Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 12:14
  • Data zakończenia: 7 grudnia 2025 12:44

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 1, 2
B. 1, 3
C. 2, 3
D. 2, 4
Prawidłowa odpowiedź to 1, 2, ponieważ rezystancje pomiędzy końcówkami 2 i 4 oraz 1 i 3 wskazują, że te kombinacje stanowią uzwojenia, które można zasilać napięciem 230 V. Rezystancje R<sub>12</sub> i R<sub>14</sub> są nieskończone, co sugeruje brak połączenia między tymi końcówkami, jednak R<sub>13</sub> wynosi 0,05 Ω, co wskazuje na bezpośrednie połączenie między końcówkami 1 i 3. Ponadto, R<sub>24</sub> wynosi 0,85 Ω, co również sugeruje, że między końcówkami 2 i 4 istnieje niskoresystancyjne połączenie. W praktyce, aby efektywnie zasilać transformator, należy podłączyć go do końcówek, które wykazują odpowiednie połączenia niskoresystancyjne, co zminimalizuje straty energii i zapewni odpowiednie działanie transformatora. W tym przypadku, końcówki 1, 3 oraz 2, 4 są odpowiednie do podłączenia napięcia. W standardzie IEC 60076 dotyczącym transformatorów mocy, podłączenia te są kluczowe dla zapewnienia stabilności i bezpieczeństwa operacji elektrycznych.

Pytanie 3

Który z wymienionych przewodów należy zastosować w celu podłączenia sterownika wyposażonego w moduł komunikacyjny Ethernet do switcha przedstawionego na ilustracji?

Ilustracja do pytania
A. Profibus 2-żyłowy w oplocie.
B. UTP kat. 5.
C. Koncentryczny 75 Ω.
D. Profibus 4-żyłowy w oplocie.
Kabel UTP kat. 5 to taki gość, którego często spotykamy w sieciach Ethernet. To standard, gdy chodzi o łączenie różnych sprzętów z switchami. UTP, czyli Unshielded Twisted Pair, jest super, bo dobrze przesyła sygnał, a przy tym pozwala na większe odległości z prędkością do 100 Mbps. Jak korzystasz z tego kabla, to bez problemu podłączysz sobie sterownik do switcha, co pozwala na sprawną komunikację. Dodatkowo, kabel ten spełnia normy EIA/TIA-568, co znaczy, że możesz go używać w instalacjach LAN, jak profesjonalista. UTP kat. 5 działa nie tylko w biurze, ale też w automatyce przemysłowej, gdzie szybkie przesyłanie danych ma ogromne znaczenie. Więc jak decydujesz się na UTP kat. 5, to robisz dobry ruch, bo jest to kabel, który współpracuje z nowoczesnymi systemami sieciowymi.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Przedstawione na ilustracji urządzenie służy do

