzu, bo to on daje nam najlepsze dane. Watomierze są super przydatne dla inżynierów, bo pomagają im dokładnie śledzić i poprawiać zużycie energii w różnych systemach elektrycznych. Świadomość tego, jak używamy energii elektrycznej, pomaga nam znaleźć miejsca, gdzie możemy zaoszczędzić. Kiedy rozumiemy, jak działają watomierze i jak można je wykorzystać w różnych sytuacjach, to zarządzanie energią staje się dużo łatwiejsze i skuteczniejsze.

Pytanie 29

Oblicz amplitudę sygnału wyjściowego generatora o częstotliwości 100 Hz, jeśli woltomierz elektromagnetyczny zmierzył napięcie 8 V?

A. 22,1 V
B. 11,3 V
C. 9,8 V
D. 5,6 V
Amplituda sygnału wyjściowego generatora o częstotliwości 100 Hz, którą mierzono za pomocą woltomierza elektromagnetycznego, może wprowadzać w błąd, jeśli nie zrozumie się, jak działają pomiary napięcia w kontekście sygnałów zmiennych. Odpowiedzi takie jak 5,6 V, 9,8 V czy 22,1 V sugerują różne błędne interpretacje tego, co woltomierz wskazuje. Woltomierz elektromagnetyczny, gdy mierzy sygnał sinusoidalny, wyświetla wartość skuteczną (RMS) napięcia. Wartość RMS dla sygnału sinusoidalnego jest mniejsza od maksymalnej wartości napięcia o pierwiastek z dwóch. Zatem dla napięcia 8 V, które zostało zmierzone przez woltomierz, należy stosować wzór U(max) = U(RMS) × √2. Jeśli ktoś pomyliłby pomiar z innym typem sygnału, np. prostokątnym czy trójkątnym, mógłby błędnie oszacować amplitudę. Często występującym problemem jest także nieuwzględnienie wpływu impedancji obciążenia lub nierozumienie, że pomiar wykonany na zniekształconym sygnale nie będzie odzwierciedlał rzeczywistej amplitudy. Tego rodzaju błędne rozumowanie może prowadzić do znaczących pomyłek w projektach inżynieryjnych, gdzie precyzyjne dane o napięciu są kluczowe, a ich ignorowanie może skutkować awarią sprzętu lub niewłaściwym działaniem obwodów. W związku z tym warto zapoznać się z dokumentacją producentów przyrządów pomiarowych oraz standardami, takimi jak IEC 61557, aby lepiej zrozumieć, jak maksymalizować dokładność i bezpieczeństwo pomiarów.

Pytanie 30

Karta pomiarowa przedstawia parametry katalogowe i zmierzone zasilacza stabilizowanego. Który parametr nie spełnia wymagania katalogowego?

Parametry katalogoweWartości zmierzone
Napięcie wejściowe24 V ±10%22 V
Maksymalny prąd wyjścia1,5 A ±10%1,4 A
Napięcie wyjściowe14 V ±5%14,5 V
Maksymalne napięcie tętnień200 mVpp ±5%215 mVpp
Sprawność energetyczna55%÷85%85%
Zakres temperatury pracy0÷40°C35°C
A. Maksymalny prąd wyjścia.
B. Maksymalne napięcie tętnień.
C. Sprawność energetyczna.
D. Napięcie wejściowe.
Maksymalne napięcie tętnień jest kluczowym parametrem w ocenie jakości zasilacza stabilizowanego. W tej sytuacji, wartość zmierzona przekracza dopuszczalny poziom tolerancji określony w specyfikacji producenta, co oznacza, że zasilacz nie spełnia wymaganych norm. Zasilacze stabilizowane powinny charakteryzować się niskim poziomem tętnień, aby zapewnić stabilne i czyste napięcie na wyjściu, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, takich jak systemy audio, medyczne czy telekomunikacyjne. Dobre praktyki branżowe sugerują, aby wartość tętnień nie przekraczała określonego poziomu, co zapewnia poprawne działanie podłączonych urządzeń. W przypadku zasilaczy, normy takie jak IEC 61000-3-2 definiują maksymalne wartości tętnień, które powinny być przestrzegane. Zrozumienie znaczenia napięcia tętnień jest więc niezbędne dla inżynierów zajmujących się projektowaniem i testowaniem urządzeń elektronicznych, ponieważ przekroczenie tolerancji może prowadzić do awarii komponentów oraz nieprawidłowego działania całego systemu.

