Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 lutego 2026 15:32
  • Data zakończenia: 10 lutego 2026 15:38

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które urządzenie zostało przedstawione na zdjęciu?

Ilustracja do pytania
A. Rezystor drutowy.
B. Potencjometr montażowy.
C. Przełącznik czteropozycyjny.
D. Kondensator nastawny.
W odpowiedziach, które wybrano, można spotkać koncepcje, które są w istotny sposób mylone z zasadami działania potencjometru montażowego. Kondensator nastawny, jako element pasywny, służy do gromadzenia ładunku elektrycznego i nie ma zdolności do regulacji oporu. Jego zastosowanie polega na modyfikacji częstotliwości obwodów rezonansowych, co jest zupełnie innym procesem niż regulacja oporu. Tego rodzaju błędne rozumienie może wynikać z mylnych skojarzeń dotyczących regulacji parametrów w obwodach elektrycznych. Kolejnym błędnym podejściem jest przełącznik czteropozycyjny, który działa na zasadzie zmiany połączeń obwodów, a nie regulacji oporu. W praktyce, przełączniki tego rodzaju są wykorzystywane do wybierania różnych trybów działania urządzeń, co jest istotnie różne od funkcji potencjometru. W przypadku rezystora drutowego, jego konstrukcja nie zawiera ruchomego elementu, co wyklucza możliwość jakiejkolwiek regulacji. Błędy te wynikają często z nieprecyzyjnej wiedzy na temat budowy i działania elementów elektronicznych, co jest kluczowe dla zrozumienia ich zastosowań. Zrozumienie różnicy pomiędzy tymi urządzeniami jest fundamentalne dla właściwego projektowania oraz diagnozowania układów elektronicznych, co ma kluczowe znaczenie w inżynierii elektronicznej.

Pytanie 2

Na rysunku przedstawiono budowę oraz zasadę działania zaworu

Ilustracja do pytania
A. dławiąco-zwrotnego.
B. podwójnego sygnału.
C. przełączającego obieg.
D. szybkiego spustu.
Zawór szybkiego spustu to mega ważny element w systemach pneumatycznych. Jego głównym zadaniem jest szybkie i skuteczne odprowadzanie sprężonego powietrza. Na rysunku widzimy, że w pozycji a) zawór jest zamknięty i nie pozwala na przepływ powietrza, a w pozycji b) się otwiera, co pozwala na błyskawiczne uwolnienie ciśnienia. Takie zawory są super ważne, zwłaszcza w sytuacjach, gdzie trzeba działać szybko - na przykład w hamulcach samochodów czy w procesach produkcyjnych. Dzięki nim można efektywniej operować i zapewnić większe bezpieczeństwo, bo można w kontrolowany sposób spuszczać powietrze, co zmniejsza ryzyko uszkodzeń. Warto też pamiętać, że te zawory powinny spełniać różne normy branżowe, jak np. ISO 4414, które mówią o zasadach bezpieczeństwa i wydajności w systemach pneumatycznych.

Pytanie 3

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. podnieść poszkodowanego i opatrzyć ranę głowy
B. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
C. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
D. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
Podniesienie poszkodowanego oraz opatrzenie rany głowy w sytuacji, gdy wystąpiły objawy neurologiczne, takie jak mrowienie w kończynach, może prowadzić do poważnych konsekwencji zdrowotnych. W przypadku urazów głowy oraz możliwych uszkodzeń kręgosłupa, ruch może zaostrzyć obrażenia, wywołując dodatkowe komplikacje, w tym uszkodzenia rdzenia kręgowego. W sytuacjach awaryjnych należy kierować się zasadą 'nie przemieszczać, jeśli nie jest to absolutnie konieczne'. Z kolei posadzenie poszkodowanego na krześle stwarza ryzyko upadku oraz dodatkowego urazu, co może być szczególnie niebezpieczne. W praktyce, nieprawidłowe podejście do udzielania pierwszej pomocy może prowadzić do opóźnienia w udzieleniu profesjonalnej pomocy medycznej oraz zwiększenia ryzyka dla życia poszkodowanego. Warto zwrócić uwagę na to, że w sytuacji, gdy ktoś traci przytomność lub wykazuje objawy neurologiczne, zawsze powinno się wezwać pomoc medyczną przed przystąpieniem do jakichkolwiek działań. Zasady pierwszej pomocy podkreślają konieczność monitorowania stanu poszkodowanego oraz zapewnienia mu bezpieczeństwa do momentu przybycia służb. Ignorowanie tych zasad w celu szybkiego działania może prowadzić do nieodwracalnych skutków zdrowotnych.

Pytanie 4

Na zdjęciu przedstawiono element hydrauliczny i odpowiadający mu symbol graficzny. Jest to

Ilustracja do pytania
A. pompa łopatkowa.
B. zawór kulowy.
C. rozdzielacz suwakowy.
D. zasilacz kompaktowy.
Wybór odpowiedzi innej niż zawór kulowy, może wprowadzać w błąd, jeśli chodzi o funkcje elementów hydraulicznych. Pompa łopatkowa, choć jest ważna, to tak naprawdę przetłacza ciecz, a nie kontroluje jej przepływ. Działa na innych zasadach niż zawor, bo chodzi o wytwarzanie ciśnienia. Zasilacz kompaktowy to z kolei coś, co dostarcza energię, a nie reguluje przepływu. Rozdzielacz suwakowy z kolei kieruje ciecz w różne strony, co też diametralnie różni się od prostego działania zaworu kulowego. Może to wszystko wynikać z mylnego wrażenia, że te elementy mają podobne funkcje. Ważne, żeby zrozumieć, jak każdy z tych komponentów działa i do czego służy, bo to bardzo ułatwia projektowanie i dbanie o systemy hydrauliczne. Lepiej nie pomijać tej wiedzy, bo później mogą się pojawić problemy.