Ilustracja do pytania
A. wyszukiwania miejsc uszkodzenia przewodów w instalacji elektrycznej.
B. wykrywania miejsc nieszczelności w instalacji sprężonego powietrza.
C. bezdotykowego pomiaru ciśnienia w gałęzi obwodu pneumatycznego.
D. bezdotykowego pomiaru natężenia przepływu powietrza w gałęzi obwodu pneumatycznego.
Urządzenie przedstawione na ilustracji to detektor ultradźwiękowy, który odgrywa kluczową rolę w diagnostyce systemów sprężonego powietrza. Jego głównym zadaniem jest wykrywanie nieszczelności, które mogą prowadzić do znacznych strat energii oraz obniżenia wydajności systemu. Detektory te działają na zasadzie wychwytywania ultradźwięków emitowanych przez wycieki, które są zazwyczaj niewidoczne i niesłyszalne dla ludzkiego ucha. W praktyce, mogą być one używane w różnych branżach przemysłowych, takich jak produkcja, motoryzacja czy budownictwo, gdzie systemy sprężonego powietrza są powszechnie stosowane. Regularne monitorowanie i lokalizowanie nieszczelności nie tylko poprawia efektywność energetyczną, ale także zapobiega kosztownym przestojom w działalności produkcyjnej. Dobrą praktyką jest przeprowadzanie takich inspekcji okresowo, co pozwala na wczesne wykrycie problemów zanim staną się one poważne. W standardach branżowych, takich jak ISO 11000, podkreśla się znaczenie utrzymania efektywności systemów sprężonego powietrza, co czyni to urządzenie niezbędnym narzędziem w codziennej eksploatacji.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. jak najmniejszej rezystancji wewnętrznej
B. rezystancji wewnętrznej równej rezystancji odbiornika
C. jak największej rezystancji wewnętrznej
D. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
Podczas pomiarów natężenia prądu elektrycznego w układach mechatronicznych, wybór amperomierza z jak największą rezystancją wewnętrzną jest koncepcją, która wydaje się na pierwszy rzut oka logiczna, ale w rzeczywistości prowadzi do licznych błędów pomiarowych. Taki amperomierz może działać jak opornik w obwodzie, co powoduje, że pomiar prądu staje się nieprecyzyjny, a wyniki są zawyżone lub zaniżone. W przypadku wyboru amperomierza z dowolną wartością rezystancji wewnętrznej, można błędnie założyć, że nie ma to wpływu na wynik. Rzeczywistość jest jednak taka, że każdy amperomierz, będąc elementem obwodu, wprowadza pewne zmiany w jego zachowaniu, co jest szczególnie widoczne w układach o dużej czułości. Typowym błędem myślowym w takich sytuacjach jest ignorowanie zasady superpozycji oraz zapominanie o tym, że amperomierz działa w oparciu o prawo Ohma. Ponadto, zalecenia branżowe, takie jak normy IEC, jasno wskazują na konieczność stosowania przyrządów pomiarowych o minimalnym wpływie na parametry obwodu, co podkreśla znaczenie użycia amperomierzy o małej rezystancji wewnętrznej w celu uzyskania wiarygodnych pomiarów.

Pytanie 10

Jakiego symbolu literowego zgodnego z normą IEC 61131 używa się w programie sterującym do wskazywania komórek pamięci danych w programowalnym sterowniku?

A. I
B. Q
C. M
D. W
Poprawna odpowiedź to 'M', ponieważ symbol ten w normie IEC 61131-3 odnosi się do komórek pamięci danych w programowalnych sterownikach logicznych (PLC). Komórki pamięci są kluczowe dla działania PLC, gdyż umożliwiają przechowywanie tymczasowych i trwałych danych, które są niezbędne do prawidłowego działania aplikacji automatyki. W przypadku programowania PLC, ważne jest zrozumienie różnorodności typów danych oraz ich adresowania. Przykładowo, w aplikacjach automatyki przemysłowej często wykorzystuje się pamięć do przechowywania stanów, danych procesowych oraz wyników obliczeń. Odpowiednie zarządzanie pamięcią jest kluczowe dla wydajności aplikacji oraz ich bezpieczeństwa. Zastosowanie symboli literowych zgodnie z normą IEC 61131-3 jest nie tylko praktyką standardową, ale również przyczynia się do łatwiejszej interpretacji kodu przez innych programistów, co jest istotne w kontekście współpracy w zespole oraz przyszłej konserwacji systemów.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Chronią serwonapęd przed przeciążeniem
B. Dostarczają informacji o pozycji i prędkości napędu
C. Stanowią element wykonawczy serwonapędu
D. Informują o momencie generowanym przez napęd
Enkodery w serwonapędach AC pełnią kluczową rolę w monitorowaniu i regulacji ruchu napędu. Ich głównym zadaniem jest dostarczanie informacji o aktualnej pozycji i prędkości, co jest niezbędne do precyzyjnego sterowania. Dzięki enkoderom, systemy automatyki mogą realizować złożone zadania, takie jak kontrola pozycji w aplikacjach robotycznych czy CNC. Przykładowo, w maszynach sterowanych numerycznie, enkodery umożliwiają dokładne pozycjonowanie narzędzi, co ma kluczowe znaczenie dla precyzji obróbczej. Zgodnie z najlepszymi praktykami w branży, stosowanie wysokiej jakości enkoderów pozwala na osiągnięcie lepszej dynamiki systemu oraz zwiększenie efektywności energetycznej. W standardach takich jak ISO 13849, zaleca się użycie enkoderów w kontekście bezpieczeństwa funkcjonalnego, co podkreśla ich znaczenie nie tylko w kontekście wydajności, ale i bezpieczeństwa operacyjnego.