Pytanie 31

W systemie z wzmacniaczem oraz głośnikiem kluczowe jest z perspektywy efektywności układu, aby impedancja głośnika

A. była jak najmniejsza
B. przekraczała impedancję wyjściową wzmacniacza
C. była jak największa
D. była równa impedancji wyjściowej wzmacniacza
Poprawną odpowiedzią jest "równa impedancji wyjściowej wzmacniacza", gdyż zasadniczym celem w projektowaniu systemów audio jest osiągnięcie maksymalnej efektywności energetycznej. Zasada dopasowania impedancji wskazuje, że impedancja głośnika powinna być zgodna z impedancją wyjściową wzmacniacza, co minimalizuje straty energii. W praktyce, jeśli impedancja głośnika jest na poziomie 8 Ohm, a wzmacniacz ma impedancję wyjściową również 8 Ohm, to cała moc wyjściowa wzmacniacza zostanie przekazana do głośnika, co zapewnia optymalne wykorzystanie energii i jakość dźwięku. Niedopasowanie impedancji prowadzi do strat mocy, co skutkuje niższą głośnością oraz zniekształceniami dźwięku. Dlatego ważne jest, aby przy wyborze głośników do wzmacniaczy, uwzględniać parametry techniczne, takie jak impedancja, zgodnie z zaleceniami producentów sprzętu audio. Warto również pamiętać, że standardy branżowe, takie jak AES (Audio Engineering Society), promują stosowanie dopasowania impedancji dla poprawy jakości dźwięku w systemach audio.

Pytanie 32

Indywidualny zestaw satelitarny odbiera programy telewizyjne nadawane wyłącznie w polaryzacji "V". Napięcia zasilające i sterujące konwerterem oraz głowicą tunera satelitarnego są zgodne z dokumentacją techniczną. Uszkodzeniu uległ

Ilustracja do pytania
A. konwertor zamontowany w antenie satelitarnej.
B. moduł głowicy w.cz. tunera SAT.
C. modulator w.cz. tunera SAT.
D. przewód koncentryczny łączący konwerter z tunerem.
Odpowiedź wskazująca na uszkodzenie konwertera zamontowanego w antenie satelitarnej jest prawidłowa, ponieważ konwerter odgrywa kluczową rolę w procesie odbioru sygnałów satelitarnych. Jego zadaniem jest konwersja sygnału satelitarnego na niższą częstotliwość, co umożliwia dalsze przetwarzanie przez tuner satelitarny. W sytuacji, gdy system odbiera sygnały tylko w polaryzacji 'V', a napięcia zasilające i sterujące są zgodne z dokumentacją, można wnioskować, że inne elementy systemu, takie jak tuner czy przewód koncentryczny, funkcjonują prawidłowo. Uszkodzenie konwertera może objawiać się brakiem odbioru sygnału lub jego zniekształceniem. W praktyce, jeśli konwerter jest uszkodzony, użytkownicy mogą doświadczać problemów z jakością obrazu lub brakiem sygnału, co jest typowym objawem awarii tego komponentu. W związku z tym, regularna konserwacja i kontrola stanu konwertera są zalecane, aby zapewnić nieprzerwaną funkcjonalność systemu odbioru satelitarnego, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 33

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 100 nF 100 V
B. 1000 nF 1000 V
C. 10 nF 1000 V
D. 10 nF 100 V
Podane odpowiedzi, które nie są zgodne z właściwym oznaczeniem kondensatora, zdają się wynikać z niewłaściwego zrozumienia zasad działania kondensatorów ceramicznych i ich oznaczeń. Odpowiedzi takie jak "10 nF 1000 V" oraz "1000 nF 1000 V" sugerują niepoprawne wartości pojemności oraz napięcia, które mogą wprowadzać w błąd. Odpowiedź "10 nF 1000 V" posiada zbyt małą pojemność w porównaniu do wymaganego 100 nF, co oznacza, że nie spełnia parametrów kondensatora, który powinien być inny w kontekście zastosowania. Z kolei "1000 nF 1000 V" oferuje zbyt dużą pojemność oraz napięcie, co może prowadzić do problemów z doborem właściwego komponentu do obwodu. W elektronice, wybór kondensatora wymaga zrozumienia zarówno pojemności, jak i napięcia roboczego, a nieprawidłowy dobór może skutkować awarią obwodu lub uszkodzeniem komponentów. Przykładowo, zastosowanie kondensatora o wyższej pojemności niż wymagana może prowadzić do nieprawidłowego działania układów filtrujących, co jest kluczowe w przypadku aplikacji audio czy zasilających. Należy również pamiętać, że kondensatory mają swoje specyfikacje dotyczące tolerancji, co wpływa na ich praktyczne zastosowanie w różnych układach elektronicznych.

Pytanie 34

Jaką rolę w urządzeniach elektronicznych pełni element przedstawiony na ilustracji?