Pytanie 5

Jaką wartość rezystancji powinien mieć rezystor Rl ograniczający prąd diody w obwodzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 12,0 kΩ
B. 120,0 kΩ
C. 1,2 kΩ
D. 1 200,0 kΩ
Odpowiedź 1,2 kΩ jest prawidłowa, ponieważ rezystor Rl jest odpowiedzialny za ograniczenie prądu do wartości 0,01 A, co jest kluczowe dla prawidłowego działania diody. Przykładowo, w przypadku diod LED, ich maksymalne natężenie prądu powinno być ściśle kontrolowane, aby uniknąć ich uszkodzenia. W obwodach elektronicznych stosujemy prawo Ohma, które definiuje związek między napięciem (V), natężeniem prądu (I) i rezystancją (R). Wzór V = I * R pozwala obliczyć, że przy napięciu zasilania wynoszącym 12 V, odpowiedni rezystor Rl o wartości 1,2 kΩ jest w stanie ograniczyć prąd do żądanej wartości. Zastosowanie odpowiedniego rezystora jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych, gdzie precyzyjne ograniczenie prądu jest kluczowe dla niezawodności i trwałości komponentów. Dodatkowo, warto znać metody obliczania rezystancji w obwodach szeregowych i równoległych, co może być przydatne w bardziej złożonych projektach.

Pytanie 6

Praska do zaciskania końcówek tulejkowych może być użyta do montażu końcówki przedstawionej na rysunku

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór błędnej odpowiedzi często wynika z niepełnego zrozumienia różnicy między różnymi typami końcówek kablowych oraz narzędzi do ich montażu. Końcówki przedstawione pod literami A, B i D mogą nie być odpowiednie do użycia z prasą do zaciskania końcówek tulejkowych, ponieważ mogą to być końcówki bez izolacji, lub inne typy, które nie przystosowano do zaciskania w ten sposób. Należy pamiętać, że każda końcówka ma swoje specyficzne wymagania montażowe. Używanie niewłaściwego narzędzia do montażu końcówek może prowadzić do problemów z połączeniem, takich jak luźne styki, co z kolei może prowadzić do przegrzewania się przewodów i ryzyka zwarcia. Dodatkowo, takie błędy mogą wynikać z niewłaściwego postrzegania zasady działania narzędzi i ich zastosowania w praktyce. Aby uniknąć takich sytuacji, kluczowe jest zrozumienie specyfikacji technicznych zarówno końcówek, jak i narzędzi, a także przestrzeganie norm branżowych, co jest istotne dla zapewnienia bezpieczeństwa oraz niezawodności systemów elektrycznych. Stosowanie się do dobrych praktyk przy montażu i korzystanie z odpowiednich narzędzi są niezbędnymi aspektami, które każdy technik powinien mieć na uwadze.

Pytanie 7

Przestrzeń gazowa akumulatora hydraulicznego \( V_O \) została napełniona azotem o ciśnieniu początkowym \( p_0 \). W trakcie powolnego rozładowania przy stałej temperaturze, podczas którego zmieniły się parametry \( p_1 \) i \( V_1 \), obowiązuje zależność

A. \( p_0 \, V_1 = p_1 \, V_O \)
B. \( p_0 \, V_O = p_1 \, V_1 \)
C. \( p_0 \, V_1^{1.4} = p_1 \, V_O^{1.4} \)
D. \( p_0 \, V_O^{1.4} = p_1 \, V_1^{1.4} \)
Wszystkie odpowiedzi inne niż D nie odzwierciedlają prawidłowych zasad dotyczących zachowania gazów w warunkach izotermicznych. Należy zauważyć, że w przypadku gazów idealnych, przy stałej temperaturze, zachowanie ciśnienia i objętości nie jest niezależne, co prowadzi do błędnych wniosków przedstawionych w innych opcjach. Często mylone są pojęcia związane z ciśnieniem i objętością, co skutkuje nieprawidłowym zrozumieniem zależności między tymi parametrami. W praktyce, zrozumienie, że iloczyn ciśnienia i objętości jest stały, jest kluczowe w wielu zastosowaniach inżynieryjnych. Ignorowanie tego może prowadzić do poważnych błędów w projektowaniu systemów hydraulicznych, co w efekcie może generować nieprawidłowe działanie urządzeń oraz potencjalne zagrożenia dla bezpieczeństwa. Niezrozumienie tej zasady może także skutkować nieefektywnym wykorzystaniem energii w systemach, gdzie optymalizacja ciśnienia i objętości jest konieczna dla osiągnięcia maksymalnej wydajności. Dlatego zrozumienie prawa Boyle'a-Mariotte'a oraz jego zastosowanie w praktyce jest niezbędne dla każdego inżyniera czy technika pracującego z systemami gazowymi.

Pytanie 8

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. ST (Structured Text) - tekst strukturalny
C. FBD (Function Block Diagram) - schemat bloków funkcyjnych
D. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 9

Elementem zaworu, oznaczonym na rysunku znakiem X jest

Ilustracja do pytania
A. przyłącze przetwornika ciśnienia.
B. elektromagnes z przyłączem.
C. czujnik położenia suwaka.
D. przyłącze wspomagania pneumatycznego.
Analiza pozostałych odpowiedzi ukazuje różne błędne koncepcje związane z działaniem i budową zaworów elektromagnetycznych. Czujnik położenia suwaka, choć istotny w kontekście monitorowania pozycji, nie jest elementem, który steruje bezpośrednio przepływem medium. Jego rola ogranicza się do detekcji, a nie aktywnego wpływania na mechanizm zaworu. Przyłącze wspomagania pneumatycznego również nie jest związane z elementem oznaczonym znakiem X. Przyłącze to jest używane do zasilania systemów pomocniczych, które nie mają bezpośredniego wpływu na mechanizm zaworu. Z kolei przyłącze przetwornika ciśnienia jest dedykowane do pomiaru ciśnienia w układzie, co stanowi zupełnie inną funkcjonalność niż elektromagnes. Wybór niewłaściwych odpowiedzi może wynikać z mylnego założenia, że każdy z tych elementów pełni funkcję decyzyjną w kontekście przepływu medium. Należy pamiętać, że każdy komponent w systemie automatyki ma swoją specyfikę i zrozumienie ich ról jest kluczowe dla prawidłowego projektowania oraz eksploatacji systemów. Błędy te często wynikają z braku wiedzy na temat podstawowych zasad działania i integracji poszczególnych elementów, co może prowadzić do nieefektywności w projektowaniu układów pneumatycznych oraz ich późniejszej obsługi.