Pytanie 16

Podczas korzystania z wiertarki udarowej zaobserwowano przerwy w jej działaniu podczas przemieszczania w przestrzeni lub przy zmianie kierunku. Jak oceniasz stan techniczny tego narzędzia?

A. Wiertarka działa poprawnie, należy sprawdzić stan instalacji zasilającej
B. Wiertarka nie działa poprawnie, należy niezwłocznie sprawdzić stan szczotek
C. Wiertarka nie działa poprawnie, należy niezwłocznie zbadać stan jej przewodu zasilającego
D. Wiertarka działa poprawnie, należy jej używać jedynie w pozycji pionowej
Odpowiedź, że wiertarka nie jest sprawna i należy niezwłocznie sprawdzić stan jej przewodu zasilającego, jest prawidłowa, ponieważ przerwy w pracy narzędzia podczas przemieszczania lub zmiany kierunku mogą wskazywać na problem z zasilaniem. Uszkodzony przewód zasilający jest częstą przyczyną takich objawów, ponieważ może powodować przerwy w dostawie energii do silnika wiertarki. W praktyce, regularne sprawdzanie stanu przewodu zasilającego jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Warto również pamiętać, że zgodnie z normami bezpieczeństwa, wiertarki powinny być poddawane regularnym przeglądom technicznym, a wszelkie uszkodzenia powinny być niezwłocznie naprawiane przez wykwalifikowany personel. W sytuacji, gdy wiertarka wykazuje problemy z zasilaniem, przed jej dalszym użyciem należy dokładnie ocenić stan przewodu oraz gniazdka, do którego jest podłączona. Takie podejście nie tylko pozwoli uniknąć potencjalnych awarii, ale również zapewni bezpieczeństwo użytkowania sprzętu. Przykładem może być sytuacja, w której nieprzewidziane przerwy w pracy narzędzia mogą prowadzić do uszkodzenia nie tylko samej wiertarki, ale także materiału, nad którym pracujemy.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W programie PLC sygnały niskie lub wysokie przypisane m.in. do wejść i wyjść dyskretnych powinny być definiowane jako zmienne w formacie

A. b
B. W
C. B
D. D
Sformułowanie odpowiedzi jako 'B', 'D' lub 'W' wskazuje na niepoprawne zrozumienie podstawowych koncepcji dotyczących reprezentacji danych w systemach PLC. Odpowiedzi te odnoszą się do jednostek niosących większą ilość danych, takich jak bajty, słowa czy podwójne słowa. Każda z tych jednostek składa się z wielu bitów, co czyni je niewłaściwymi do reprezentowania prostych stanów niski/wysoki. Użycie bajtów i słów jest typowe w kontekście przechowywania bardziej złożonych informacji, jak liczby całkowite czy tekst, a nie pojedyncze stany dyskretne. W praktyce, bity powinny być używane do stanu wejść i wyjść w systemach PLC, ponieważ ich binarna natura idealnie sprawdza się w prostych zadaniach logicznych, takich jak włączanie i wyłączanie urządzeń. Właściwe podejście do reprezentacji danych jest kluczowe dla optymalizacji wydajności systemu oraz efektywności jego działania. Omyłkowe przypisanie stanów do jednostek wyższych, takich jak bajty, prowadzi do nadmiernego zużycia pamięci oraz utrudnia programowanie i diagnostykę, co jest niezgodne z najlepszymi praktykami przemysłowymi. Zrozumienie, że bity są podstawową jednostką informacji w systemach cyfrowych, jest kluczowe dla skutecznego projektowania i implementacji systemów automatyki.

Pytanie 20

Jakie kluczowe warunki powinien spełniać system regulacji automatycznej, aby mógł funkcjonować w pełnym zakresie zmian wartości zadanej?