Ilustracja do pytania
A. Falownika.
B. Generatora.
C. Stabilizatora.
D. Prostownika.
Element przedstawiony na ilustracji to mostek prostowniczy, który jest kluczowym komponentem w wielu urządzeniach elektronicznych. Jego podstawową funkcją jest przekształcanie prądu przemiennego (AC) na prąd stały (DC), co jest niezbędne dla wielu układów, które wymagają stabilnego i jednolitego źródła zasilania. Mostki prostownicze znajdują zastosowanie w zasilaczach, ładowarkach, a także w systemach energii odnawialnej, takich jak panele słoneczne, gdzie konieczne jest przekształcenie generowanego prądu przemiennego na prąd stały do zasilania urządzeń. W praktyce, dobór odpowiedniego mostka prostowniczego powinien być zgodny z normami i standardami branżowymi, takimi jak IEC 61131 dla automatyki i zasilania. Dzięki zastosowaniu mostków prostowniczych możliwe jest uzyskanie bardziej stabilnego zasilania, co przekłada się na dłuższą żywotność komponentów elektronicznych oraz zwiększoną efektywność energetyczną systemów.

Pytanie 35

Jakie elementy zawiera oznaczenie typu tranzystora?

A. tylko litery
B. cyfry oraz wielkie litery
C. cyfry i małe litery
D. tylko cyfry
Oznaczenie typu tranzystora rzeczywiście składa się z cyfr oraz wielkich liter, co jest zgodne z przyjętymi standardami w branży półprzewodników. Przykładem może być tranzystor typu BC547, gdzie 'BC' to oznaczenie serii, a '547' to numer katalogowy, który jest cyfrą. Takie oznaczenie ułatwia inżynierom oraz technikom identyfikację i dobór odpowiednich komponentów do projektów elektronicznych. Ponadto, zgodnie z normami międzynarodowymi, jak IEC 60747, oznaczenia tranzystorów powinny być jednoznaczne i pozwalać na szybkie zrozumienie specyfikacji, takich jak maksymalne napięcie, prąd czy zastosowanie. Używanie cyfr i wielkich liter pozwala na tworzenie bardziej zróżnicowanych i precyzyjnych oznaczeń, co jest kluczowe w kontekście profesjonalnych aplikacji elektronicznych oraz w dokumentacji technicznej, gdzie jasność i zrozumiałość oznaczeń mają ogromne znaczenie dla efektywności pracy zespołów inżynieryjnych. Te praktyki pomagają także w dostosowywaniu komponentów do różnych norm i standardów obowiązujących na rynkach międzynarodowych.

Pytanie 36

W jakim standardzie pracują w sieci peer-to-peer dwa komputery, połączone ze sobą przewodem "crossover cable" podłączonym do gniazd RJ45?

Ilustracja do pytania
A. 10BASE-2
B. 10BASE-F
C. 10BASE-5
D. 10BASE-T
Wybór odpowiedzi nieodpowiedniego standardu Ethernet, takiego jak 10BASE-F, 10BASE-5, czy 10BASE-2, wskazuje na pewne nieporozumienia dotyczące sposobu działania i zastosowania różnych typów kabli i standardów sieciowych. Standard 10BASE-F, na przykład, jest przeznaczony do pracy z włóknami optycznymi, a więc nie jest stosowany w przypadku połączeń miedzianych, jak w przypadku kabla crossover. 10BASE-5 oraz 10BASE-2 to standardy, które wykorzystują kabel koncentryczny. 10BASE-5, zwany również "thicknet", był jednym z pierwszych standardów Ethernet, natomiast 10BASE-2, znany jako "thinnet", jest jego lżejszą wersją, ale żadna z tych technologii nie wspiera przewodów skrętkowych do połączeń peer-to-peer. W praktyce, te standardy nie tylko różnią się fizycznym medium, ale również sposobem, w jaki komunikują się z urządzeniami. Zrozumienie, że dla połączenia bezpośredniego dwóch komputerów w sieci lokalnej najlepszym wyborem jest standard 10BASE-T, który umożliwia użycie przewodu crossover, jest kluczowe. Wybór niewłaściwego standardu może prowadzić do problemów z komunikacją, ponieważ różne technologie Ethernet wymagają różnych typów kabli, co może w rezultacie wpłynąć na prędkość i niezawodność połączenia. Dlatego ważne jest, aby przed podjęciem decyzji o połączeniu sieciowym dokładnie zrozumieć specyfikacje i zastosowania poszczególnych standardów.

Pytanie 37

Która z poniższych liczb stanowi przedstawienie w kodzie BCD 8421?