Pytanie 10

Którą metodę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie.
B. Spawanie.
C. Zgrzewanie.
D. Lutowanie.
Lutowanie jest procesem, który polega na łączeniu metali z wykorzystaniem dodatkowego materiału, zwanego lutem, o niższej temperaturze topnienia niż metale łączone. Na zdjęciu widoczne są przewody elektryczne, których połączenie zostało wykonane w tej technice. Lutowanie jest powszechnie stosowane w elektronice do łączenia elementów w obwodach elektronicznych, ponieważ zapewnia silne i trwałe połączenia. W praktyce lutowanie wykorzystuje się nie tylko w elektronice, ale również w wielu innych branżach, takich jak motoryzacja czy przemysł maszynowy. Standardy branżowe, takie jak IPC-A-610 dotyczące akceptowalności montażu elektronicznego, podkreślają znaczenie jakości połączeń lutowanych. Właściwe techniki lutowania, takie jak stosowanie odpowiednich lutów i technik grzewczych, są kluczowe dla zapewnienia niezawodności i bezpieczeństwa w aplikacjach. Ponadto, lutowanie może być stosowane do naprawy i konserwacji urządzeń, co czyni go niezwykle wartościową umiejętnością w wielu zawodach technicznych.

Pytanie 11

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie miękkie
B. Spawanie elektryczne
C. Spawanie gazowe
D. Lutowanie twarde
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 12

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. zawór dławiący
B. membrana
C. tłumik
D. magnes stały
Wybór innych opcji, takich jak zawór dławiący, membrana czy tłumik, nie jest adekwatny do kontekstu bezdotykowych sensorów położeń krańcowych w siłownikach. Zawór dławiący ma na celu regulację przepływu cieczy w układach hydraulicznych, co związane jest z kontrolą prędkości ruchu, ale nie ma zastosowania w pomiarze pozycji. Membrana, często używana w siłownikach pneumatycznych, odpowiada za separację mediów i nie jest elementem, który mógłby współpracować z sensorami położeń. Tłumik natomiast służy do zmniejszania drgań i hałasu, a nie do monitorowania lokalizacji siłownika. Takie myślenie może wynikać z nieporozumienia co do funkcji poszczególnych komponentów w systemach automatyzacji. Kluczowe jest zrozumienie, że bezdotykowe sensory opierają się na interakcji z polem magnetycznym, co czyni magnesy stałe niezbędnymi dla ich działania. Użycie niewłaściwych elementów prowadzi do błędów w projekcie systemów automatyki, co może skutkować obniżoną efektywnością i zwiększonym ryzykiem awarii. W kontekście projektowania systemów warto kierować się zasadami inżynieryjnymi oraz najlepszymi praktykami, które stawiają na efektywność, niezawodność i łatwość w utrzymaniu.

Pytanie 13

Ile wynosi wartość pojemności kondensatora, przedstawionego na rysunku?

Ilustracja do pytania
A. 474 nF
B. 474 μF
C. 470 μF
D. 470 nF
Wybór jednej z innych opcji wskazuje na nieporozumienie dotyczące zasad oznaczania pojemności kondensatorów. Odpowiedzi takie jak 470 μF czy 474 μF sugerują znacznie większą pojemność, co jest niezgodne z oznaczeniem "474", które właściwie odzwierciedla pojemność 470 nF. Często popełnianym błędem jest mylenie jednostek miary; mikrofarady (μF) są znacznie większe od nanofaradów (nF) i nie można ich stosować zamiennie. Ponadto, sugerowanie wartości 474 nF również jest błędne, ponieważ nie odzwierciedla rzeczywistej wartości, którą można odczytać z kodu na kondensatorze. W praktyce, zrozumienie konwencji oznaczania pojemności jest niezbędne dla inżynierów w celu zapewnienia, że wykorzystywane komponenty są zgodne z wymaganiami obwodu. Pamiętaj, że kondensatory o niewłaściwej pojemności mogą prowadzić do nieprawidłowego działania układów elektronicznych, co może skutkować uszkodzeniem innych komponentów w systemie. Zwracaj uwagę na detale oznaczeń, aby uniknąć takich sytuacji w przyszłości.

Pytanie 14

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. równo przycięty na końcach
B. zakończony na końcach tulejkami
C. odizolowany na dowolną długość
D. zaizolowany na końcach
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 15

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg
A. 380V
B. 400 V
C. 240 V
D. 230 V
Nieprawidłowe odpowiedzi są wynikiem błędnego zrozumienia zasad działania silników trójfazowych oraz ich charakterystyki elektrycznej. Odpowiedzi 240 V, 380 V i 230 V są typowymi wartościami napięć, które mogą występować w różnych kontekstach, jednak nie odpowiadają one znamionowemu napięciu międzyfazowemu dla silnika asynchronicznego o danych znamionowych. W przypadku silników trójfazowych, napięcie międzyfazowe wynoszące 400 V jest normą w wielu krajach, w tym w Europie. Odpowiedzi 240 V, 230 V i 380 V mogą wynikać z nieporozumień dotyczących napięcia międzyfazowego i jednofazowego lub pomiarów napięcia w różnych warunkach. Często występującym błędem jest mylenie napięcia fazowego z napięciem międzyfazowym; w układzie trójfazowym napięcie fazowe wynosi 230 V, co prowadzi do mylnego wniosku, że jest to wartość właściwa dla napięcia międzyfazowego. Dlatego ważne jest, aby przy analizie danych technicznych silników oraz przy projektowaniu instalacji elektrycznych mieć na uwadze standardy oraz dobre praktyki w branży, których celem jest zapewnienie bezpieczeństwa i niezawodności systemów zasilania.