A. Stabilność
B. Brak uchybu w stanie ustalonym
C. Krótki czas regulacji
D. Niewielkie przeregulowanie
Stabilność jest fundamentalnym warunkiem dla działania układu regulacji automatycznej w pełnym zakresie zmian wartości zadanej. Oznacza to, że po wprowadzeniu jakiejkolwiek zmiany, system jest w stanie wrócić do równowagi bez niekontrolowanych oscylacji. Przykładem stabilnego układu regulacji automatycznej może być termostat, który utrzymuje stałą temperaturę w pomieszczeniu. Jeśli temperatura wzrośnie powyżej ustawionego poziomu, termostat aktywuje klimatyzację, a po osiągnięciu pożądanej temperatury, wyłącza ją, zapobiegając przegrzewaniu. W kontekście norm inżynieryjnych i najlepszych praktyk, stabilność układu odnosi się do spełnienia kryteriów stabilności, takich jak kryterium Nyquista czy kryterium Hurwitza, które pomagają w analizie i projektowaniu systemów regulacji. Utrzymanie stabilności w układach automatycznych jest niezbędne do zapewnienia ich niezawodności oraz efektywności operacyjnej, szczególnie w zastosowaniach przemysłowych, gdzie zmiany wartości zadanej mogą być dynamiczne i złożone.

Pytanie 21

W jakim trybie operacyjnym sterownik PLC wykonuje wszystkie etapy cyklu pracy?

A. TERM
B. START
C. STOP
D. RUN
Tryb pracy RUN w sterownikach PLC jest kluczowy, ponieważ to właśnie w tym trybie realizowane są wszystkie zaprogramowane fazy cyklu pracy urządzenia. W trybie RUN sterownik interpretuje i wykonuje instrukcje zawarte w programie użytkownika, co oznacza, że w tym czasie mogą być realizowane operacje wejść i wyjść, obliczenia, a także podejmowanie decyzji na podstawie zdefiniowanych warunków. Na przykład, w systemach automatyki przemysłowej, w których PLC steruje procesem produkcyjnym, tryb RUN jest niezbędny do ciągłego monitorowania i kontrolowania parametrów, takich jak temperatura, ciśnienie czy poziom substancji. W praktyce, aby zapewnić niezawodność działania, stosuje się procedury uruchamiania i stopniowego przechodzenia do trybu RUN, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w projektowaniu systemów automatyki. Warto również zwrócić uwagę, że w różnych standardach automatyki, takich jak IEC 61131-3, podkreśla się znaczenie trybu RUN jako głównego trybu operacyjnego, w którym następuje realizacja logiki sterowania.

Pytanie 22

Jakie elementy mechanizmów mechatronicznych są zabezpieczane i konserwowane poprzez proces cynkowania?

A. Elementy napędowe
B. Elementy sterujące
C. Elementy sygnalizacyjne
D. Elementy konstrukcyjne
Konstrukcyjne elementy urządzeń mechatronicznych, takie jak ramy, wsporniki i inne elementy nośne, są szczególnie narażone na działanie czynników zewnętrznych, co może prowadzić do ich korozji. Cynkowanie jest skuteczną metodą ochrony przed tym procesem, ponieważ tworzy na powierzchni warstwę cynku, która działa jako bariera dla wilgoci i innych korozjogennych substancji. Dzięki cynkowaniu, elementy te mogą zachować swoje właściwości mechaniczne oraz estetyczne przez długi czas, co jest kluczowe w wielu zastosowaniach przemysłowych. Przykładem może być przemysł budowlany, gdzie elementy konstrukcyjne, takie jak belki czy słupy, muszą być odporne na trudne warunki atmosferyczne. Dobre praktyki branżowe zalecają regularne przeglądy oraz konserwację takich elementów, aby zapewnić ich długowieczność i niezawodność. W standardzie ISO 1461 opisano wymagania dotyczące cynkowania ogniowego, co zapewnia zgodność z międzynarodowymi normami jakości.

Pytanie 23

Która z technik identyfikacji miejsca nieszczelności w systemach pneumatycznych jest najczęściej używana?