A. 11101110
B. 10101010
C. 11001100
D. 01100110
Kod BCD 8421, czyli Binary-Coded Decimal, to taki sposób zapisywania liczb dziesiętnych, gdzie każda cyfra oznaczona jest jako cztery bity. Na przykład, jak weźmiemy naszą odpowiedź '01100110', to widzimy, że składa się z dwóch części: '0110', co to jest 6, i znowu '0110', co też daje 6 w dziesiętnym. W sumie mamy 66! Ten kod jest naprawdę szeroko używany w elektronice i komputerach, bo często trzeba przekształcać liczby dziesiętne na binarne. Widzimy to w cyfrowych wyświetlaczach, różnych urządzeniach pomiarowych i w systemach komputerowych, które pokazują dane w łatwy do zrozumienia sposób. Zrozumienie kodu BCD jest na prawdę ważne, bo pomaga lepiej radzić sobie z obliczeniami w systemach cyfrowych, co jest istotne w inżynierii oprogramowania oraz elektroniki.

Pytanie 38

Jakiego rodzaju wtyczki trzeba użyć, aby podłączyć kamerę CCTV do gniazda wejściowego rejestratora?

A. UC-1
B. TNC
C. RJ12
D. BNC
Wtyk BNC jest standardem stosowanym w systemach CCTV do przesyłania sygnału wideo. Jest on szeroko akceptowany i rekomendowany w branży monitoringu, ponieważ zapewnia solidne połączenie oraz minimalizuje straty sygnału, co jest szczególnie istotne w przypadku długich odległości przesyłu. BNC jest zbudowany w taki sposób, że umożliwia szybkie i bezpieczne podłączenie, a jego konstrukcja pozwala na łatwe odłączanie oraz ponowne podłączanie bez uszkodzenia kabla. To czyni go idealnym rozwiązaniem w instalacjach, gdzie kamera CCTV wymaga częstego dostępu. W praktyce, wtyki BNC są używane w połączeniach z rejestratorami i monitorami, co pozwala na efektywne zarządzanie systemem zabezpieczeń. Użycie wtyków BNC jest zgodne z normami branżowymi, co czyni je odpowiednim wyborem dla profesjonalnych instalacji monitorujących.

Pytanie 39

Która z funkcji w oprogramowaniu EDA zajmuje się wyznaczaniem ścieżek przy projektowaniu układów PCB?

A. Annotation
B. Placing
C. RuleCheck
D. Routing
Routing to kluczowa funkcja w programach EDA (Electronic Design Automation), która odpowiada za wytyczanie ścieżek w projektowaniu obwodów drukowanych (PCB). Proces ten polega na automatycznym lub półautomatycznym tworzeniu połączeń między komponentami na płycie, zgodnie z określonymi regułami projektowymi i wymaganiami elektrycznymi. Dobrze zaprojektowany routing nie tylko zapewnia prawidłowe połączenia, ale również minimalizuje interferencje elektromagnetyczne, optymalizuje długości ścieżek oraz ułatwia proces produkcji. W praktyce, inżynierowie często korzystają z algorytmów routingu, które uwzględniają różne czynniki, takie jak szerokość ścieżek, odstępy między nimi, a także charakterystykę sygnałów. Zgodnie z najlepszymi praktykami, routing powinien być wykonywany z uwzględnieniem zasad projektowania, takich jak DFM (Design for Manufacturing) i DFT (Design for Testability), co przyczynia się do efektywności produkcji i późniejszej diagnostyki.

Pytanie 40

Na rysunku przedstawiono symbol graficzny przerzutnika wyzwalanego

Ilustracja do pytania
A. zboczem narastającym.
B. poziomem niskim.
C. zboczem opadającym.
D. poziomem wysokim.
Przerzutniki wyzwalane zboczem opadającym, na przykład przerzutnik JK, to podstawowe elementy w cyfrowych układach logicznych. Można zauważyć trójkąt przy wejściu zegarowym, co pokazuje, że przerzutnik zareaguje na zmiany sygnału zegarowego. Kiedy sygnał zegarowy spada z wysokiego poziomu do niskiego, to właśnie wtedy przerzutnik zmienia swój stan wyjścia. To naprawdę ważne w projektowaniu systemów sekwencyjnych, bo synchronizacja z zegarem jest kluczowa, żeby wszystko działało jak należy. W praktyce przerzutniki JK wyzwalane zboczem opadającym mogą być wykorzystywane w licznikach, rejestrach przesuwających i różnych układach pamięci, które potrzebują dokładnej kontroli nad zmianami stanu. Zrozumienie, jak te przerzutniki działają, to podstawa dla każdego, kto zajmuje się projektowaniem układów cyfrowych.