Pytanie 16

Przyrząd pokazany na rysunku to

Ilustracja do pytania
A. klucz dynamometryczny.
B. klucz płaski.
C. klucz francuski.
D. klucz szwedzki.
Klucz dynamometryczny, przedstawiony na zdjęciu, jest narzędziem specjalistycznym, które umożliwia precyzyjne dokręcanie śrub i nakrętek z zastosowaniem określonego momentu obrotowego. W przeciwieństwie do innych typów kluczy, takich jak klucz francuski, klucz płaski czy klucz szwedzki, które jedynie umożliwiają przekręcanie elementów, klucz dynamometryczny posiada mechanizm, który umożliwia użytkownikowi ustawienie pożądanego momentu obrotowego, co jest kluczowe w wielu zastosowaniach inżynieryjnych i motoryzacyjnych. Przykładami zastosowań klucza dynamometrycznego są prace przy montażu silników, gdzie zbyt niski lub zbyt wysoki moment obrotowy może prowadzić do uszkodzenia elementów, a także w przypadku montażu kół w pojazdach, gdzie właściwie dobrany moment dokręcania śrub jest niezbędny dla bezpieczeństwa. Klucze dynamometryczne są również regulowane zgodnie z obowiązującymi normami branżowymi, co zapewnia ich niezawodność i dokładność w pracy. Prawidłowe użycie tego narzędzia przyczynia się do bezpieczeństwa i trwałości montażu.

Pytanie 17

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. uniwersalne
B. płaskie
C. oczko
D. zapadkowe
Stosowanie kluczy uniwersalnych, oczkowych czy płaskich w kontekście zwiększenia wydajności montażu połączeń gwintowych może być mylące, gdyż każdy z tych typów narzędzi ma swoje ograniczenia, które wpływają na efektywność pracy. Klucze uniwersalne, choć oferują wszechstronność, mogą nie zapewniać odpowiedniego momentu obrotowego i precyzji potrzebnej w aplikacjach wymagających dużej siły. Ich konstrukcja nie zawsze pozwala na łatwe dopasowanie do różnych głowic śrubowych, co może prowadzić do uszkodzenia elementów. Klucze oczkowe natomiast są przeznaczone do dokręcania śrub z główkami sześciokątnymi, ale ich użycie może wymagać częstego przestawiania narzędzia do kolejnych ruchów, co znacząco spowalnia proces. Klucze płaskie, choć również powszechnie stosowane, mają ograniczoną możliwość działania w ciasnych przestrzeniach, co może prowadzić do trudności w pracy w niektórych aplikacjach. Warto zauważyć, że błędne przekonania o uniwersalności tych narzędzi mogą prowadzić do nieefektywności i frustracji w pracy, co może z kolei negatywnie wpływać na czas realizacji projektów oraz jakość montażu. Świadomość tych ograniczeń oraz dobór narzędzi zgodnie z zasadami ergonomii i specyfiki zadania są kluczowe w celu optymalizacji procesów montażowych.

Pytanie 18

Czy panewka stanowi część składową?

A. łożyska kulkowego
B. sprzęgła sztywnego tulejowego
C. łożyska ślizgowego
D. zaworu pneumatycznego
Panewka jest kluczowym elementem łożysk ślizgowych, które są szeroko stosowane w różnych zastosowaniach inżynieryjnych, takich jak silniki, maszyny przemysłowe czy urządzenia hydrauliczne. Panewka działa jako element osłony, która umożliwia swobodny ruch wału w obrębie obudowy, minimalizując tarcie i zużycie. W przypadku łożysk ślizgowych, panewka może być wykonana z różnych materiałów, takich jak tworzywa sztuczne, metale czy kompozyty, a jej wybór zależy od specyficznych warunków pracy, takich jak obciążenie, prędkość i temperatura. Standardy branżowe, takie jak ISO 11358, dostarczają wytycznych dotyczących projektowania i doboru materiałów dla panewki, co pozwala na osiągnięcie wysokiej wydajności oraz długiej żywotności łożyska. Przykładem zastosowania panewki w łożyskach ślizgowych są silniki spalinowe, gdzie panewka wału korbowego pozwala na przenoszenie dużych sił bez nadmiernego zużycia.

Pytanie 19

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być układane jak najdalej od przewodów silnoprądowych
B. być wciągane do osłon jako ostatnie
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być wciągane do osłon jako pierwsze
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 20

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 0,6 A
B. 15,0 A
C. 3,6 A
D. 1,2 A
Wybór amperomierza o zakresie 15,0 A, 0,6 A lub 3,6 A nie jest odpowiedni do pomiaru prądu jałowego transformatora. Prąd jałowy wynoszący około 1 A z całą pewnością nie zostanie należycie odzwierciedlony w przypadku użycia amperomierza o zbyt dużym zakresie, jak 15 A. Taki amperomierz może nie mieć wystarczającej precyzji i w niektórych przypadkach może nie być w stanie wykryć tak małych wartości prądu, co prowadzi do błędnych odczytów oraz możliwości nieodpowiedniej analizy stanu technicznego transformatora. Z drugiej strony, wybór amperomierza o zakresie 0,6 A lub 3,6 A również jest nieodpowiedni, ponieważ nie zapewniają one wystarczającego marginesu dla, co może prowadzić do uszkodzenia urządzenia pomiarowego. Często popełnianym błędem jest założenie, że amperomierz z najwyższym zakresem pomiarowym jest najlepszym rozwiązaniem, co jest nieprawdziwe. W praktyce, stosowanie urządzeń pomiarowych z zakresami, które są zbyt oddalone od rzeczywistych wartości prądów może prowadzić do nieefektywnych pomiarów oraz wprowadzać w błąd, co do stanu technicznego systemu. Dlatego tak ważne jest uwzględnienie dokładnych parametrów transformatora i wymagań pomiarowych przy wyborze odpowiedniego sprzętu, co jest zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 21