A. Pomiar ciśnienia w różnych punktach systemu
B. Nasłuchiwanie źródła specyficznego dźwięku
C. Wykrywanie źródła charakterystycznego zapachu
D. Obserwacja obszaru, z którego uchodzi powietrze
Nasłuchiwanie źródła charakterystycznego dźwięku jest jedną z najskuteczniejszych metod lokalizacji nieszczelności w układach pneumatycznych. Nieszczelności te generują dźwięki, które mają specyficzny charakter, co umożliwia ich identyfikację. W praktyce, technicy często wykorzystują proste narzędzia, takie jak stethoskop pneumatyczny lub nawet standardowe słuchawki, aby wyłapać dźwięki wydobywające się z miejsca nieszczelności. Dzięki tej metodzie można szybko i efektywnie zlokalizować problem, co ogranicza czas przestoju urządzeń. Nasłuchiwanie jest zgodne z dobrymi praktykami branżowymi, które zalecają regularne przeglądy układów pneumatycznych i monitorowanie ich stanu operacyjnego. Przykładem zastosowania tej metody może być diagnostyka nieszczelności w instalacjach przemysłowych, gdzie każdy wyciek powietrza może prowadzić do znacznych strat energetycznych. Umożliwia to także wczesne wykrywanie potencjalnych awarii, co jest kluczowe dla utrzymania ciągłości produkcji oraz bezpieczeństwa pracy.

Pytanie 24

Podczas korzystania z urządzenia podłączonego do sieci jednofazowej 230 V z odpowiednim wyłącznikiem instalacyjnym, po zakończeniu pracy zauważono, że wtyczka oraz gniazdo są mocno rozgrzane. Najbardziej prawdopodobnym powodem tego zjawiska jest

A. luźne zaciski gniazda lub poluzowane kable zasilające
B. zwarcie w instalacji zasilającej gniazdo wtyczkowe
C. przerwa w obwodzie zasilającym gniazdo wtyczkowe
D. zwarcie w urządzeniu
Z mojego doświadczenia, luźne zaciski w gniazdach i źle podłączone przewody to najczęstsze powody, dla których wtyczka czy gniazdko się nagrzewają. Kiedy coś nie jest dobrze dokręcone, opór w miejscu styku rośnie i to sprawia, że pojawia się ciepło. Z czasem, taka sytuacja może doprowadzić do uszkodzenia zarówno wtyczki, jak i gniazdka, a nawet istnieje ryzyko pożaru. Dlatego ważne jest, aby regularnie sprawdzać, czy wszystko jest w porządku z połączeniami elektrycznymi i trzymać się norm, takich jak PN-IEC 60364. Dobrze jest też korzystać z dobrych jakościowo materiałów i właściwych narzędzi przy instalacji czy konserwacji, bo to pomaga zapewnić trwałość połączeń. Na przykład, w gniazdach siłowych, warto używać gniazd z blokadami, żeby nie doszło do przypadkowego poluzowania. Zrozumienie tych zasad to klucz do bezpieczeństwa w instalacjach elektrycznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C użytego w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i dokładności 10 bitów?

A. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
B. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
C. 1024 poziomów kwantyzacji i rozdzielczość napięciowa 9,76 mV
D. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
Przetwornik A/C o rozdzielczości 10 bitów umożliwia przetwarzanie sygnału wejściowego na 1024 poziomy kwantyzacji, co jest wynikiem obliczenia 2^10. Każdy poziom odpowiada konkretnej wartości napięcia, a w przypadku skali pomiarowej 0÷10 V, rozdzielczość napięciowa wynosi około 9,76 mV. Oznacza to, że najmniejsza różnica napięcia, którą można rozróżnić, wynosi właśnie 9,76 mV. Taki przetwornik znajduje zastosowanie w wielu urządzeniach mechatronicznych, gdzie precyzyjny pomiar napięcia jest kluczowy, na przykład w systemach automatyki przemysłowej, czujnikach temperatury czy systemach monitorowania parametrów w czasie rzeczywistym. Zrozumienie działania przetworników A/C oraz ich parametrów, takich jak rozdzielczość i poziomy kwantyzacji, jest niezbędne dla inżynierów projektujących nowoczesne systemy, które muszą współpracować z różnorodnymi sygnałami analogowymi. W praktyce stosuje się te przetworniki w aplikacjach, gdzie wymagane jest dokładne odwzorowanie zmiennych sygnałów analogowych na wartości cyfrowe, co pozwala na dalsze przetwarzanie i analizy danych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
B. Uszkodzenie przewodu ochronnego PE
C. Uszkodzenie izolacji kabla zasilającego urządzenie
D. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
Uszkodzenie izolacji przewodu zasilającego urządzenie II klasy ochronności stanowi poważne zagrożenie porażenia prądem, ponieważ narusza integralność systemu ochrony przed porażeniem elektrycznym. W urządzeniach tej klasy, które nie mają metalowej obudowy uziemionej, kluczową rolę odgrywa izolacja. W przypadku, gdy izolacja ulegnie uszkodzeniu, istnieje ryzyko kontaktu z przewodem pod napięciem, co może prowadzić do poważnych obrażeń lub śmierci. Zgodnie z normą PN-EN 61140, urządzenia klasy II powinny być projektowane z myślą o minimalizacji ryzyka porażenia prądem, co oznacza, że wszelkie uszkodzenia izolacji powinny być niezwłocznie diagnozowane i naprawiane. Praktycznie oznacza to, że regularne przeglądy oraz stosowanie odpowiednich technik konserwacji, takich jak testy izolacji, są kluczowe w zapobieganiu takim sytuacjom. Ponadto, zastosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może znacząco zwiększyć bezpieczeństwo użytkowników i zapobiec poważnym wypadkom.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Którą z wymienionych metod obróbki skrawaniem wykonuje się narzędziem przedstawionym na rysunku?

Ilustracja do pytania
A. Przeciąganie.
B. Struganie.
C. Toczenie.
D. Gwintowanie.
Odpowiedź „gwintowanie” jest prawidłowa, ponieważ narzędzie przedstawione na rysunku to gwintownik, który jest specjalistycznym narzędziem przeznaczonym do tworzenia gwintów wewnętrznych w otworach. Gwintowanie jest istotnym procesem w obróbce skrawaniem, pozwalającym na uzyskanie precyzyjnych połączeń śrubowych. W praktyce, gwintowniki stosuje się w szerokim zakresie aplikacji, od produkcji elementów mechanicznych po tworzenie mocowań w konstrukcjach metalowych. Zgodnie z normami ISO, gwintowanie powinno być realizowane z uwzględnieniem właściwego doboru narzędzi oraz parametrów obróbczych, aby zapewnić wymagane tolerancje oraz jakość gwintów. Dobrze wykonane gwinty pozwalają na bezpieczne i stabilne połączenia w różnorodnych zastosowaniach, co jest kluczowe w branżach takich jak automotive czy lotnictwo.

Pytanie 40

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Wzbudzonym
B. Wyłączania
C. Niewzbudzonym
D. Przełączania
Styki przekaźników i styczników na schematach ideowych układów sterowania stycznikowo-przekaźnikowego powinny być przedstawione w stanie niewzbudzonym, ponieważ jest to stan domyślny, który odzwierciedla, że dany element nie jest w chwili obecnej aktywowany. Prezentowanie styków w tym stanie pozwala na jasne zrozumienie schematu przez techników oraz inżynierów, którzy mogą na pierwszy rzut oka ocenić, jakie elementy są włączone lub wyłączone w danym układzie. W praktyce, identyfikacja stanu niewzbudzonego jest kluczowa w projektowaniu oraz diagnostyce systemów automatyki, ponieważ umożliwia szybkie zlokalizowanie potencjalnych problemów. Na przykład, podczas analizy schematu, technik może natrafić na elementy, które powinny być w stanie nieaktywnym, co wskazuje na konieczność ich uruchomienia w kontekście rozwiązywania usterek. Przestrzeganie tej zasady jest zgodne z międzynarodowymi standardami, takimi jak IEC 60617, które definiują sposób przedstawiania symboli w dokumentacji elektronicznej. Warto także wspomnieć, że niewłaściwe oznaczenie stanu styków może prowadzić do błędów w montażu i programowaniu, co w konsekwencji wpłynie na bezpieczeństwo i efektywność działania instalacji.