Którego ściągacza należy użyć do demontażu łożyska przedstawionego na rysunku?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór niewłaściwego ściągacza do demontażu łożyska, jak miało to miejsce w przypadku odpowiedzi B, C czy D, jest częstym błędem, który może prowadzić do poważnych problemów podczas pracy. Ściągacze te nie są dostosowane do specyfiki pracy z łożyskami zewnętrznymi, co może skutkować ich nieefektywnym działaniem. Na przykład, ściągacz typu B, który może być zaprojektowany do innych zastosowań, nie ma odpowiednich ramion do precyzyjnego uchwycenia łożyska. Podobnie, ściągacz typu C, zazwyczaj stosowany do łożysk wewnętrznych lub w innych konfiguracjach, nie będzie w stanie zapewnić równomiernego rozłożenia siły, co zwiększa ryzyko uszkodzenia łożyska. W przypadku ściągacza typu D, jego konstrukcja może nie umożliwiać dostępu do miejsca montażu łożyska, co z kolei prowadzi do niepoprawnego lub niemożliwego demontażu. W branży mechanicznej, dobór narzędzi powinien opierać się na ich specyficznych właściwościach i przeznaczeniu. Ignorowanie tych podstawowych zasad może prowadzić do nie tylko do uszkodzeń łożysk, ale również do potencjalnego zagrożenia dla bezpieczeństwa operacji, co w dłuższej perspektywie może generować dodatkowe koszty napraw i przestojów w pracy.

Pytanie 22

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. niewłaściwym zerowaniem obudowy silnika pralki
B. brakiem zasilania elektrycznego
C. usterką silnika pralki
D. brakiem dopływu wody do urządzenia
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 23

Prawidłowo wykonane połączenie lutowane przedstawiono

Ilustracja do pytania
A. tylko na rysunku 1
B. tylko na rysunku 2
C. na rysunkach 2 i 3
D. na rysunkach 1 i 2
W przypadku niepoprawnych odpowiedzi, często spotykanym błędem jest mylenie cech właściwie wykonanych połączeń lutowanych. Wybierając odpowiedzi, które wskazują tylko jeden rysunek, użytkownicy mogą przeoczyć istotne cechy, które decydują o jakości lutowania. Na przykład, twierdzenie, że tylko rysunek 1 przedstawia prawidłowe połączenie, ignoruje fakt, że rysunek 2 także ilustruje poprawne parametry lutowania, takie jak odpowiednia ilość cyny i dobra przyczepność. Z kolei odpowiedzi wskazujące na rysunek 3 jako poprawny, często wynika z niezrozumienia niebezpieczeństw związanych z nadmiarem cyny, co może prowadzić do tzw. zimnych lutów, które są jednymi z najczęstszych problemów w elektronice. Warto także wspomnieć, że kryteria oceny jakości lutowania są ściśle określone przez standardy branżowe, które zalecają unikanie nadmiaru materiału lutowniczego oraz dbałość o odpowiednią temperaturę podczas lutowania. Ignorowanie tych zasad prowadzi do powstawania połączeń, które nie tylko są zawodne, ale mogą również generować dodatkowe koszty naprawy i serwisowania. Dlatego niezwykle istotne jest, aby zrozumieć, jakie cechy definiują prawidłowo lutowane połączenia oraz jakie konsekwencje mogą wynikać z ich zaniedbania.

Pytanie 24

Odczytaj wynik pomiaru wykonanego mikrometrem.

Ilustracja do pytania
A. 4,80 mm
B. 5,80 mm
C. 5,30 mm
D. 4,30 mm
Wybór błędnej odpowiedzi może wynikać z kilku typowych nieporozumień dotyczących odczytu pomiarów mikrometrycznych. Wiele osób może błędnie zinterpretować pozycję na podziałce głównej, co prowadzi do wyboru wartości 5,80 mm lub 5,30 mm. Problemy te zazwyczaj wynikają z nieprawidłowego odczytu liczby głównej, gdzie osoba pomiarowa może pomylić się, myśląc, że wartość na podziałce głównej pokazuje coś innego niż faktycznie jest. Ponadto, niepoprawne odczytywanie noniusza, takiego jak linia 30 lub 50, mogą skutkować odpowiedzią 4,30 mm lub 4,80 mm. Tego rodzaju błędy są częste, gdy osoba nie zwraca uwagi na precyzyjność podziałki noniusza, co jest kluczowe dla uzyskania dokładnych pomiarów. Zmniejszenie takich pomyłek można osiągnąć poprzez regularne ćwiczenie technik odczytu oraz szkolenie w dziedzinie metrologii. Zrozumienie zasad działania mikrometru oraz umiejętność odczytywania wyników w kontekście wymagań technicznych i standardów branżowych jest fundamentalne dla każdego specjalisty zajmującego się pomiarami w inżynierii oraz produkcji. Warto zainwestować czas w naukę poprawnych technik, co zaowocuje zwiększoną precyzją i jakością wykonywanych pomiarów.

Pytanie 25

Którym medium roboczym jest zasilane urządzenie o symbolu graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Prądem przemiennym.
B. Prądem stałym.
C. Sprężonym powietrzem.
D. Cieczą hydrauliczną.
Wybór odpowiedzi wskazującej na prąd stały, prąd przemienny czy sprężone powietrze egzekwuje zrozumienie podstawowych zasad działania układów hydraulicznych, które różnią się znacznie od elektrycznych czy pneumatycznych. Prąd stały oraz prąd przemienny to formy energii elektrycznej, która jest używana w urządzeniach elektrycznych, ale nie ma zastosowania w kontekście zaworów hydraulicznych. W przypadku układów hydraulicznych to ciecz hydrauliczna, zazwyczaj olej, pełni rolę medium roboczego, które przekształca energię mechaniczną w siłę roboczą. Z kolei sprężone powietrze jest medium stosowanym w pneumatyce, które działa na zasadzie różnicy ciśnień powietrza, co również nie jest zgodne z funkcją zaworów hydraulicznych. Istnieje powszechne nieporozumienie dotyczące tego, że różne systemy napędowe mogą być używane zamiennie, co jest błędne, ponieważ każdy typ systemu ma swoje unikalne właściwości oraz zastosowania. Przykładowo, układy hydrauliczne charakteryzują się zdolnością do generowania dużych sił przy relatywnie małych objętościach, co jest nieosiągalne dla systemów elektrycznych czy pneumatycznych w tej samej skali. Właściwe zrozumienie tych różnic pozwala na lepsze projektowanie i efektywniejsze wykorzystanie technologii w różnych dziedzinach przemysłu.

Pytanie 26

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. liczby par biegunów
B. kolejności faz
C. wartości częstotliwości napięcia zasilającego
D. wartości skutecznej napięcia zasilania stojana
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 27

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik prędkości
B. czujnik poziomu
C. przepływomierz
D. miernik mętności
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 28

Którego narzędzia należy użyć do wymiany łącznika przedstawionego na rysunku?

Ilustracja do pytania
A. Klucza oczkowego.
B. Wkrętaka płaskiego.
C. Szczypców uniwersalnych.
D. Klucza płaskiego.
Użycie wkrętaka płaskiego do wymiany łącznika elektrycznego zamontowanego na szynie DIN jest najlepszym rozwiązaniem ze względu na specyfikę konstrukcji łącznika. Tego rodzaju łączniki zazwyczaj mają śruby mocujące, które można łatwo odkręcić za pomocą wkrętaka płaskiego. W branży elektrycznej standardem jest korzystanie z odpowiednich narzędzi, aby zapewnić bezpieczeństwo oraz efektywność pracy. Wkrętaki płaskie są zaprojektowane do pracy z płaskimi śrubami, co czyni je idealnym narzędziem do zastosowania w takich sytuacjach. Oprócz wymiany łączników, wkrętaki płaskie są również szeroko stosowane w instalacjach elektrycznych do dokręcania lub luzowania połączeń, co zwiększa ich wszechstronność. Warto również zwrócić uwagę na dobrą jakość narzędzi, aby uniknąć uszkodzenia śrub oraz zapewnić długotrwałe użytkowanie. Pracując z narzędziami, zawsze należy przestrzegać zasad BHP, aby uniknąć potencjalnych wypadków.

Pytanie 29

Jakiego rodzaju łożysko zostało przedstawione na rysunku?

Ilustracja do pytania
A. Kulkowe.
B. Wałeczkowe.
C. Baryłkowe.
D. Walcowe.
Odpowiedź "Kulkowe." jest poprawna, ponieważ na przedstawionym rysunku widoczne są kulki jako elementy toczne, co jest charakterystyczne dla łożysk kulkowych. Łożyska kulkowe są powszechnie stosowane w wielu urządzeniach mechanicznych, takich jak silniki, przenośniki czy maszyny przemysłowe, gdzie istotna jest niska odporność na tarcie i wysoka precyzja ruchu. Dzięki zastosowaniu kulek, które toczą się między wewnętrzną a zewnętrzną pierścieniową powierzchnią, możliwe jest uzyskanie wyjątkowo płynnego obrotu, co przekłada się na dłuższą żywotność maszyn i mniejsze zużycie energii. Standardy branżowe, takie jak ISO 281, definiują parametry i metody testowania łożysk kulkowych, co potwierdza ich znaczenie w inżynierii mechanicznej. Dodatkowo, łożyska kulkowe są dostępne w różnych rozmiarach oraz wykonaniach, co pozwala na ich szeroką adaptację do różnych zastosowań, zwiększając ich wszechstronność.

Pytanie 30

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Brak smarowania powietrza
B. Defekt silnika sprężarki
C. Nieszczelność w przewodach pneumatycznych
D. Zabrudzony filtr powietrza
Zanieczyszczony filtr powietrza, uszkodzony silnik sprężarki oraz brak olejenia powietrza to kwestie, które mogą wpływać na wydajność i sprawność sprężarki, ale nie są bezpośrednio przyczyną zbyt częstego załączania się jej silnika. Zanieczyszczony filtr powietrza ogranicza przepływ powietrza do sprężarki, co może prowadzić do spadku efektywności, jednak nie wpływa na częstotliwość załączania się silnika. Wręcz przeciwnie, może to powodować jego dłuższe działanie w jednym cyklu, a nie zwiększać ilość cykli włączania. Uszkodzony silnik sprężarki może powodować wiele problemów, w tym niestabilną pracę, ale najczęściej skutkuje to całkowitym zatrzymaniem urządzenia, a nie częstszymi włączeniami. Z kolei brak olejenia powietrza prowadzi do zwiększonego zużycia i przegrzewania się elementów sprężarki, co może wymagać częstszej interwencji serwisowej, ale nie jest bezpośrednią przyczyną częstego włączania się silnika. W praktyce te nieprawidłowości mogą prowadzić do awarii sprężarki, ale nie generują one sytuacji, w której silnik włącza się nadmiernie. Typowe błędy myślowe dotyczące tych problemów często wynikają z niepełnego zrozumienia działania sprężarki oraz jej komponentów, co podkreśla konieczność solidnej wiedzy na temat systemów pneumatycznych i ich konserwacji.

Pytanie 31

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca dorywcza
B. Praca przerywana
C. Praca ciągła
D. Praca długotrwała
Właściwie zidentyfikowałeś rodzaj pracy silnika oznaczony symbolem S3 jako pracę przerywaną. Praca przerywana odnosi się do pracy, w której silnik działa z przerwami, co pozwala na jego schłodzenie i uniknięcie przegrzania. Taki typ pracy jest typowy dla aplikacji, gdzie silnik nie jest obciążony ciągłym wysiłkiem, na przykład w przypadku użytkowania w maszynach budowlanych czy w urządzeniach mobilnych. Przykładem może być silnik w wózku widłowym, który wykonuje cykle podnoszenia i transportu, a pomiędzy nimi następują krótkie przerwy na schłodzenie. W kontekście norm, praca przerywana jest zgodna z klasyfikacjami zawartymi w dokumentach takich jak IEC 60034-1, które definiują różne tryby pracy maszyn elektrycznych. Dobrą praktyką jest monitorowanie temperatury silnika oraz jego obciążenia, aby zapewnić jego długotrwałą eksploatację bez ryzyka uszkodzeń.

Pytanie 32

Jaki klucz należy zastosować do montażu zaworu kątowego, przedstawionego na rysunku?

Ilustracja do pytania
A. Płaski.
B. Nasadowy.
C. Tora.
D. Oczkowy.
Wybór niewłaściwego narzędzia do montażu zaworu kątowego, jak klucz nasadowy czy oczkowy, może narobić niezłych kłopotów. Klucz nasadowy, mimo że się go często używa do różnych złączek, nie nadaje się do zaworów kątowych, bo po prostu nie trzyma się dobrze na płaskich powierzchniach. To może doprowadzić do luzów i wycieków, co nie jest fajne. Klucze oczkowe, chociaż dobrze przylegają, nie rozkładają sił równomiernie na korpusie zaworu, co może być problematyczne. A klucz torowy w tym przypadku? Szkoda go w ogóle wspominać, bo jest stworzony do innego typu śrub. Często ludzie nie rozumieją jak te narzędzia mają działać, co prowadzi do błędów. Myślą, że klucz torowy albo oczkowy z powodzeniem zastąpi klucz płaski, co jest dużym błędem. Dobrze dobrane narzędzia to klucz do efektywnej pracy, a także do bezpieczeństwa całej hydrauliki.

Pytanie 33

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HL
B. HVLP
C. H
D. HLP
Wybór złych symboli olejów może sporo namieszać w ich właściwościach względem potrzeb. Na przykład, symbol HVLP mówi o olejach hydraulicznych, które mają dobre właściwości smarujące, ale brakuje im tych dodatków antykorozyjnych. Również symbol HL informuje o olejach, które nie mają dodatków przeciwutleniających ani poprawiających smarność, co ogranicza ich użycie w trudniejszych warunkach. Znowu, oznaczenie H dotyczy olejów hydraulicznych, które nie mówią nic więcej o ich specyficznych właściwościach. Często myli się te symbole i ich zastosowanie, co może prowadzić do poważnych problemów w hydraulikach, jak przegrzewanie czy korozja. Dlatego tak ważne jest, aby znać różnice między tymi oznaczeniami i wiedzieć, jak je stosować w praktyce w przemyśle.

Pytanie 34

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić membranę
B. zmierzyć rezystancję cewki
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. wymienić uszczelkę
Zwiększenie napięcia zasilania i podawanie go na cewkę elektrozaworu jest podejściem, które może prowadzić do poważnych problemów. Przede wszystkim, jeżeli elektrozawór nie otwiera się przy podanym napięciu znamionowym, może to sugerować, że cewka jest uszkodzona lub występuje inny problem, a niekoniecznie zbyt niskie napięcie. Podawanie wyższego napięcia może spowodować przegrzanie cewki i jej trwałe uszkodzenie, co jest niezgodne z zasadami bezpiecznej eksploatacji. Kolejnym błędem jest zakładanie, że membrana lub inne elementy zaworu są odpowiedzialne za jego niesprawność bez wcześniejszego zbadania stanu cewki. Takie podejście może prowadzić do niepotrzebnych kosztów i przedłużających się czasów napraw. Należy pamiętać, że elektrozawory powinny być diagnozowane w sposób systematyczny i zgodny z procedurami ustalonymi przez producentów oraz branżowe standardy, aby zminimalizować ryzyko błędnych decyzji naprawczych. Właściwą praktyką jest najpierw sprawdzenie wszystkich elementów, zanim podejmie się decyzje o ich wymianie.

Pytanie 35

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Stycznik
B. Prostownik
C. Falownik
D. Chopper
Falownik jest urządzeniem, które konwertuje stałe napięcie na napięcie przemienne o regulowanej częstotliwości i amplitudzie. Dzięki temu pozwala na precyzyjne sterowanie prędkością obrotową silnika indukcyjnego, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak napędy elektryczne w robotyce, systemach HVAC czy transportery taśmowe. W praktyce, falowniki umożliwiają oszczędność energii poprzez dostosowanie mocy do rzeczywistych potrzeb, co jest zgodne z normami wydajności energetycznej. Dodatkowo, falowniki są zgodne z normami IEC i są szeroko stosowane w automatyzacji procesów przemysłowych, co potwierdza ich istotność w nowoczesnych rozwiązaniach inżynieryjnych. Warto zauważyć, że falowniki mogą również pełnić funkcje zabezpieczeń, takie jak ochrona przed przeciążeniem, co zwiększa trwałość systemów napędowych. W kontekście przemysłowym, ich zastosowanie prowadzi do znacznych oszczędności operacyjnych oraz zwiększenia efektywności procesów produkcyjnych.

Pytanie 36

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Symbol graficzny oznaczający sterowanie ręczne dźwignią, przedstawiony przy odpowiedzi A, jest powszechnie stosowany w różnych dziedzinach inżynierii, w tym w automatyce i hydraulice. Dźwignie ręczne są kluczowym elementem w wielu urządzeniach, takich jak podnośniki, maszyny budowlane oraz systemy transportowe. Ich zrozumienie jest niezbędne dla inżynierów i techników, aby skutecznie projektować i obsługiwać urządzenia. W praktyce, dźwignia umożliwia użytkownikowi manualne sterowanie procesem, co jest istotne w sytuacjach, gdzie automatyzacja jest niewystarczająca. Symbol ten jest również zgodny z normami ISO, które regulują oznakowanie urządzeń i ich funkcji. Przy odpowiedniej interpretacji tego symbolu, operatorzy są w stanie skutecznie i bezpiecznie korzystać z urządzeń, co przekłada się na zwiększenie wydajności pracy oraz minimalizację ryzyka błędów. Zrozumienie tych symboli jest kluczowe w kontekście szkoleń BHP oraz przy wprowadzaniu nowych pracowników do procedur obsługi maszyn.

Pytanie 37

Na której ilustracji przedstawiono prawidłowe ułożenie przewodu hydraulicznego?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 1.
Ilustracja 2 przedstawia prawidłowe ułożenie przewodu hydraulicznego, które jest zgodne z zasadami ergonomii i bezpieczeństwa w systemach hydraulicznych. Prawidłowe ułożenie przewodu zapewnia, że jego naturalne zakrzywienia nie powodują nadmiernych naprężeń oraz uszkodzeń materiału. W praktyce, prawidłowe ułożenie przewodów hydraulicznych jest kluczowe dla zapewnienia ich długowieczności i niezawodności. Przewody powinny być instalowane w taki sposób, aby unikać ostrych kątów, które mogą prowadzić do pęknięć lub zgięć, a także do zwiększenia ryzyka awarii systemu. W branży hydraulicznej stosuje się różne normy, takie jak ISO 4413, które określają wymagania dotyczące systemów hydraulicznych, w tym właściwego ułożenia przewodów. Dodatkowo, zgodność z zasadami montażu, takimi jak odpowiednia długość przewodu oraz jego mocowanie, są niezbędne do optymalizacji działania całego systemu. Dobre praktyki w tej dziedzinie obejmują również regularne inspekcje oraz konserwację, co pozwala na wcześniejsze wykrywanie potencjalnych problemów i minimalizację ryzyka awarii.

Pytanie 38

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z dwustronnym tłoczyskiem
B. Nurnikowa
C. Tłokowa z jednostronnym tłoczyskiem
D. Teleskopowa
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 39

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 10,0 V
C. 7,5 V
D. 4,5 V
Odpowiedzi, które wskazują na wartości 4,5 V, 3,0 V oraz 10,0 V, opierają się na błędnych założeniach dotyczących proporcjonalności pomiędzy ciśnieniem a napięciem wyjściowym przetwornika. Niektóre z tych odpowiedzi mogą sugerować, że skala pomiarowa nie jest liniowa, co jest niezgodne z rzeczywistością, ponieważ w podanym przypadku przetwornik ma wyraźnie określoną liniową charakterystykę. Na przykład, wartość 4,5 V mogłaby sugerować, że przy ciśnieniu 337,5 kPa napięcie wynosiłoby 4,5 V, co jest błędne, ponieważ nie uwzględnia proporcji całego zakresu pomiarowego. Z kolei wartość 3,0 V implikuje znacznie niższe ciśnienie, co również byłoby błędnym wnioskiem. Natomiast 10,0 V oznaczałoby, że ciśnienie osiągnęło maksymalny poziom 600 kPa, co nie ma miejsca w przypadku analizowanego ciśnienia 450 kPa. Kluczowym błędem w rozumowaniu jest brak zrozumienia liniowości przetwornika. Ważne jest, aby w takich zadaniach zawsze obliczać wartości na podstawie zdefiniowanej skali i proporcjonalności. Nieodpowiednie podejście do analizy wyników może prowadzić do niepoprawnych decyzji w zastosowaniach inżynieryjnych oraz nieprawidłowego funkcjonowania systemów, co może mieć poważne konsekwencje w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 40

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. umieszczania elementu w odpowiedniej lokalizacji
B. chwytania elementu z odpowiednią siłą
C. ochrony ramienia robota przed przeciążeniem
D. ochrony ramienia robota przed zderzeniem z operatorem
Wybór odpowiedzi dotyczącej zabezpieczania ramienia robota przed kolizją z operatorem jest nieprawidłowy, ponieważ główną funkcją efektora jest manipulacja obiektami, a nie zapewnianie bezpieczeństwa użytkowników. Choć bezpieczeństwo jest kluczowe w kontekście pracy z robotami, to odpowiedzialność ta leży w gestii innych komponentów systemu, takich jak czujniki i urządzenia zabezpieczające. Ustawianie elementu we właściwej pozycji również nie jest zadaniem efektora, lecz wynikiem programowania robota i jego algorytmów ruchu. Efektor działa w oparciu o informacje dostarczane przez system kontrolny, a jego rola koncentruje się na chwytaniu i manipulacji, a nie na precyzyjnym pozycjonowaniu. Zabezpieczanie ramienia robota przed przeciążeniem jest również nieadekwatne, ponieważ ten aspekt jest regulowany przez systemy monitorowania obciążenia i kontroli siły. Efektory są projektowane tak, aby dostarczać odpowiednią siłę chwytu w zależności od materiału, co sprawia, że zabezpieczenie przed przeciążeniem nie jest ich podstawową funkcją. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli efektora z innymi systemami zabezpieczeń oraz niedostateczne zrozumienie jego funkcji w kontekście całości systemu automatyzacji.